首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rain samples were collected sequentially by amount (≈2.7 mm each) from individual events at a single, relatively isolated, suburban site from August 1977 to July 1980. Rain pH's for ≤ 3 mm samples closely fit a monomodal Gaussian distribution with a median of 4.50 and a standard deviation of 0.39. The variability in pH was primarily interevent as opposed to intraevent. The 3-yr volume-weighted pH was 4.35 ± 0.02 for 3.16 m collected; annual pH's were 4.31, 4.37, and 4.38, and cumulative H+ deposition was 141 mg H+ m?2. Event-averaged rain pH and meteorological and air quality data were correlated. Low pH was associated with low rainfall volume and rate; rain after several dry days; rains with northeast surface winds; high SO2, NO2, and O3 in the ambient atmosphere; and high, strongly correlated, SO4 = and NO3 ? rainwater concentrations. The lowest 3-yr seasonal average pH (4.31) occurred during summer; values for other seasons were ≈4.37. Average intraevent H+ molarity (volume-weighted) was accurately characterized by 6.89 E?5 *(mm ram)?0.215. The relative merits of composite (e.g., whole event) and sequential sampling are examined.  相似文献   

2.
LAPAN has measured rain acidity in Bandung, the location is Cipedes since 1985, with average pH in 1985 was 6.25. The pH condition 1985–1999 as follow: The monthly average of pH in period 1985–1992 was >5.6: in the middle of 1996–1997 it had big variation and than decrease until now. The monthly average of pH in 1997 until now was <5.6. The pH has decreasing trend, the reason was increasing fuel combustion for transportation and household because the area around the observation was change from rural to be transportation and settlement area. The rain acidity comparison in Cipedes (rural site), Cicahuem (busy site), and Tanjungsari (remote site) hold in 1986–1987, the result was Tanjungsari the remote site had the lowest pH. It's suggested the reason was sulphur compound from Kamojang crater and air pollution from industrial area in south-east of Bandung were blown by the wind through this place. The influence of air pollution to acid rain was studied by measurement NO3 ? and SO4 2? in 5 places around Bandung, the results were: North of Bandung had the lowest NO3 ? concentration because the traffics were low: but had the highest SO4 2? concentration; it's caused by emission of sulphur compounds from Tangkuban Perahu Montain. South of Bandung had the highest NO3 ? concentration because the traffics were crowded and a lot of industries around it. In general Bandung had SO4 2? concentration higher than NO3 ? concentration, it's suggested due to the influence of sulphur compound from Tangkuban Perahu Montain. The observation rain acidity in Ciater at Tangkuban Perahu Montain started in 1996, the result in period 1996–1998 as follow: The pH had decreasing trend, it's due to the traffic near this observation increase, so the air pollution around this area increase, it will influence the rain acidity. The maximum monthly average of ph was 6.78 and minimum was 4.63, the pH monthly average generally < 6. In El NINO year 1997, the monthly average of pH in April and December were > 6.5.  相似文献   

3.
One-year field measurements were conducted in a Japanese cedar (Cryptomeria japonica) forest, located in Gunma Prefecture, Japan. On the basis of the meteorological and atmospheric concentration data, the dry deposition of SO2, HNO3, NO2 and HCl was estimated using the inferential method. The annual dry deposition of H+ was estimated at 721 eq ha?1yr?1, which was 40% larger than the measured annual wet deposition of H+ (514 eq ha?1yr?1). Therefore, dry deposition is an important pathway for the atmospheric input of H+ to the forest in the study site. The contribution of each gas to the dry deposition of H+ was as follows: SO2, 25%; HNO3, 32%; NO2, 10%; and HCl, 33%. The extremely high contribution of HCl appeared to be caused by the high emission intensity of HCl due to waste incineration in the site region. The differences between estimated deposition and throughfall and stemflow measurements indicated that about 80% of the total deposition of H+ was taken up by the canopy.  相似文献   

4.
Atmospheric gases and particulates were collected using four-stage filter-pack in Chunchon from January through December in 1999. Particulate SO4 2? and NO3 ?, and gaseous HNO3, SO2 and NH3 were analyzed. Annual average concentration of SO4 2?(S), NO3 ?(S), HNO3 (g), SO2(g) and NH3(g) were 5.75µg/m3, 4.98µg/m3, 0.33ppb, 1.52ppb and 7.25ppb, respectively. Annual dry deposition fluxes were estimated using the measured concentration and dry deposition velocity published by other research group. Annual dry deposition of S was 287kg · (km)?2·y?1, which accounted for about 30% of total S deposition. For N deposition, dry deposition is predominant; about 70% of total N deposition was through dry process mostly as forms of NH3 and HNO3.  相似文献   

