首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intensive cropping, especially of rice, is considered to contribute to negative effects not only on soil chemical and biological properties but also on long-term grain yield. Appropriate crop rotation is often practiced as an alternative strategy to overcome the negative side effects of intensive cropping. Although soil microbial diversity and community structure have been shown to respond differently to altered agricultural management practices, little is known about possible links between crop rotation and grain yield on bacterial communities in rice paddy soil. In this study, we investigated the impact of specific rotational crops and compared it with intensive rice cultivation. The main crop rice (Oryza sativa) was rotated with maize (Zea mays) and mungbean (Phaseolus aureus) in different combinations in a system cultivating three crops per year. Soil bacterial communities were studied in two different cropping periods using pyrosequencing of the variable V4 region of the 16S rRNA. Our results showed that rotation with alternative crops increased rice yield by 24–46% depending on rotation structure and that bacterial community structure was altered in the presence of mungbean and/or maize compared to that in rice monoculture. In the crop rotation systems, composition, abundance, and diversity of soil bacterial communities were significantly different and higher than those in rice monoculture. Our results show that effects of crop rotation relate to changes in soil bacterial community structure suggesting that appropriate crop rotations provide a feasible practice to maintain the equilibrium in soil microbial environment for sustainable rice cultivation.  相似文献   

2.
Cropping systems are thought to alter soil quality in paddy rice fields. This study was conducted to quantify the long‐term effects of continuous crop production under different cropping systems with different crop rotations on physical properties of alluvial clay soil in the Mekong Delta, Vietnam. Soil samples were collected from four treatments: (i) traditional intensive rice monoculture with three rice crops per year (R–R–R); (ii) rotation with two rice crops and maize (R–M–R); (iii) rotation with two rice crops and mung bean (R–Mb–R); and (iv) rotation with one rice and two upland crops, mung bean and maize (R–Mb–M). We hypothesized that cropping systems with rotations of upland crops and their temporary beds improve the physical quality of paddy rice soil; hence, they are better options towards sustainable agriculture. Results show an improvement of soil physical quality for systems with two rice crops and one upland crop (R–M–R and R–Mb–R) and those with one rice crop with two upland crops (R–Mb–M) compared with intensive rice monoculture (R–R–R). This was translated in decreased bulk density and soil strength, increased soil organic carbon and total porosity, and higher aggregate stability index, plant‐available water capacity, and Dexter's S index, especially at depths of 10–20 and 20–30 cm. The systems with different upland crops (maize or mung bean) showed similar high physical quality improvement. To maintain soil quality in future seasons, introducing a cropping system with at least one upland crop in rotation with rice is recommended. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
 Processes that govern the soil nitrogen (N) supply in irrigated lowland rice systems are poorly understood. The objectives of this paper were to investigate the effects of crop rotation and management on soil N dynamics, microbial biomass C (CBIO) and microbial biomass N (NBIO) in relation to rice N uptake and yield. A maize-rice (M-R) rotation was compared with a rice-rice (R-R) double-cropping system over a 2-year period with four cropping seasons. In the M-R system, maize (Zea mays L.) was grown in aerated soil during the dry season (DS) followed by rice (Oryza sativa L.) grown in flooded soil during the wet season (WS). In the R-R system, rice was grown in flooded soil in both the DS and WS. Three fertilizer N rates (0, 50 or 100 kg urea-N ha–1 in WS) were assigned to subplots within the cropping system main plots. Early versus late crop residue incorporation following DS maize or rice were established as additional treatments in sub-subplots in the second year. In the R-R system, the time of residue incorporation had a large effect on NO3 -N accumulation during the fallow period and also on extractable NH4 +-N, rice N uptake and yield in the subsequent cropping period. In contrast, time of residue incorporation had little influence on extractable N in both the fallow and rice-cropping periods of the M-R system, and no detectable effects on rice N uptake or yield. In both cropping systems, CBIO and NBIO were not sensitive to residue incorporation despite differences of 2- to 3-fold increase in the amount of incorporated residue C and N, and were relatively insensitive to N fertilizer application. Extractable organic N was consistently greater after mid-tillering in M-R compared to the R-R system across N rate and residue incorporation treatments, and much of this organic N was α-amino N. We conclude that N mineralization-immobilization dynamics in lowland rice systems are sensitive to soil aeration as influenced by residue management in the fallow period and crop rotation, and that these factors have agronomically significant effects on rice N uptake and yield. Microbial biomass measurements, however, were a poor indicator of these dynamics. Received: 31 October 1997  相似文献   

