首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Land-use change can have significant impacts on soil conditions and microbial communities are likely to respond to these changes. However, such responses are poorly characterized as few studies have examined how specific changes in edaphic characteristics do, or do not, influence the composition of soil bacterial and fungal communities across land-use types. Soil samples were collected from four replicated (n = 3) land-use types (hardwood and pine forests, cultivated and livestock pasture lands) in the southeastern US to assess the effects of land-use change on microbial community structure and distribution. We used quantitative PCR to estimate bacterial–fungal ratios and clone libraries targeting small-subunit rRNA genes to independently characterize the bacterial and fungal communities. Although some soil properties (soil texture and nutrient status) did significantly differ across land-use types, other edaphic factors (e.g., pH) did not vary consistently with land-use. Bacterial–fungal ratios were not significantly different across the land-uses and distinct land-use types did not necessarily harbor distinct soil fungal or bacterial communities. Rather, the composition of bacterial and fungal communities was most strongly correlated with specific soil properties. Soil pH was the best predictor of bacterial community composition across this landscape while fungal community composition was most closely associated with changes in soil nutrient status. Together these results suggest that specific changes in edaphic properties, not necessarily land-use type itself, may best predict shifts in microbial community composition across a given landscape. In addition, our results demonstrate the utility of using sequence-based approaches to concurrently analyze bacterial and fungal communities as such analyses provide detailed phylogenetic information on individual communities and permit the robust assessment of the biogeographical patterns exhibited by soil microbial communities.  相似文献   

2.
Understanding the influence of long-term crop management practices on the soil microbial community is critical for linking soil microbial flora with ecosystem processes such as those involved in soil carbon cycling. In this study, pyrosequencing and a functional gene array (GeoChip 4.0) were used to investigate the shifts in microbial composition and functional gene structure in a medium clay soil subjected to various cropping regimes. Pyrosequencing analysis showed that the community structure (β-diversity) for bacteria and fungi was significantly impacted among different cropping treatments. Functional gene array-based analysis revealed that crop rotation practices changed the structure and abundance of genes involved in C degradation. Significant correlations were observed between the activities of four enzymes involved in soil C degradation and the abundance of genes responsible for the production of respective enzymes, suggesting that a shift in the microbial community may influence soil C dynamics. We further integrated physical, chemical, and molecular techniques (qPCR) to assess relationships between soil C, microbial derived enzymes and soil bacterial community structure at the soil micro-environmental scale (e.g. within different aggregate-size fractions). We observed a dominance of different bacterial phyla within soil microenvironments which was correlated with the amount of C in the soil aggregates suggesting that each aggregate represents a different ecological niche for microbial colonization. Significant effects of aggregate size were found for the activity of enzymes involved in C degradation suggesting that aggregate size distribution influenced C availability. The influence of cropping regimes on microbial and soil C responses declined with decreasing size of soil aggregates and especially with silt and clay micro-aggregates. Our results suggest that long term crop management practices influence the structural and functional potential of soil microbial communities and the impact of crop rotations on soil C turnover varies between different sized soil aggregates. These findings provide a strong framework to determine the impact of management practices on soil C and soil health.  相似文献   

3.
Soil management practices affect soil microbial communities, which in turn influence soil ecosystem processes. In this study, the effects of conventional- (fall disking, chiseling and spring disking, field cultivation) and no-tillage practices on soil microbial communities were examined under long-term continuous cotton (Gossypium hirsutum L.) systems on a Decatur silt loam soil. Soil samples were taken in February, May, and October of 2000 at depths of 0-3, 3-6, 6-12, and 12-24 cm. Compared to the conventional-till treatment, the no-till treatment increased soil organic carbon and total nitrogen contents in the surface layer by 130 and 70%, respectively. Microbial biomass C content under no-till treatment was 60, 140, and 75% greater than under conventional-till treatment in February, May, and October, respectively. Principal components analysis of phospholipid ester-linked fatty acid (PLFA) profile indicated soil microbial communities shifted over time and with soil depth. This change appeared to be driven primarily by soil bacterial populations as indicated by the major PLFA contributors (i.e. fatty acids 16:0, 10Me16:0, cy19:0, 16:1 2OH, and i15:0) to the first two principal components. Tillage treatment differences were revealed by analysis of variance on the first principal components (PC 1), which accounted for 62% of the total sample variance, and by the relative abundance of selected PLFAs and PLFA ratios. The impact of tillage practices was significant in February and May, but not in October. During the growing season, changes in the microbial community may be primarily determined by soil conditions responding to cotton growth and environmental variables such as moisture and temperature; during fallow or prior to cotton establishment, community changes associated with tillage practices become more pronounced. These findings have implications for understanding how conservation tillage practices improve soil quality and sustainability in a cotton cropping system.  相似文献   

4.