5.
Discharge to concentration relationships for eight streams studied by the U.S. Geological Survey (USGS) as part of the U.S. Environmental Protection Agency's (U.S. EPA) Long-Term Monitoring Project (1983–89) indicate acidification of some streams by H2SO4 and HNO3 in atmospheric deposition and by organic acids in soils. Concentrations of major ions in precipitation were similar to those reported at other sites in the northeastern United States. Average concentrations of SO4 2? and NO3 ? were similar among streams, but base cation concentrations differed widely, and these differences paralleled the differences in acid neutralizing capacity (ANC). Baseflow ANC is not a reliable predictor of stream acidity at high flow; some streams with high baseflow ANC (>150 Μeq L?1) declined to near zero ANC at high flow, and one stream with low baseflow ANC (<50 Μeq L?1) did not approach zero ANC as flow increased. Episodic decreases in ANC and pH during peak flows were associated with increased concentrations of NO3 ? and dissolved organic carbon (DOC). Aluminum concentrations exceeding 300 Μg L?1 were observed during peak flows in headwater streams of the Neversink River and Rondout Creek. Seasonal Kendall Tau tests for temporal trends indicate that SO4 2? concentrations in streamwater generally decreased and NO3 ? concentrations increased during the period 1983–1989. Combined acid anion concentrations (SO4 2? + NO3 ?) were generally unchanged throughout the period of record, indicating both that the status of these streams with respect to acidic deposition is unchanged, and that NO3 ? is gradually replacing SO4 2? as the dominant acid anion in the Catskill streams.  相似文献   

6.
Dry and wet deposition of atmospheric nitrogen species (NO2 and HNO3) coming from nitrogen oxides emissions in Buenos Aires city to surface waters of de la Plata River were estimated. Atmospheric dispersion models DAUMOD-RD (v.2) and CALPUFF were applied to area and point sources, respectively. These models were run considering 1 year of hourly meteorological data. Emission information included a typical diurnal variation of area source emissions. Annual atmospheric nitrogen (N–NO2?+?N–HNO3) deposition to 1,763 km2 of the river was 35,600 kg-N year?1. Dry deposition processes accounted for 89% of this value. The small contribution of wet deposition was a consequence of the very few cases (5%) of rain events during offshore wind conditions. Monthly dry deposition to 1,763 km2 of the river varied from 1,628 kg-N month?1 in February to 3,799 kg-N month?1 in December, following the monthly occurrence of offshore winds. Monthly wet deposition varied from 1 kg-N month?1 in June to 1,162 kg-N month?1 in February. These results came from the combination of favorable conditions for formation of HNO3 and the occurrence of precipitation during offshore wind situations. Spatial distribution of annual atmospheric N deposition showed a strong coastal gradient. Deposition values reached a maximum of 137.1 kg-N km?2 year?1 near the shoreline, which was reduced to the half at 4 km from the coast.  相似文献   

7.
Ambient particle and gas concentrations, wet deposition and dry deposition were measured in Warren, MI between December 18, 1983 and April 6, 1984. Dry deposition was measured to various surfaces in a cutoff bucket, including a snow surface, a snow/water surface during melting and a deionized water surface. Dry deposition velocities were calculated for various species from the ratio of the dry flux to the ambient concentrations. The dry deposition velocities measured to a snow surface were 0.082 cm s?1 SO2 2.0 for HNO3, 0.083 for NH4 +, 2.0 for Ca++ and 4.3 for Cl?. The values were not significantly different for a snow/water surface during melting compared to a snow surface. However, higher values of 0.69 cm s?1 for SO2, 6.2 for HNO3, 0.33 for NH4 +, and 4.2 for Ca++ were found to a deionized water surface in the spring. These higher values could be due to the higher air temperature, the pH of the liquid or to increased atmospheric mixing during this period.  相似文献   

