首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Weedy rice (Oryza spp.) is a notorious weed in direct-seeding paddy fields. Because it has anatomical and physiological traits similar to those of cultivated rice, no selective herbicide is effective in controlling weedy rice growing among conventional rice cultivars. Imidazolinone (IMI)-resistant rice lines JD372 and JJ818 have been planted with imazamox to control weedy rice in Jiangsu and Shanghai, China. Whole-plant dose–response analysis showed that imazamox exhibited high efficacy against three populations of weedy rice. The ED90 of weedy rice populations FN-5, GY-8, and HY-3 were 46.87, 61.43, and 52.17 g a.i. ha−1, respectively, close to the recommended field dose (50 g a.i. ha−1) of imazamox. Conversely, the ED10 values of JD372 and JJ818 were slightly lower than 50 g a.i. ha−1. These findings indicate that imazamox can control weedy rice production in JD372 and JJ818 fields. The acetolactate synthase (ALS) sensitivity of JD372 in vitro was 1714.89-fold lower to imazamox than was that of FN-5. ALS gene sequencing revealed a Ser653Asn point mutation—a common mutation that confers resistance to IMI herbicides in JD372. In addition, higher ALS expression levels in JD372 were found at 24 and 72 h after imazamox treatment. ALS overexpression might partially compensate for the ALS activity of JD372 that was suppressed by imazamox.  相似文献   

3.
Schoenoplectiella juncoides is a noxious sedge weed in rice paddy fields that has evolved resistance to sulfonylurea (SU) herbicides. The molecular basis of resistance is amino acid substitutions at Pro197, Trp574 or Asp376 in the acetolactate synthase (ALS) enzyme, which is the target of SUs. Schoenoplectiella juncoides has two ALS genes and resistant plants have point mutations that cause amino acid substitutions in either encoded protein. Single‐nucleotide substitutions at the codon for Pro197 in the ALS genes can cause six types of amino acid substitutions and all of these substitutions have been found in both ALS genes among Japanese SU‐resistant biotypes. Whole‐plant herbicide responses differ among the amino acid substitution types. Furthermore, analyses of ALS activity in plant extracts show that the extracts’ responses to herbicides differ, depending on which ALS gene is mutated. The activity responses of the ALS extracts to the SU, imazosulfuron, showed double‐sigmoid curves with plateaus of ~30% inhibition for Pro197 substitutions in ALS1 and ~70% for Pro197 substitutions in ALS2. This indicates that ALS1 and ALS2 contribute to the responses with a proportion of 7:3. The double‐sigmoid curves can be reconstructed to show the responses of the resistant and susceptible enzymes separately by regression analysis. The resistance levels of the separate ALS1 or ALS2 mutated enzyme are highly correlated with the whole‐plant responses, with a relationship that the former is the square of the latter. This could provide a quantitative insight into the physiological basis of resistance.  相似文献   

4.
Primisulfuron‐resistant (AR and MR) and ‐susceptible (AS and MS) Bromus tectorum biotypes were collected from a Poa pratensis field at Athena, Oregon, and in research plots at Madras, Oregon. Studies were conducted to characterize the resistance of the B. tectorum biotypes. Whole plant bioassay and acetolactate synthase (ALS) enzyme assay revealed that the AR biotype was highly resistant to the sulfonylurea (SU) herbicides, primisulfuron and sulfosulfuron and to a sulfonylaminocarbonyltriazolinone (SCT) herbicide, propoxycarbazone‐sodium. However, the AR biotype was not resistant to imazamox, an imidazolinone (IMI) herbicide. Results of the whole plant bioassay studies showed that the MR biotype was moderately resistant to all ALS inhibitors tested. However, there were no differences in ALS sensitivities between the MR and MS biotypes. The nucleotide and amino acid sequence analysis of the als gene demonstrated a single‐point mutation from C to T, conferring the exchange of the amino acid proline to serine at position 197 in the AR biotype. However, this mutation was not found in the MR biotype. Results of this research indicate that: the resistance of the AR biotype to SU and SCT herbicides is based on an altered target site due to a single‐point mutation; resistance in the MR biotype is not due to a target site mutation.  相似文献   