Purpose

Soil nitrogen (N) availability is a critical determinant of plantation productivity in subtropical Australia and is influenced by the soil microbial community. The size, structure and function of the soil microbial community can be impacted by land-use change and residue management. The objectives of this study were to examine the impact of land-use change from (1) native forest (NF) to first rotation (1R) hoop pine plantation and (2) 1R hoop pine plantation to second rotation (2R) hoop pine plantation on the soil microbial community. The impact of residue management on the soil microbial community was also investigated in the 2R forest, where soil microbial parameters were measured in tree rows (2R-T) and windrows (2R-W). In addition, relationships between soil microbial parameters and soil N parameters were investigated.

Materials and methods

Each of the four treatments (NF, 1R, 2R-T and 2R-W) had five 24-m2 replicate plots from which 15 soil cores were collected and bulked at three depths (0–10, 10–20, 20–30 cm). Microbial biomass carbon (MBC) and N (MBN) and soil respiration were measured on field moist soils. In addition, carbon (C) source utilisation patterns were assessed using the whole soil MicroResp? technique (Campbell et al. 2003).

Results and discussion

Results indicate that the land-use change from NF to 1R hoop pine plantation significantly reduced MBC, respiration rate, soil total C and total N. Furthermore, the land-use change appeared to have a significant impact on the soil microbial community composition measured using MicroResp? profiles. Land-use change from 1R to 2R hoop pine plantation resulted in a decline in total C and MBN and a shift in microbial community composition. When compared to the 2R-T soils, the 2R-W soils tended to have a greater microbial biomass and respiration rate. Residue management also influenced the microbial community composition measured in the MicroResp? profiles.

Conclusions

Results indicate that land-use change had a significant impact on the soil microbial community, which was likely to be related to shifts in the quality and quantity of organic inputs associated with the change in land use. This may have significant implications for the long-term productivity of the soil resource. Further studies are required to confirm a difference in microbial community composition associated with residue management. In addition, long-term experiments in subtropical Australia are necessary to verify the results of this snapshot study and to improve our understanding of the impact of single-species plantation forestry and residue management on the soil microbial community, soil N dynamics and ultimately the long-term sustainability of the soil resource.  相似文献   

5.
Afforestation and deforestation are key land-use changes across the world, and are considered to be dominant factors controlling ecosystem functioning and biodiversity. However, the responses of soil microbial communities to these land-use changes are not well understood. Because changes in soil microbial abundance and community structure have consequences for nutrient cycling, C-sequestration and long-term sustainability, we investigated impacts of land-use change, age of stand and soil physico-chemical properties on fungal and bacterial communities and their metabolic activities. This study was carried out at four sites in two geographical locations that were afforested on long-established pastures with Pinus radiata D. Don (pine). Two of the sites were on volcanic soils and two on non-volcanic soils and stand age ranged from 5 to 20 y. Microbial communities were analysed by biochemical (phospho-lipid fatty acids; PLFA) and molecular (multiplex-terminal restriction fragment length polymorphism; M-TRFLP) approaches. Both site and stand age influenced microbial properties, with changes being least detectable in the 5-y-old stand. Land use was a key factor influencing soil metabolic activities as measured by physiological profiling using MicroResp. Pasture soils had higher microbial biomass (P < 0.001), and metabolic activities (P < 0.001), and basal respiration rates were up to 2.8-times higher than in the pine soils. Microbial abundance analysis by PLFA showed that the fungal to bacterial ratio was higher in the pine soils (P < 0.01). Community analysis suggested that soil bacterial communities were more responsive to site (principal component 1; P < 0.001) than to land use (principal component 5; P < 0.001). In contrast, the fungal community was more affected by land-use change (principal component 1; P < 0.001) than by site, although site still had some influence on fungal community structure (principal component 2; P < 0.001). Redundancy analysis also suggested that bacterial and fungal communities responded differently to various soil abiotic properties, land-use change and location of sites. Overall, our results indicate that the change in land use from pasture to P. radiata stands had a direct impact on soil fungal communities but an indirect effect, through its effects on soil abiotic properties, on bacterial communities. Most of the changes in bacterial communities could be explained by altered soil physico-chemical properties associated with afforestation of pastures.  相似文献   