4.
The relatively low solubility and availability of phosphorus (P) from indigenous phosphate rock could be enhanced by legumes in the acid soils of humid forest agroecosystems. Crotalaria micans L. was grown in a screenhouse without P or with P from triple superphosphate (TSP) and Malian Tilemsi Rock P. The P response of 20 cover crops was field‐evaluated using TSP and Rock P. In both experiments, the fertilized cover crops were followed by upland rice without mineral N or P application. Mean rice grain yield and agronomic residual P‐use efficiency were similar for both P sources. In the field, 1‐year fallow treatment of Canavalia ensiformis (velvet bean) supplied with Mali Rock P gave the highest rice grain yield of 3.1 Mg ha?1, more than 180% that of 2‐year continuous unfertilized rice (cv. ‘WAB 56‐50’). Among continuous rice plots, ‘NERICA 2’ (interspecific rice) supplied with Rock P produced the highest yield (2.0 Mg ha?1), suggesting that ‘NERICA 2’ might have greater potential to solubilize rock P. Results indicate that when combined with an appropriate legume, indigenous rock‐P can release sufficient P to meet the P requirement of the legume and a following upland rice crop in rotation.  相似文献   

5.
To investigate the current available nitrogen (N) and chemical properties of paddy soils affected by crop rotation between irrigated paddy rice (Oryza sativa L.) and upland soybean [Glycine max (L.) Merr.] (paddy-upland rotation), topsoils were collected from 22 fields of four different farmers in the northeastern region of Japan. Regardless of organic material application, a significant negative correlation was found between available soil N and an increase in the proportions of upland seasons to total crop seasons after the initiation of paddy-upland rotation. Soil total N and total carbon (C) also tended to decrease with an increase in upland frequency. In fields with repeated applications of cattle manure compost, the soil available N was higher than in fields where only crop residue was applied. A significant negative correlation was also found between the soil available N:total N ratio and upland frequency. This indicates that the part of soil N related to available N was notably lost by the use of paddy fields as upland fields. In order to sustain available soil N over the minimum suitable level of 80?mg?kg?1, upland frequency should not exceed 65% when only crop residues and no other organic materials are applied. The upland frequency can be raised by the repeated application of organic materials which maintain a higher level of available soil N. The results imply that care should be taken to maintain the N fertility of paddy soil at a suitable level in paddy-upland rotation, and that upland frequency and organic materials applied are important factors to do this.  相似文献   

6.
Crop rotation and cultural practice may influence soil residual N available for environmental loss due to crop N uptake and N immobilization. We evaluated the effects of stacked vs . alternate‐year crop rotations and cultural practices on soil residual N (NH4‐N and NO3‐N contents) at the 0–125 cm depth, annualized crop N uptake, and N balance from 2005 to 2011 in the northern Great Plains, USA. Stacked rotations were durum (Triticum turgidum L.)–durum–canola (Brassica napus L.)–pea (Pisum sativum L.) (DDCP) and durum–durum–flax (Linum usitatissimum L.)–pea (DDFP). Alternate‐year rotations were durum–canola–durum–pea (DCDP) and durum–flax–durum–pea (DFDP). Both of these are legume‐based rotations because they contain legume (pea) in the crop rotation. A continuous durum (CD) was also included for comparison. Cultural practices were traditional (conventional tillage, recommended seeding rate, broadcast N fertilization, and reduced stubble height) and improved (no‐tillage, increased seeding rate, banded N fertilization, and increased stubble height) systems. The amount of N fertilizer applied to each crop in the rotation was adjusted to soil NO3‐N content to a depth of 60 cm observed in the autumn of the previous year. Compared with other crop rotations, annualized crop biomass N was greater with DCDP and DDCP in 2007 and 2009, but was greater with DDFP than DCDP in 2011. Annualized grain N was greater with DCDP than CD, DFDP, and DDFP and greater in the improved than the traditional practice in 2010 and 2011. Soil NH4‐N content was greater with CD than other crop rotations in the traditional practice at 0–5 cm, but was greater with DDCP than CD and DDFP in the improved practice at 50–88 cm. Soil NO3‐N content was greater with CD than other crop rotations at 5–10 cm, but was greater with CD and DFDP than DCDP and DDCP at 10–20, 88–125, and 0–125 cm. Nitrate‐N content at 88–125 and 0–125 cm was also greater in the traditional than the improved practice. Nitrogen balance based on the difference between N inputs and outputs was greater with crop rotations than CD. Increased N fertilization rate increased soil residual N with CD, but legume N fixation increased N balance with crop rotations. Legume‐based crop rotations (all rotations except CD) reduced N input and soil residual N available for environmental loss, especially in the improved practice, by increasing crop N uptake and N immobilization compared with non‐legume monocrop.  相似文献   