5.
The inheritance of sulfonylurea (SU) resistance in Monochoria vaginalis was investigated based on the bensulfuron‐methyl response phenotypes of F1 plants between SU‐resistant (R) and ‐susceptible (S) and segregation analysis in F2 progenies. Differences of SU resistance between SU‐R biotypes and F1 plants at the recommended field dose were also investigated by comparing shoot dry weight. All F1 plants survived the treatment with 25 g a.i. ha?1 bensulfuron‐methyl, one‐third of the recommended field dose, and showed similar responses to SU‐R plants. Conversely, all F1 plants died or showed extreme necrosis at 225 g a.i. ha?1, three times the recommended field dose, as SU‐S plants. F2 plants were classified as either R or S phenotype. Segregation for resistance to bensulfuron‐methyl in F2 families did not differ from the expected 3:1 (R:S) ratio at 25 g a.i. ha?1. At 225 g a.i. ha?1, the F2 families segregated in a 1:3 (R:S) ratio. These results suggest that SU resistance in M. vaginalis is controlled by a single nuclear allele with resistance being dominant at low dose and susceptibility dominant at high dose. Moreover, F1 plants died or were extremely injured after application of bensulfuron‐methyl at the recommended field dose, although SU‐R biotypes grew normally.  相似文献   

6.
An investigation, using herbicidal pot tests in a greenhouse condition, was conducted to determine the whole‐plant dose–response relationships to several acetolactate synthase (ALS)‐inhibiting herbicides of sulfonylurea (SU)‐resistant Schoenoplectus juncoides with various Pro197 mutations in ALS that was collected from Japanese rice paddy fields. All the tested SU‐resistant accessions with a Pro197 mutation were highly resistant to two commonly used SU herbicides (imazosulfuron and bensulfuron‐methyl), but were much less resistant to another SU herbicide, metsulfuron‐methyl, and were substantially not resistant to imazaquin‐ammonium. These cross‐resistance patterns have been known previously in fragments of S. juncoides and other weed species and were comprehensively confirmed in this study with a whole set of Pro197 mutations. The analyses of resistance levels, based on ED90 values, newly showed that different accessions with a common amino acid substitution in ALS1 showed similar responses to these herbicides (confirmed with four amino acid substitutions), that the rankings of resistance levels that were conferred by various Pro197 mutations in ALS1 differed among the SU herbicides and that the resistance levels of the ALS2‐mutated accessions were higher than, lower than or similar to those of the corresponding ALS1‐mutated accessions, depending on the compared pair, but the deviation patterns were generally similar among the SU herbicides in each compared pair. The final finding might suggest that the abundance of ALS2 is not as stable as that of ALS1. In addition, as a result of these new findings, together with expected further research, a suggested possibility is that substituting amino acids at Pro197 generally could be estimated by plotting each accession's ED90 values of imazosulfuron and bensulfuron‐methyl in a two‐dimensional graph.  相似文献   

7.
Acetolactate synthase (ALS) genes from Monochoria vaginalis resistant (R) and susceptible (S) biotypes against ALS inhibitors found in Korea revealed a single amino acid substitution of Proline (CCT), at 169th position based on the M. vaginalis ALS sequence numbering, to serine (TCT) in conserved domain A of the gene (equal to the proline 197 in Arabidopsis thaliana ALS gene sequence). A. thaliana plants transformed with the single mutated (Pro169 to Ser) M. vaginalis ALS gene (including transit signal peptide) showed cross-resistance patterns to ALS-inhibiting herbicides, like as sulfonylurea-herbicide bensulfuron methyl (R/S factor of 9.5), imidazolinone-herbicide imazapyr (R/S factor of 5.1), and triazolopyrimidine-herbicide flumetsulam (R/S factor of 17.6) when measuring hypocotyls’ length of A. thaliana. The ALS activity from the transgenic A. thaliana plants confirmed the cross-resistance pattern to these herbicides like as R/S factor of 8.3 to bensulfuron methyl, 2.3 to imazapyr, and 13.2 to flumetsulam.  相似文献   