6.
Organic matter incorporation into soil can increase nutrient availability to plants but it can affect soil microbial communities. These in turn influence soil fertility and plant growth. Soil biochemical and microbiological properties are indicators of soil quality, but there is still no consensus as to how these should be used. Recent developments in molecular biology have provided new tools to obtain a view of the whole microbial community. The long-term impact of crop residue management on the microbial biomass, and on the activity and community structure of soil bacteria was evaluated in a clay soil of Southern Italy, where a monoculture of durum wheat (Triticum durum Desf.) was grown in semiarid conditions, and burning or incorporation of post harvest plant residues were typical practices. The role of N-mineral fertilization, simultaneously with the ploughing in of crop residues and during the plant growth cycle was also investigated. Total bacterial counts of viable cells, biomass C, ATP content of soil microorganisms, genetic fingerprinting of the total eubacterial community and of ammonia oxidizers were evaluated. Burning and incorporation did not affect microbial biomass C, ATP content, and total bacterial counts of viable cells although statistically relevant changes were detected among rhizosphere and bulk soil samples regardless of the crop residue management used. Molecular fingerprinting confirmed that: no significant change in the composition and diversity of total bacteria, as well as of ammonia oxidizers was induced by the crop residue managements; that soil bacteria were more sensitive to N fertilizer application during the plant growth cycle; and that rhizosphere soil samples were significantly different from those of the bulk soil. As microbiological and genetic factors related to soil fertility were not affected significantly, the long-term incorporation of crop residues, under the field conditions investigated, is a sustainable practice to manage post-harvest residues.  相似文献   

7.
The effect of grazing by large herbivores on the microbial community and the ecosystem functions they provide are relatively unknown in grassland systems. In this study, the impact of grazing upon the size, composition and activity of the soil microbial community was measured in field experiments in two coastal ecosystems: one salt marsh and one sand dune grassland. Bacterial, fungal and total microbial biomass were not systematically affected by grazing across ecosystems, although, within an ecosystem, differences could be detected. Fungal-to-bacterial ratio did not differ with grazing for either habitat. Redundancy analysis showed that soil moisture, bulk density and root biomass significantly explained the composition of phospholipid fatty acid (PLFA) markers, dominated by the distinction between the two grassland habitats, but where the grazing effect could also be resolved. PLFA markers for Gram-positive bacteria were more proportionally abundant in un-grazed, and markers for Gram-negative bacteria in grazed grasslands. Bacterial growth rate (leucine incorporation) was highest in un-grazed salt marsh but did not vary with grazing intensity in the sand dune grassland. We conclude that grazing consistently affects the composition of the soil microbial community in semi-natural grasslands but that its influence is small (7 % of the total variation in PLFA composition), compared with differences between grassland types (89 %). The relatively small effect of grazing translated to small effects on measurements of soil microbial functions, including N and C mineralisation. This study is an early step toward assessing consequences of land-use change for global nutrient cycles driven by the microbial community.  相似文献   