8.
Precipitation chemistry was discussed from the viewpoint of potential sources for four rural sites where wet-only daily-basis measurement data sets were available during the period from April 1996 to March 1997 in Japan. Annual volume-weighted mean concentrations of nss-SO4 2? and NO3 ? ranged from 18.0 to 34.6 µeq L?1, and from 9.3 to 23.1 µeq L?1, respectively. The degree of neutralization of input acidity in terms of the concentration ratio, [H+] / ([nss-SO4 2?] + [NO3 ?]), ranged from 0.46 to 0.63. This suggests that about half of the input acidity due to H2SO4 and HNO3 was neutralized by NH4 + and nss-Ca2+ to produce the pH values of 4.46 to 4.82 for these sites. Maximum likelihood factor analysis was then performed on the logarithmically transformed daily wet deposition of major ions. Two factors successfully explained a total of about 80% of the variance in the data for each site. Interpreting varimax rotated factor loadings, we could identify two source types: (1) acid source with large loadings on ln(H+), ln(nss-SO4 2?), ln(NO3 ?) and ln(NH4 +), (2) sea-salt source with large loadings on ln(Na+), ln(Cl?), ln(Mg2+) and ln(K+). The rural wet deposition over Japan appears to have a similar structure in terms of the kinds of sources and their relative location.  相似文献   

9.
Fog/cloud and rain water were collected at the mountainside of Hachimantai range in northern Japan and rain water was also collected at Akita City in order to investigate the air pollutant scavenging mechanism. The concentrations of various ions in these samples were analyzed, and the fog drop size and the wind direction were measured at each fog event. The fog at Hachimantai range had a very high total ion concentration, and was considerably acidified by non sea salt (nss-) SO4 2? and NO3 ?, compared with the rain at Akita and all sites in Hachimantai range. Using the oblique rotational factor analysis, three factors were extracted as the air pollutants; A: (NH4)2SO4+H2SO4, B: sea salts+HNO3+H2SO4, C: NH4NO3+OH?. These salts are well-known as the cloud condensation nuclei (CCN). Combining the factor analysis with the 72h back trajectory at 850hPa level, the contribution of Factor A was closely connected to the long-range transportation of anthropogenic or natural aerosol in air masses of continental origin.  相似文献   

10.
Acidified precipitation may affect the productivity of forests by altering the availability of plant nutrients or by affecting the ability of trees to absorb and assimilate those nutrients. In this study, the short-term effects of simulated acid rain (pH range 5.6 to 2.3) upon the growth and nutrient relations of Eastern White Pine seedlings (Pinus strobus, L.) grown in a sandy loam soil were examined. Soil chemistry, soil leachate chemistry, seedling tissue chemistry, and seedling productivity were monitored. Inspite increased leaching of cations from the soil, resulting in near depletion of available K+1, Mg+2, and Ca+1 at pH 2.3, seedling productivity increased with acidity through the 20-week experimental period. Foliar nitrogen concentrations indicate that fertilization with NO 3 ?1, added to the rain as HNO3, may have caused the growth increase. Implications of cation losses and NO3 ?1 fertilization are discussed.  相似文献   

11.
SO4 2?, NO3 ? and H+ depositions are estimated in the Brazilian territory based on the existing rainfall chemical data and on annual rainfall distribution over the whole territory. Local and regional depositions are estimated. Rainfall chemical data over the Braziliian territory shows that the average pH values are usually low (between 4.0 and 5.5). These values are observed in the tropical Amazon forest as well as in urban areas. However, the rainwater acidity in the tropical forests are due to organic acids naturally produced by the vegetation while in urban areas the acidity is mainly due to acidic anion deposition (NO3 ? and SO4 2?). In some Amazonian areas, the average input values through rainfall for NO3 ? is about 0.06 keq.ha.yr?1 and for SO4 2? is between 0.23 and 0.54 keq.ha?1.yr?1. On the other hand, in some urban centers, such as São Paulo, values of .072 keq.ha?1.yr?1 for NO3 ? and 1.16 keq.ha?1.yr?1 of SO4 2? are found and in sites where sulfate sources (coal mining) are present, as for the area of Florianópolis, values as high as 5.59 keq.ha?1.yr?1 for SO4 2? are found.  相似文献   