8.
The intensive use of the acetolactate synthase (ALS)‐inhibiting herbicides, imazethapyr, penoxsulam and bispyribac‐sodium, in imidazolinone‐resistant (Clearfield) rice increases the risk of the evolution of ALS‐resistant barnyardgrass. In 2009, imazethapyr failed to control barnyardgrass that was collected from a field in Arkansas, USA, following the failure of the herbicide in 2008. A greenhouse experiment was conducted to confirm and document the level of resistance of the biotype against three ALS‐inhibiting herbicides that currently are labeled in rice. The level of control of the resistant biotype at the labeled rate of bispyribac‐sodium of 35 g ai ha?1 was 10%, penoxsulam at 22 g ai ha?1 was 0% and imazethapyr at 70 g ai ha?1 was 25%. The level of mortality of the susceptible biotype was 100% with all the herbicides at the labeled rate. The dose needed to kill 50% of the resistant plants was 49 g ha?1 of bispyribac‐sodium, 254 g ha?1 of penoxsulam and 170 g ha?1 of imazethapyr. For the susceptible biotype, bispyribac‐sodium at 6 g ha?1, penoxsulam at 10 g ha?1 and imazethapyr at 12 g ha?1 killed 50% of the treated plants. Based on these findings, it was confirmed that a barnyardgrass population has evolved cross‐resistance to three ALS‐inhibiting herbicides in rice culture in Arkansas. Furthermore, an experiment was conducted to determine if the ALS‐resistant biotype could be controlled using other mechanisms of action. The results indicated that propanil, a photosystem II inhibitor, and quinclorac, a synthetic auxin, failed to control the resistant biotype at the labeled rates, whereas all the other evaluated herbicides provided effective control of both biotypes.  相似文献   

9.
Monochoria vaginalis is one of the most serious weeds of rice fields in Asia. The species is predominantly selfing. To reveal the potential for multiple mutational events, outcrossing and gene flow in the sulfonylurea‐resistant (SU‐R) M. vaginalis populations, we investigated (i) if each SU‐R population was a single SU‐R biotype or a mixture of several SU‐R biotypes using restriction analysis or direct sequencing of acetolacatate synthase (ALS) genes and (ii) genetic diversity of SU‐R and ‐susceptible (S) populations using amplified fragment length polymorphism (AFLP) analysis. Nineteen or 20 individuals were sampled from four SU‐R and five SU‐S populations respectively. Amino acid substitutions conferring resistance in the SU‐R populations were Pro197Ser in the ALS1 or ALS3, or Asp376Glu in the ALS1 and each SU‐R population was composed of a single SU‐R biotype. In cluster analysis each SU‐R individual formed a cluster, whereas the individuals from a SU‐S population belonged to different clusters. Some SU‐R populations showed polymorphic AFLP loci. The results indicated that these SU‐R biotypes emerged from a single mutational event and any gene flow of SU‐R genes from adjacent populations did not occur. A low level of outcrossing and recombinations of SU‐R genes occurred within some SU‐R populations of M. vaginalis.  相似文献   

10.
八种除草剂对小麦田三种抗精噁唑禾草灵杂草的生物活性   总被引:3,自引:0,他引:3  
为筛选能有效防除抗精噁唑禾草灵杂草的除草剂,采用温室盆栽法测定菵草(敏感S_w、抗性R_w)、日本看麦娘(敏感S_r、抗性R_r)、耿氏硬草(敏感S_y、抗性R_y)对精噁唑禾草灵的抗性水平,并研究了8种除草剂对这3种抗性杂草的生物活性。结果显示,3种杂草抗性种群对精噁唑禾草灵的抗性指数均大于33.7,已达高抗水平。3种杂草抗性种群均对同类乙酰辅酶A羧化酶类抑制剂唑啉草酯和炔草酯产生了11.6~56.5倍不等的高水平抗性。对部分乙酰乳酸合成酶类抑制剂产生了2.0~4.8倍的低水平抗性,氟唑磺隆对3种杂草抗性种群防效较差,GR_(90)为67.31~114.39g(a.i.)/hm~2;啶磺草胺仅对Rr种群防效较好,GR_(90)为4.67 g(a.i.)/hm~2;甲基二磺隆对3种杂草抗性种群防效均较好,但对Rr种群存在抗性风险,已出现2.0倍低水平抗性;磺酰磺隆对Ry和Rr种群防效较好;丙苯磺隆对Rr种群防效好。细胞分裂抑制剂氟噻草胺对3种杂草抗性种群防效均最好,在田间推荐剂量120 g(a.i.)/hm~2下可达90%以上的防效。  相似文献   