8.
Disturbance and change to C inputs can alter microbial community structure and impact ecosystem function. Particularly in temperate regions, seasonal change also has an effect on microbial communities both directly through climate and indirectly through plant function. The temporal change in microbial communities of an undisturbed pasture, disturbed pasture (similar to a single tillage event) and pasture soil amended with two forms of particulate carbon were monitored over eight consecutive seasons after grass was reestablished. The soil microbial community was assessed by a DNA fingerprinting technique (terminal restriction fragment length polymorphism, TRFLP) of bacterial, fungal and archaeal communities, and also from phospholipid fatty acid (PLFA) analysis. The single disturbance had a significant effect on fungal microbial community structure (by TRFLP) and significantly decreased the fungal:bacterial ratio. Though the change was relatively small, it persisted throughout the sampling period. Nitrate was also higher on the disturbed treatment providing evidence for the theory that changes to fungal:bacterial ratios can alter nutrient cycling and retention. Fungal communities were the most altered by the C amendments, and while bacteria were also affected by the C amendments, seasonal change was a greater cause of variation. Correlation to soil and climatic variables explained more of the total variability for PLFA (78% for all treatments) than bacterial (50%), fungal (35%) and archaeal (14%) restriction fragments. Most climate and soil variables explained significant variation for seasonal patterns in the multivariate community structures but measurements of soil moisture were important for all communities while pH was relatively more important for bacteria, temperature for fungi, and soil C:N ratio for archaea. Autumn was particularly distinct from other seasons for bacteria (less so for the fungal community) and although there was seasonal change in pH suggesting pasture management was a factor, the significant correlation of other soil characteristics suggests that plant physiological changes (most probably root exudates) also played a significant role. The large change in the saprotrophic fungal community due to the particulate C addition but minor seasonal change would tend to suggest that the fungal community may be more responsive to changes in litter inputs rather than root exudates while the reverse is true for bacteria.  相似文献   

9.
A range of agricultural practices influence soil microbial communities, such as tillage and organic C inputs, however such effects are largely unknown at the initial stage of soil formation. Using an eight-year field experiment established on exposed parent material (PM) of a Mollisol, our objectives were to: (1) to determine the effects of field management and soil depth on soil microbial community structure; (2) to elucidate shifts in microbial community structure in relation to PM, compared to an arable Mollisol (MO) without organic amendment; and (3) to identify the controlling factors of such changes in microbial community structure. The treatments included two no-tilled soils supporting perennial crops, and four tilled soils under the same cropping system, with or without chemical fertilization and crop residue amendment. Principal component (PC) analysis of phospholipid fatty acid (PLFA) profiles demonstrated that microbial community structures were affected by tillage and/or organic and inorganic inputs via PC1 and by land use and/or soil depth via PC2. All the field treatments were separated by PM into two groups via PC1, the tilled and the no-tilled soils, with the tilled soils more developed towards MO. The tilled soils were separated with respect to MO via PC1 associated with the differences in mineral fertilization and the quality of organic amendments, with the soils without organic amendment being more similar to MO. The separations via PC1 were principally driven by bacteria and associated with soil pH and soil C, N and P. The separations via PC2 were driven by fungi, actinomycetes and Gram (−) bacteria, and associated with soil bulk density. The separations via both PC1 and PC2 were associated with soil aggregate stability and exchangeable K, indicating the effects of weathering and soil aggregation. The results suggest that in spite of the importance of mineral fertilization and organic amendments, tillage and land-use type play a significant role in determining the nature of the development of associated soil microbial community structures at the initial stages of soil formation.  相似文献   

10.
The spatial ecology of soil microbial communities and their functioning is an understudied aspect of soil microbial ecology. Much of our understanding of the spatial organisation of microbial communities has been obtained at scales that are inappropriate for identifying how microbial functioning and spatial patterns are related. In order to reveal the spatial strategies of soil microorganisms, we measured the microscale spatial distribution of 6 exoenzyme activities (EEA) and related them to the catalytic potential of three soils. The relationship between EEA profiles and microbial community structure was also measured in soil aggregates. All the EEA exhibited scale-invariant spatial clustering. The extent of spatial clustering varied significantly among EEA, suggesting that microbial communities employ different spatial strategies when foraging for different elements. The dispersed distribution of alkaline phosphatase suggests that microorganisms invest more heavily in the acquisition of P. The EEA associated with the C and N cycles, but not the P cycle, were significantly affected by management practices in the loamy soil. A significant negative relationship between the extent of spatial clustering of EEA and the overall intensity of the EEA was identified in the two loamy soils, indicating that the microscale spatial ecology of microbial activity may have a significant impact on biogeochemical cycles. No relationship was found between microbial community structure and EEA profiles in aggregates. However, a number of negative relationships between the relative abundance of certain taxa and the most dispersed EEA (alkaline phosphatase and β-glucosidase) were found, suggesting that these taxa make the EEA products available by means other than the production of exoenzymes (e.g. solubilisation of phosphate through the production of organic acids).  相似文献   