12.
Year-to-year variation in acidic deposition within a mature sugar maple-dominated forest and in leaching of ions from the associated podzolic soil were examined at the Turkey Lakes Watershed between 1981 and 1986. Below-canopy inputs to the soil of SO4 2? and NO3 ? in throughfall averaged 640 and 295 eq. ha?1 yr?1; the corresponding ranges were 493–917 and 261–443 eq. ha?1 yr?1. The contribution of atmospheric deposition to SO4 2? NO3 ? and Ca2+ leaching decreased over the six years. During the study period, the mean annual volume-weighted NO3 ? concentration decreased in throughfall and forest-floor percolate and increased in the mineral-soil solution collected below the effective rooting zone. A substantial shift in the balance between SO4 2? and NO3 ?leaching from the mineral soil was observed; leaching of SO4 2?decreased and NO3 ? leaching increased with time. Leaching of Ca2+ and Mg2+ from the soil was increased as a result of excess NO3 ? production in the soil. The calculated output of NO3 ? from the soil, which averaged 1505 eq. ha?1 yr?1, considerably exceeded the atmospheric deposition of NO3 ?, whereas SO4 2? outputs were only moderately greater than inputs.  相似文献   

13.
Nitrogenous air pollutants including nitrogen dioxide (NO2), nitric acid (HNO3), nitrate (NO 3 ? ), ammonia (NH3), ammonium (NH 4 + ), and nitrous acid (HONO) were characterized at an urban forested (UF) site in Hiroshima and at a suburban forested (SF) site in Fukuoka, western Japan, using an annular denuder system for 1?year from May 2006 to May 2007 to compare the concentrations and chemical species of atmospheric nitrogenous pollutants between UF and SF sites. The proximity of the urban area was reflected in higher NO2 concentrations at the UF site than at the SF site. NO2 was more oxidized at the SF site because it is farther from an urban area than the UF site, which was reflected in higher concentrations of HNO3 at the SF site than the UF site. HNO3 and acidic sulfate is neutralized by NH3, existing as ammonium nitrate (NH4NO3) and ammonium sulfate [(NH4)2SO4] at the UF site. At the SF site, acidic sulfate is neutralized by NH3, existing as (NH4)2SO4, but NH4NO3, had scarcely formed at the SF site. A much higher HONO concentration was observed at the UF site than at the SF site, especially in winter and spring at night, which could be explained by higher NO2 concentrations at the UF site because of its proximity to an urban area and stagnant meteorological conditions. Atmospheric HONO determination was critical in evaluating the possibility of damage to trees in UF areas.  相似文献   

14.
Aerodynamically designed surrogate surfaces were used to determine the relative importance of gaseous (SO2, HNO3, NH3) and particulate species (SO4 2?, NO3 ?, NH4 +, Ca2+) in the dry deposition flux. For 11 sampling periods, we measured the deposition fluxes, ambient gaseous concentrations, size distributions of atmospheric aerosols and some meteorological parameters in Uji. The dry deposition of the gas to a nearly perfect sink was calculated by subtracting the greased surface flux from the total deposition flux to both the greased and reagent impregnated (or water) surface. It was found that the gas phase deposition contributed significantly more (60–93%) than the particulate phase to overall deposition of sulfur and nitrogen compounds. The dry deposition velocities of the species were also calculated using the deposition fluxes and the measured ambient concentrations. Comparisons were made between the measured and modeled particulate deposition flux.  相似文献   

15.
Data of the Multistate Atmospheric Power Production Pollution Study (MAP3S) and the National Atmospheric Deposition Program (NADP) were utilized to develop wet deposition spatial distribution patterns for the eastern United States for 1979. The ions of SO4 ?, NO3 ?, H+, and NH4 + were selected for study since they are the most prominent ones found in precipitation. Total wet deposition for 1979 was normalized to one centimeter of precipitation and objectively analyzed using the Synagraphic Mapping System (SYMAP) technique. Gradients of SO4 ? and NO3 ? were found to be essentially uniform, both to the east and west of the major pollution regions. An increased gradient in normalized deposition for SO4 ?, NO3 ?, and H+ was found in the Appalachian Mountain region. Estimates of total wet deposition were obtained by using the normalized deposition values in conjunction with precipitation as reported by the National Climatic Center. SYMAP analyses of the estimated total wet deposition were localized in nature due to precipitation variations between sites.  相似文献   