7.
 Efficient N-fertiliser management during the corn (Zea mays L.) phase in corn-forage rotation requires information on temporal dynamics of N release from forage biomass. The influence of forage phase, in corn-forage rotation, and no- versus conventional-till on (1) in situ temporal dynamics of soil nitrate-N (NO3-N) during corn phase and (2) corn grain yield was investigated in this study. The data used were collected from a crop rotation (corn-forage) experiment, with superimposed tillage treatments, established on a silt loam soil in 1988 and continued until 1994. The cropping treatments were continuous conventionally cultivated (CT) corn, rotations involving corn and forages (alfalfa, Medicago sativa L.; and bromegrass, Bromus inermis L.) and continuous minimally tilled corn with under-seeded red clover (Trifolium pratense L.). The forages were grown for 6 years and corn was re-introduced in these plots under no- and conventional-till systems. Soil NO3-N in the top 30 cm depth, determined six times during the corn phase, was significantly influenced by previous forage species and tillage system. Regression analysis indicated soil NO3-N under continuous CT corn did not show significant temporal changes. In the rotations, soil NO3-N after tillage or herbicide treatment, i.e. in no-till, increased with time until 45 days after tillage (DAT), reached a plateau between 45 and 65 DAT, and then decreased with time. During the plateau, soil NO3-N in rotation plots ranged from 17 to 33 mg kg–1 compared to 15.7 mg kg–1 in the continuous CT corn. Tillage increased soil NO3-N concentration in alfalfa plots whereas an opposite trend existed in the bromegrass plots. Soil NO3-N in the rotation plots increased at rates ranging from 0.71 to 1.63 mg kg–1 day–1. The interaction involving forage species and the temporal dynamics of soil NO3-N accounted for 68–77% of variability in corn grain yield. Received: 14 July 1998  相似文献   

8.
Soil organic matter level, soil microbial biomass C, ninhydrin-N, C mineralization, and dehydrogenase and alkaline phosphatase activity were studied in soils under different crop rotations for 6 years. Inclusion of a green manure crop of Sesbania aculeata in the rotation improved soil organic matter status and led to an increase in soil microbial biomass, soil enzyme activity and soil respiratory activity. Microbial biomass C increased from 192 mg kg–1 soil in a pearl millet-wheat-fallow rotation to 256 mg kg–1 soil in a pearl millet-wheat-green manure rotation. Inclusion of an oilseed crop such as sunflower or mustard led to a decrease in soil microbial biomass, C mineralization and soil enzyme activity. There was a good correlation between microbial biomass C, ninhydrin-N and dehydrogenase activity. The alkaline phosphatase activity of the soil under different crop rotations was little affected. The results indicate the green manuring improved the organic matter status of the soil and soil microbial activity vital for the nutrient turnover and long-term productivity of the soil. Received: 7 January 1996  相似文献   