11.
The response of soil microbial communities following changes in land-use is governed by multiple factors. The objectives of this study were to investigate (i) whether soil microbial communities track the changes in aboveground vegetation during succession; and (ii) whether microbial communities return to their native state over time. Two successional gradients with different vegetation were studied at the W. K. Kellogg Biological Station, Michigan. The first gradient comprised a conventionally tilled cropland (CT), mid-succession forest (SF) abandoned from cultivation prior to 1951, and native deciduous forest (DF). The second gradient comprised the CT cropland, early-succession grassland (ES) restored in 1989, and long-term mowed grassland (MG). With succession, the total microbial PLFAs and soil microbial biomass C consistently increased in both gradients. While bacterial rRNA gene diversity remained unchanged, the abundance and composition of many bacterial phyla changed significantly. Moreover, microbial communities in the relatively pristine DF and MG soils were very similar despite major differences in soil properties and vegetation. After >50 years of succession, and despite different vegetation, microbial communities in SF were more similar to those in mature DF than in CT. In contrast, even after 17 years of succession, microbial communities in ES were more similar to CT than endpoint MG despite very different vegetation between CT and ES. This result suggested a lasting impact of cultivation history on the soil microbial community. With conversion of deciduous to conifer forest (CF), there was a significant change in multiple soil properties that correlated with changes in microbial biomass, rRNA gene diversity and community composition. In conclusion, history of land-use was a stronger determinant of the composition of microbial communities than vegetation and soil properties. Further, microbial communities in disturbed soils apparently return to their native state with time.  相似文献   

12.
Microorganisms form the basis of soil food webs and represent key control points of carbon cycling and sequestration. Virtually all central European forests are managed and land-use regimes likely impact microbial abundance and community composition. Consequently, knowledge on how land-use intensity and abiotic variables, such as pH, C-to-N ratios, moisture regimes and concomitantly different stress levels, affect microbial communities is needed. We investigated phospholipid fatty acid (PLFA) profiles of leaf litter and soil from four forest types differing in foliage, age and management intensity, replicated in three regions across Germany. To account for temporal variation, samples were taken twice in the same season, but with an interval of three years. Total microbial biomass and microbial community composition differed between years, presumably due to between year variations in weather conditions. The litter layer was more prone to effects of drying, with a reduction of almost 30% of total PLFAs in the drier year. In soil effects of weather conditions depended on soil type and therefore differed between regions, with microorganisms in the sandy soils of the Schorfheide being more susceptible to water-stress, as evidenced by a ten-fold increase of the stress indicator cy/pre ratio in the drier year. Despite temporal variations in microbial biomass and community composition, the balance between the fungal and bacterial energy channel, as measured by fungal-to-bacterial ratios, remained rather constant in particular in soil. While total microbial biomass did not differ between forest types, microbial community composition differed significantly between beech and coniferous forests. Despite more acidic conditions, the fungal energy channel was less pronounced in leaf litter of coniferous forests than in broad-leaved forests, whereas the proportion of bacterial fatty acids was the highest in coniferous forests. Increasing management intensity presumably fosters the bacterial energy channel in the exposed litter layer. Supporting this assumption coniferous forests featured significantly higher values of the stress indicators cy/pre and SAT/MONO ratio. Bacterial community structure and biomass closely correlated with pH, with particular PLFAs dominating at high and low pH, respectively, indicating pH-specific microbial communities. In contrast, fungal abundance in leaf litter was correlated with C-to-N ratio. The results suggest that leaf litter and soil need to be considered separately when investigating changes in microbial community composition, since susceptibility of microorganisms to environmental stressors differs markedly between these layers. This, and repeated sampling events, may be particularly important when investigating subtle effects such as those related to climate change.  相似文献   