11.
Dominance of a resistance trait can be defined as a measure of the relative position of the phenotype of the heterozygote RS compared with the phenotype of the two corresponding homozygotes, SS and RR. This parameter has been shown to have primary importance in the dynamics of pesticide resistance evolution. Literature on insecticide resistance suggests that dominance levels in the presence of insecticide vary greatly from completely recessive to completely dominant. With insecticides, both the chemical applied and the dosages used have been demonstrated to affect the dominance. By contrast, almost all herbicide resistances have been found to be inherited as partially to totally dominant traits. This discrepancy between weeds and insects may partly result from the methodologies applied to measure the dominance, ie a single dose for herbicide versus several doses for insecticide. Using two well-known resistances (csr1-1 and csr1-2) to acetolactate synthase (ALS) inhibitors in Arabidopsis thaliana (L) Heynh (mouse-ear cress), we used several herbicide doses to determine the dominance level to six ALS-inhibiting herbicides. The dominance level in the presence of herbicide varied from completely dominant to completely recessive, depending on the resistance allele and the herbicide tested. The dominance of the csr1-1 and csr1-2 resistance alleles ranged from 0 (completely recessive) to 1.1 (dominant) and from 0 to 0.3 (partially dominant), respectively. The recessivity of some resistance alleles in the presence of herbicide could lead to the development of improved resistance management in order to delay or avoid herbicide resistance evolution, especially in the control of outcrossing weed species.  相似文献   

12.
A population of Bromus tectorum infesting an olive grove at Córdoba (Spain) survived simazine use rates of 3.0 kg a.i. ha−1 over two consecutive years. Non‐tillage olive monoculture and two annual simazine applications had been carried out for 10 years. The resistant biotype showed a higher ED50 value (7.3 kg a.i. ha−1) than that of the susceptible control (0.1 kg a.i. ha−1), a 73‐fold increase in herbicide tolerance. The use of fluorescence, Hill reaction, absorption, translocation and metabolism assays showed that simazine resistance in this biotype was caused by a modification of the herbicide target site, since chloroplasts from the resistant biotype of B. tectorum were more than 300 times less sensitive to simazine than those from the susceptible biotype. In addition, non‐treated resistant plants of B. tectorum displayed a significant reduction in the QA to QB electron transfer rate when compared with the susceptible biotype, a characteristic that has been linked to several mutations in the protein D1 conferring resistance to PS II inhibiting herbicides. Resistant plants showed cross‐resistance to other groups of triazine herbicides with the hierarchy of resistance level being methoxy‐s‐triazines ≥chloro‐s‐triazines > methylthio‐s‐triazines > cis‐triazines. The results indicate a naturally occurring target‐site point mutation is responsible for conferring resistance to triazine herbicides. This represents the first documented report of target site triazine resistance in this downy brome biotype.  相似文献   

13.
Sulfonylurea-resistant biotypes of Schoenoplectus juncoides were collected from Nakafurano, Shiwa, Matsuyama, and Yurihonjyo in Japan. All of the four biotypes showed resistance to bensulfuron-methyl and thifensulfuron-methyl in whole-plant experiments. The growth of the Nakafurano, Shiwa, and Matsuyama biotypes was inhibited by imazaquin-ammonium and bispyribac-sodium, whereas the Yurihonjyo biotype grew normally after treatment with these herbicides. The herbicide concentration required to inhibit the acetolactate synthase (ALS) enzyme by 50% (I50), obtained using in vivo ALS assays, indicated that the four biotypes were > 10-fold more resistant to thifensulfuron-methyl than a susceptible biotype. The Nakafurano, Shiwa, and Matsuyama biotypes exhibited no or little resistance to imazaquin-ammonium, whereas the Yurihonjyo biotype exhibited 6700-fold resistance to the herbicide. The Nakafurano and Shiwa biotypes exhibited no resistance to bispyribac-sodium, but the Matsuyama biotype exhibited 21-fold resistance and the Yurihonjyo biotype exhibited 260-fold resistance to the herbicide. Two S. juncoides ALS genes (ALS1 and ALS2) were isolated and each was found to contain one intron and to encode an ALS protein of 645 amino acids. Sequencing of the ALS genes revealed an amino acid substitution at Pro197 in either encoded protein (ALS1 or ALS2) in the biotypes from Nakafurano (Pro197 → Ser197), Shiwa (Pro197 → His197), and Matsuyama (Pro197 → Leu197). The ALS2 of the biotype from Yurihonjyo was found to contain a Trp574 → Leu574 substitution. The relationships between the responses to ALS-inhibiting herbicides and the amino acid substitutions, which are consistent with previous reports in other plants, indicate that the substitutions at Pro197 and Trp574 are the basis of the resistance to sulfonylureas in these S. juncoides biotypes.  相似文献   