16.
The pH and amount of rainfall from over 60 selected stations throughout northern and lower Michigan was determined from September 1972 to December 1974. Precipitation pH was determined for each station by calibrated electrode meters. The seasonal weighted average and median pH from all stations in the study was 5.0 and 6.3, respectively. Daily readings from stations throughout Michigan indicate that pH is dependent on the amount of rainfall and that variations in it are often locally controlled. Collectively the pH values suggest carbonic acid control for most of the state. Annual median pH varied from a high of 8.45 at Dimondale, a station located 1.5 km from a concrete tile plant in central Michigan to 4.65 at Vassar, a small town located east of several industrial centers in the thumb region of the state. A comparison of annual nutrient loading for NO 3 ? , SO 4 = , Cl?,PO 4 , Ca++, Mg++ Na+ K+ and pH of rainwater from selected stations revealed that the eastern U.S. stations reporting pHs < 4.02 have similar loadings for NO3 but twice the SO4 input found for rural areas of Michigan.  相似文献   

17.
Wet-only rainwater composition on a daily basis, and atmospheric SO2 and NO2 concentrations on a monthly basis have been measured over a two year period at four sites ~100 km to the west of Sydney. Bulk aerosol composition on a monthly basis was also measured at one site. The study region is predominantly rural in character, but contains two coal-fired thermal power stations with a total installed capacity of 2320 MW, as well as several min or population centres, including a small city, with a total population of about 21,000. The measurement sites were located roughly on the perimeter of a circle of about 20 km radius having the power stations at its centre. Three of the sites were situated in rural settings, while the fourth was located on the outskirts of the small city of Lithgow. Atmospheric acid loadings at all sites were low by the standards usually associated with industrialised regions of Europe and North America, with about one third of rainwater total acidity provided by organic acids (formic, acetic and oxalic). At the three rural sites, total inorganic acid deposition, comprising measured wet deposition plus inferred dry deposition of acidic S and N species, averaged about 30 meq m?2 y?1, a low figure by most standards. At the site located near the city of Lithgow total deposition of acidic S and N species averaged about 80 meq m?2 y?1.  相似文献   

18.
From a level of 1 kg ha?1yr?1 in north central Minnesota, emission-related wet SO4 deposition increases across northern Wisconsin and northern Michigan to about 18 kg ha?1yr?1 in south central Michigan. Samples taken from 82 clearwater (low color) lakes across this region in the summer of 1984 showed a pattern of acidification in proportion to deposition. We found a linear increase in the difference between alkalinity and Ca+Mg and in lake SO4 concentration with increasing deposition. We developed a simple equation to predict the emission-related SO4 deposition levels that will cause the alkalinity of sensitive clear-water lakes to go to zero.  相似文献   

19.
A mixed provenance Sitka spruce plantation, planted in 1986 on a drained deep peat, has been exposed to 6 different simulated mist treatments in 4 replicated blocks since 1996. Treatments provided N and/or S at a concentration of 1.6 mol m?3, supplying ca. 50 kg S and/or N ha?1 yr?1 as N (NH4NO3), S (Na2SO4), NS Acid (NH4NO3 + H2SO4 at pH 2.5), 2NS Acid (double dose by application at twice frequency), a control treatment supplied with additional rainwater only and a 'no treatment' set of plots. Throughfall, preserved with thymol in the field, was collected using gutters with a surface area of 1 m2 in all the replicate plots, and was analysed for all major ions. Prior to treatment in 1999, S deposition in throughfall exceeded that in rain because of dry deposition of SO2 and SO4 2? to the canopy; NH4 + and NO3 ? ions were both retained in the canopy. During treatment, only 20–40% of the applied N in the high-N treatments was retained in the canopy. Acidity in the applied mist was partly neutralised by the canopy, but not primarily through exchange of base cations, leading to the conclusion that weak organic acids, in solution or in situ in the canopy, contributed to the buffering of the H+ ion deposition in the acid treatments.  相似文献   

20.
Rain and snow in Alberta are seldom acid. The S content of snow is so low that the snow pack gives a deposition of less than 1 kg S ha?1, even downwind from large SO2 emission sources. Rainfall contributes at the most 4 kg S ha?1 yearly near SO2 sources, and only about 1 kg S ha?1 in clean areas. However, rain intercepted by forest trees exposed to SO2 emission becomes acid (pH 3.5 to 4.5) and has a S content of 3 to 4 times greater than rain. Soils absorb large amounts of S from emissions (up to 50 kg S ha ?1 annually) but much of the S is found in non-sulphate form. Soils are slowly acidified by the SO2 at a rate estimated at 1 pH unit in 10 to 20 yr. Water surfaces will absorb SO2 emissions at a rate of about 4 to 15 kg S ha?1 annually. Particulates deposit 3 to 4 times as much S as is deposited by rainfall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号