13.
Because soil biota is influenced by a number of factors, including land use and management techniques, changing management practices could have significant effects on the soil microbial properties and processes. An experiment was conducted to investigate differences in soil microbiological properties caused by long- and short-term management practices. Intact monolith lysimeters (0.2 m2 surface area) were taken from two sites of the same soil type that had been under long-term organic or conventional crop management and were then subjected to the same 2.5-year crop rotation [winter barley (Hordeum vulgare L.), maize (Zea mais L.), lupin (Lupinus angustifolius L.), and rape (Brassica napus L. ssp. oleifera)] and two fertilizer regimes (following common organic and conventional practices). Soil samples were taken after crop harvest and analyzed for microbial biomass C and N, microbial activity (fluorescein diacetate hydrolysis, arginine deaminase activity, and dehydrogenase activity), and total C and N. The incorporation of the green manure stimulated growth and activity of the microbial communities in soils of both management histories. Soil microbial properties did not show any differences between organically and conventionally fertilized soils, indicating that crop rotation and plant type had a larger influence on the microbial biomass and enzyme activities than fertilization. Initial differences in microbial biomass declined, while the effects of farm management history were still evident in enzyme activities and total C and N. Links between enzyme activities and microbial biomass C varied depending on treatment, indicating differences in microbial community composition.  相似文献   

14.
Here, we examine soil-borne microbial biogeography as a function of the features that define an American Viticultural Area (AVA), a geographically delimited American wine grape-growing region, defined for its distinguishing features of climate, geology, soils, physical features (topography and water), and elevation. In doing so, we lay a foundation upon which to link the terroir of wine back to the soil-borne microbial communities. The objective of this study is to elucidate the hierarchy of drivers of soil bacterial community structure in wine grape vineyards in Napa Valley, California. We measured differences in the soil bacterial and archaeal community composition and diversity by sequencing the fourth variable region of the small subunit ribosomal RNA gene (16S V4 rDNA). Soil bacterial communities were structured with respect to soil properties and AVA, demonstrating the complexity of soil microbial biogeography at the landscape scale and within the single land-use type. Location and edaphic variables that distinguish AVAs were the strongest explanatory factors for soil microbial community structure. Notably, the relationship with TC and TN of the <53 μm and 53–250 μm soil fractions offers support for the role of bacterial community structure rather than individual taxa on fine soil organic matter content. We reason that AVA, climate, and topography each affect soil microbial communities through their suite of impacts on soil properties. The identification of distinctive soil microbial communities associated with a given AVA lends support to the idea that soil microbial communities form a key in linking wine terroir back to the biotic components of the soil environment, suggesting that the relationship between soil microbial communities and wine terroir should be examined further.  相似文献   

15.
Knowledge of how forest management influences soil microbial community interactions is necessary for complete understanding of forest ecology. In this study, soil microbial communities, vegetation characteristics and soil physical and chemical properties were examined across a rectangular 4.57 × 36.58 m sample grid spanning adjacent coniferous forest and clearcut areas. Based on analysis of soil extracted phospholipid fatty acids, total microbial biomass, fungi and Gram-negative bacteria were found to be significantly reduced in soil of the clearcut area relative to the forest. Concurrent with changes in microbial communities, soil macroaggregate stability was reduced in the clearcut area, while no significant differences in soil pH and organic matter content were found. Variography indicated that the range at which spatial autocorrelation between samples was evident (patch size) was greater for all microbial groups analyzed in the clearcut area. Overall, less spatial structure could be resolved in the forest. Variance decomposition using principal coordinates of neighbor matrices spatial variables indicated that soil aggregate stability and vegetation characteristics accounted for significant microbial community spatial variation in analyses that included the entire plot. When clearcut and forest areas were analyzed separately, different environmental variables (pH in the forest area and soil organic matter in the clearcut) were found to account for variation in soil microbial communities, but little of this variation could be ascribed to spatial interactions. Most microbial variation explained by different components of microbial communities occurred at spatial scales other than those analyzed. Fungi accounted for over 50% of the variation in bacteria of the forest area but less than 11% in the clearcut. Conversely, AMF accounted for significant variation in clearcut area, but not forest, bacteria. These results indicate broadly disparate controls on soil microbial community composition in the two systems. We present multiple lines of evidence pointing toward shifts in fungi functional groups as a salient mechanism responsible for qualitative, quantitative and spatial distribution differences in soil microbial communities.  相似文献   