14.
This study was conducted to evaluate the cross‐resistance of acetolactate synthase (ALS) inhibitors with different chemistries, specifically azimsulfuron (sulfonylurea), penoxsulam (triazolopyrimidine sulfonanilide) and bispyribac‐sodium (pyrimidinyl thio benzoate), in Echinochloa oryzicola and Echinochloa crus‐galli that had been collected in South Korea and to investigate their herbicide resistance mechanism. Both Echinochloa spp. showed cross‐resistance to the ALS inhibitors belonging to the above three different chemistries. In a whole plant assay with herbicides alone, the resistant/susceptible ratios for azimsulfuron, penoxsulam and bispyribac‐sodium were 12.6, 28.1 and 1.9 in E. oryzicola and 21.1, 13.7 and 1.8 in E. crus‐galli, respectively. An in vitro ALS enzyme assay with herbicides showed that the I 50‐values of the resistant accessions were approximately two‐to‐three times higher than the susceptible accessions, with no statistical difference, suggesting that the difference in ALS sensitivity cannot explain ALS inhibitor resistance in Echinochloa spp. for azimsulfuron, penoxsulam and bispyribac‐sodium. A whole plant assay with fenitrothion showed that the GR 50‐values significantly decreased in both the resistant E. oryzicola and E. crus‐galli accessions when azimsulfuron, penoxsulam and bispyribac‐sodium were applied with the P450 inhibitor, while no significant decrease was observed in the susceptible accessions when the P450 inhibitor was used. Thus, these results suggest that ALS inhibitor cross‐resistance for azimsulfuron, penoxsulam and bispyribac‐sodium is related to enhanced herbicide metabolism.  相似文献   

15.
Two Alisma plantago‐aquatica biotypes resistant to bensulfuron‐methyl were detected in rice paddy fields in Portugal’s Mondego (biotype T) and Tagus and Sorraia (biotype Q) River valleys. The fields had been treated with bensulfuron‐methyl‐based herbicide mixtures for 4–6 years. In order to characterize the resistant (R) biotypes, dose–response experiments, absorption and translocation assays, metabolism studies and acetolactate synthase (ALS) activity assays were performed. There were marked differences between R and susceptible (S) biotypes, with a resistance index (ED50R/S) of 500 and 6.25 for biotypes Q and T respectively. Cross‐resistance to azimsulfuron, cinosulfuron and ethoxysulfuron, but not to metsulfuron‐methyl, imazethapyr, bentazone, propanil and MCPA was demonstrated. No differences in the absorption and translocation of 14C‐bensulfuron‐methyl were found between the biotypes studied. Maximum absorption attained 1.12, 2.02 and 2.56 nmol g−1 dry weight after 96 h incubation with herbicide, for S, Q and T biotypes respectively. Most of the radioactivity taken up by the roots was translocated to shoots. Bensulfuron‐methyl metabolism in shoots was similar in all biotypes. The R biotypes displayed a higher level of ALS activity than the S biotype, both in the presence and absence of herbicide and the resistance indices (IC50R/S) were 20 197 and 10 for biotypes Q and T respectively. These data confirm for the first time that resistance to bensulfuron‐methyl in A. plantago‐aquatica is target‐site‐based. In practice, to control target site R biotypes, it would be preferable to use mixtures of ALS inhibitors with herbicides with other modes of action.  相似文献   

16.
BACKGROUND: Wild radish, a problem weed worldwide, is a severe dicotyledonous weed in crops. In Australia, sustained reliance on ALS‐inhibiting herbicides to control this species has led to the evolution of many resistant populations endowed by any of several ALS mutations. The molecular basis of ALS‐inhibiting herbicide resistance in a novel resistant population was studied. RESULTS: ALS gene sequencing revealed a previously unreported substitution of Tyr for Ala at amino acid position 122 in resistant individuals of a wild radish population (WARR30). A purified subpopulation individually homozygous for the Ala‐122‐Tyr mutation was generated and characterised in terms of its response to the different chemical classes of ALS‐inhibiting herbicides. Whole‐plant dose‐response studies showed that the purified subpopulation was highly resistant to chlorsulfuron, metosulam and imazamox, with LD50 or GR50 R/S ratio of > 1024, > 512 and > 137 respectively. The resistance to imazypyr was found to be relatively moderate (but still substantial), with LD50 and GR50 R/S ratios of > 16 and > 7.8 respectively. In vitro ALS activity assays showed that Ala‐122‐Tyr ALS was highly resistant to all tested ALS‐inhibiting herbicides. CONCLUSION: The molecular basis of ALS‐inhibiting herbicide resistance in wild radish population WARR30 was identified to be due to an Ala‐122‐Tyr mutation in the ALS gene. This is the first report of an amino acid substitution at Ala‐122 in the plant ALS that confers high‐level and broad‐spectrum resistance to ALS‐inhibiting herbicides, a remarkable contrast to the known mutation Ala‐122‐Thr endowing resistance to imidazolinone herbicide. Copyright © 2012 Society of Chemical Industry  相似文献   