16.
《Applied soil ecology》2007,35(1):79-93
Microbial diversity in soils is considered important for maintaining sustainability of agricultural production systems. However, the links between microbial diversity and ecosystem processes are not well understood. This study was designed to gain better understanding of the effects of short-term management practices on the microbial community and how changes in the microbial community affect key soil processes. The effects of different forms of nitrogen (N) on soil biology and N dynamics was determined in two soils with organic and conventional management histories that varied in soil microbial properties but had the same fertility. The soils were amended with equal amounts of N (100 kg ha−1) in organic (lupin, Lupinus angustifolius L.) and mineral form (urea), respectively. Over a 91-day period, microbial biomass C and N, dehydrogenase enzyme activity, community structure of pseudomondas (sensu stricto), actinomycetes and α proteobacteria (by denaturing gradient gel electrophoresis (DGGE) following PCR amplification of 16S rDNA fragments) and N mineralisation were measured. Lupin amendment resulted in a two- to five-fold increase in microbial biomass and enzyme activity, while these parameters did not differ significantly between the urea and control treatments. The PCR–DGGE analysis showed that the addition of mineral and organic compounds had an influence on the microbial community composition in the short term (up to 10 days) but the effects were not sustained over the 91-day incubation period. Microbial community structure was strongly influenced by the presence or lack of substrate, while the type of amendment (organic or mineral) had an effect on microbial biomass size and activity. These findings show that the addition of green manures improved soil biology by increasing microbial biomass and activity irrespective of management history, that no direct relationship existed among microbial structure, enzyme activity and N mineralisation, and that microbial community structure (by PCR–DGGE) was more strongly influenced by inherent soil and environmental factors than by short-term management practices.  相似文献   

17.
Some microbial nitrogen (N) cycling processes continue under low soil moisture levels in drought-adapted ecosystems. These processes are of particular importance in winter cropping systems, where N availability during autumn sowing informs fertilizer practices and impacts crop productivity. We evaluated the organic and inorganic N-cycling communities in a key cropping soil (Vertosol), using a controlled-environment incubation study that was designed to model the autumn break in south Australian grain growing regions. Soils from wheat, lucerne, and green manure (disced-in vetch) rotations of the Sustainable Cropping Rotations in Mediterranean Environments trial (Victoria, Australia) were collected during the summer when soil moisture was low. Microbial community structure and functional capacity were measured both before and after wetting (21, 49, and 77 days post-wetting) using terminal restriction fragment length polymorphism measures of bacterial and fungal communities, and quantitative PCR of nitrogen cycling genes. Quantified genes included those associated with organic matter decomposition (laccase, cellobiohydrolase), mineralization of N from organic matter (peptidases) and nitrification (bacterial and archaeal ammonia monooxygenase and nitrite oxidoreductase). In general, the N cycling functional capacity decreased with soil wetting, and there was an apparent shift from organic-N cycling dominance to autotrophic mineral-N cycling dominance. Soil nitrate levels were best predicted by laccase and neutral peptidase genes under drought conditions, but by neutral peptidase and bacterial ammonia monooxygenase genes under moist conditions. Rotation history affected both the structural and functional resilience of the soil microbial communities to changing soil moisture. Discing in green manure (vetch) residues promoted a resilient microbial community, with a high organic-N cycling capacity in dry soils. Although this was a small-scale microcosm study, our results suggest that management strategies could be developed to control microbial organic-N processing during the summer fallow period and thus improve crop-available N levels at sowing.  相似文献   

18.
Using a scheme of agricultural fields with progressively less intensive management (deintensification), different management practices in six agroecosystems located near Goldsboro, NC, USA were tested in a large-scale experiment, including two cash-grain cropping systems employing either tillage (CT) or no-tillage (NT), an organic farming system (OR), an integrated cropping system with animals (IN), a successional field (SU), and a plantation woodlot (WO). Microbial phospholipid fatty acid (PLFA) profiles and substrate utilization patterns (BIOLOG ECO plates) were measured to examine the effects of deintensification on the structure and diversity of soil microbial communities. Principle component analyses of PLFA and BIOLOG data showed that the microbial community structure diverged among the soils of the six systems.Lower microbial diversity was found in lowly managed ecosystem than that in intensive and moderately managed agroecosystems, and both fungal contribution to the total identified PLFAs and the ratio of microbial biomass C/N increased along with agricultural deintensification. Significantly higher ratios of C/N (P 〈 0.05) were found in the WO and SU systems, and for fungal/bacterial PLFAs in the WO system (P 〈 0.05). There were also significant decreases (P 〈 0.05) along with agricultural deintensification for contributions of total bacterial and gram positive (G+) bacterial PLFAs.Agricultural deintensification could facilitate the development of microbial communities that favor soil fungi over bacteria.  相似文献   

19.

Purpose

Soil microbial communities can be strongly influenced by agricultural practices, but little is known about bacterial community successions as land use changes. The objective of this study was to determine microbial community shifts following major land use changes in order to improve our understanding of land use impacts on microbial community composition and functions.

Materials and methods

Four agricultural land use patterns were selected for the study, including old rice paddy fields (ORP), Magnolia nursery planting (MNP), short-term vegetable (STV), and long-term vegetable (LTV) cultivation. All four systems are located in the same region with same soil parent material (alluvium), and the MNP, STV, and LTV systems had been converted from ORP for 10, 3, and 30 years, respectively. Soil bacteria and ammonia oxidizer community compositions were analyzed by 454 pyrosequencing and terminal restriction fragment length polymorphism, respectively. Quantitative PCR was used to determine 16S rRNA and amoA gene copy numbers.

Results and discussion

The results showed that when land use was changed from rice paddy to upland systems, the relative abundance of Chloroflexi increased whereas Acidobacteria decreased significantly. While LTV induced significant shifts of bacterial composition, MNP had the highest relative abundance of genera GP1, GP2, and GP3, which were mainly related to the development of soil acidity. The community composition of ammonia-oxidizing bacteria (AOB) but not ammonia-oxidizing archaea was strongly impacted by the agricultural land use patterns, with LTV inducing the growth of a single super predominant AOB group. The land use changes also induced significant shifts in the abundance of 16S rRNA and bacterial amoA genes, but no significant differences in the abundance of archaea amoA was detected among the four land use patterns. Soil total phosphorous, available phosphorous, NO3 ?, and soil organic carbon contents and pH were the main determinants in driving the composition of both bacteria and AOB communities.

Conclusions

These results clearly show the significant impact of land use change on soil microbial community composition and abundance and this will have major implications on the microbial ecology and nutrient cycling in these systems, some of which is unknown. Further research should be directed to studying the impacts of these microbial community shifts on nutrient dynamics in these agroecosystems so that improved nutrient management systems can be developed.  相似文献   

20.
Changes in the biomass and structure of soil microbial communities have the potential to impact ecosystems via interactions with plants and weathering minerals. Previous studies of forested long-term (1000s - 100,000s of years) chronosequences suggest that surface microbial communities change with soil age. However, significant gaps remain in our understanding of long-term soil microbial community dynamics, especially for non-forested ecosystems and in subsurface soil horizons. We investigated soil chemistry, aboveground plant productivity, and soil microbial communities across a grassland chronosequence (65,000-226,000 yrs old) located near Santa Cruz, CA. Aboveground net primary productivity (ANPP) initially increased to a maximum and then decreased for the older soils. We used polar lipid fatty acids (PLFA) to investigate microbial communities including both surface (<0.1 m) and subsurface (≥0.2 m) soil horizons. PLFAs characteristic of Gram-positive bacteria and actinobacteria increased as a fraction of the microbial community with depth while the fungal fraction decreased relative to the surface. Differences among microbial communities from each chronosequence soil were found primarily in the subsurface where older subsurface soils had smaller microbial community biomass, a higher proportion of fungi, and a different community structure than the younger subsurface soil. Subsurface microbial community shifts in biomass and community structure correlated with, and were likely driven by, decreasing soil P availability and Ca concentrations, respectively. Trends in soil chemistry as a function of soil age led to the separation of the biological (≤1 m depth) and geochemical (>1 m) cycles in the old, slowly eroding landscape we investigated, indicating that this separation, commonly observed in tropical and subtropical ecosystems, can also occur in temperate climates. This study is the first to investigate subsurface microbial communities in a long-term chronosequence. Our results highlight connections between soil chemistry and both the aboveground and belowground parts of an ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号