17.
An Eleusine indica population was previously reported as the first global case of field‐evolved glufosinate resistance. This study re‐examines glufosinate resistance and investigates multiple resistance to other herbicides in the population. Dose–response experiments with glufosinate showed that the resistant population is 5‐fold and 14‐fold resistant relative to the susceptible population, based on GR50 and LD50 R/S ratio respectively. The selected glufosinate‐resistant subpopulation also displayed a high‐level resistance to glyphosate, with the respective GR50 and LD50 R/S ratios being 12‐ and 144‐fold. In addition, the subpopulation also displayed a level of resistance to paraquat and ACCase‐inhibiting herbicides fluazifop‐P‐butyl, haloxyfop‐P‐methyl and butroxydim. ACCase gene sequencing revealed that the Trp‐2027‐Cys mutation is likely responsible for resistance to the ACCase inhibitors examined. Here, we confirm glufosinate resistance and importantly, we find very high‐level glyphosate resistance, as well as resistance to paraquat and ACCase‐inhibiting herbicides. This is the first confirmed report of a weed species that evolved multiple resistance across all the three non‐selective global herbicides, glufosinate, glyphosate and paraquat.  相似文献   

18.
Vulpia bromoides is a grass species naturally tolerant to acetolactate synthase (ALS) and acetyl-coenzyme A carboxylase (ACCase) inhibiting herbicides. The mechanism of tolerance to ALS herbicides was determined as cytochrome P450-monooxygenase mediated metabolic detoxification. The ALS enzyme extract partially purified from V. bromoides shoot tissue was found to be as sensitive as that of herbicide susceptible Lolium rigidum to ALS-inhibiting sulfonylurea (SU), triazolopyrimidine (TP), and imidazolinone (IM) herbicides. Furthermore, phytotoxicity of the wheat-selective SU herbicide chlorsulfuron was significantly enhanced in vivo in the presence of the known P450 inhibitor malathion. In contract, the biochemical basis of tolerance to ACCase inhibiting herbicides was established as an insensitive ACCase. In vitro ACCase inhibition assays showed that, compared to a herbicide susceptible L. rigidum, the V. bromoides ACCase was moderately (4.5- to 9.5-fold) insensitive to the aryloxyphenoxypropionate (APP) herbicides diclofop, fluazifop, and haloxyfop and highly insensitive (20- to >71-fold) to the cyclohexanedione (CHD) herbicides sethoxydim and tralkoxydim. No differential absorption or de-esterification of fluazifop-P-butyl was observed between the two species at 48 h after herbicide application, and furthermore V. bromoides did not detoxify fluazifop acid as rapidly as susceptible L. rigidum. It is concluded that two co-existing resistance mechanisms, i.e., an enhanced metabolism of ALS herbicides and an insensitive target ACCase, endow natural tolerance to ALS and ACCase inhibiting herbicides in V. bromoides.  相似文献   

19.
20.
Herbicide resistance in Lolium rigidum is widespread across much of the agricultural land in Australia. As the incidence of herbicide resistance has increased, so has the incidence of multiple herbicide resistance. This reduces the herbicide options available for control of this weed. This study reports on the successful amplification and sequencing of the acetolactate synthase (ALS) gene of L. rigidum using primers designed from sequence information of related taxa. This enables, for the first time, the successful determination of a mutation in the ALS gene of this species that provides resistance to ALS‐inhibiting herbicides. This mutation causes amino acid substitution at Trp574 (numbering standardised to Arabidopsis thaliana) to Leu which had been reported to confer a high level of resistance against all classes of ALS inhibitor herbicides. In addition, multiple resistance to ALS‐inhibiting and acetyl‐coenzyme A carboxylase‐inhibiting herbicides is acquired through the independent accumulation of mutant alleles for the target sites. This may thus explain some of the irregular, mosaic resistance patterns that occur in this predominantly outcrossing species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号