9.
Effect of cropping systems on nitrogen mineralization in soils   总被引:3,自引:0,他引:3  
 Understanding the effect of cropping systems on N mineralization in soils is crucial for a better assessment of N fertilizer requirements of crops in order to minimize nitrate contamination of surface and groundwater resources. The effects of crop rotations and N fertilization on N mineralization were studied in soils from two long-term field experiments at the Northeast Research Center and the Clarion-Webster Research Center in Iowa that were initiated in 1979 and 1954, respectively. Surface soil samples were taken in 1996 from plots of corn (Zea mays L.), soybean (Glycine max (L.) Merr.), oats (Avena sativa L.), or meadow (alfalfa) (Medicago sativa L.) that had received 0 or 180 kg N ha–1 before corn and an annual application of 20 kg P and 56 kg K ha–1. N mineralization was studied in leaching columns under aerobic conditions at 30  °C for 24 weeks. The results showed that N mineralization was affected by cover crop at the time of sampling. Continuous soybean decreased, whereas inclusion of meadow increased, the amount of cumulative N mineralized. The mineralizable N pool (N o) varied considerably among the soil samples studied, ranging from 137 mg N kg–1 soil under continuous soybean to >500 mg N kg–1 soil under meadow-based rotations, sampled in meadow. The results suggest that the N o and/or organic N in soils under meadow-based cropping systems contained a higher proportion of active N fractions. Received: 10 February 1999  相似文献   

10.
Elucidating the biodiversity of CO2-assimilating bacterial communities under different land uses is critical for establishing an integrated view of the carbon sequestration in agricultural systems. We therefore determined the abundance and diversity of CO2 assimilating bacteria using terminal restriction fragment length polymorphism and quantitative PCR of the cbbL gene (which encodes ribulose-1,5-biphosphate carboxylase/oxygenase). These analyses used agricultural soils collected from a long-term experiment (Pantang Agroecosystem) in subtropical China. Soils under three typical land uses, i.e., rice–rice (RR), upland crop (UC), and paddy rice–upland crop rotation (PU), were selected. The abundance of bacterial cbbL (0.04 to 1.25?×?108 copies g?1 soil) and 16S rDNA genes (0.05–3.00?×?1010 copies g?1 soil) were determined in these soils. They generally followed the trend RR?>?PU?>?UC. The cbbL-containing bacterial communities were dominated by facultative autotrophic bacteria such as Mycobacterium sp., Rhodopseudomonas palustris, Bradyrhizobium japonicum, Ralstonia eutropha, and Alcaligenes eutrophus. Additionally, the cbbL-containing bacterial community composition in RR soil differed from that in upland crop and paddy rice–upland crop rotations soils. Soil organic matter was the most highly statistically significant factor which positively influenced the size of the cbbL-containing population. The RR management produced the greatest abundance and diversity of cbbL-containing bacteria. These results offer new insights into the importance of microbial autotrophic CO2 fixation in soil C cycling.  相似文献   

11.
 Leguminous cover crops such as Mucuna pruriens (mucuna) have the potential to contribute to soil N and increase the yields of subsequent or associated cereal crops through symbiotic N fixation. It has often been assumed that mucuna will freely nodulate, fix N2 and therefore contribute to soil N. However, results of recent work have indicated mucuna's failure to nodulate in some farmers' fields in the derived savanna in Benin. One of the management practices that can help to improve mucuna establishment and growth is the use of rhizobial inocula to ensure compatibility between the symbiotic partners. Experiments were conducted in 1995 and 1996 on 15 farmers' fields located in three different villages (Eglimé, Zouzouvou and Tchi) in the derived savanna in Benin. The aim was to determine the response of mucuna to inoculation and examine the factors affecting it when grown in relay cropping with maize. The actual amount of N2 fixed by mucuna in the farmers' fields at 20 weeks after planting (WAP) averaged 60 kg N ha–1 (range: 41–76 kg N ha–1) representing 55% (range: 49–58%) of the plant total N. The result suggested that mucuna in these farmers' fields could not meet its total N demand for growth and seed production only by N2 fixation. It was estimated that after grain removal mucuna led to a net N contribution ranging from –37 to 30 kg N ha–1. Shoot dry weight at 20 WAP varied between 1.5 and 8.7 t ha–1 and N accumulation ranged from 22 to 193 kg N ha–1. Inoculation increased shoot dry matter by an average of 28% above the uninoculated treatments, but the increase depended on the field, location and year. For the combinations of inoculated treatments and farmers' fields, the response frequency was higher in Eglimé and Tchi than in Zouzouvou. The response to inoculated treatments was dependent on the field and inversely related to the numbers of rhizobia in the soil. Soil rhizobial populations ranged from 0 to >188 cells g–1 soil, and response to inoculation often occurred when numbers of indigenous rhizobia were <5 cells g–1 soil. In two farmers' fields at Zouzouvou where extractable P was below 10 μg g–1 soil, mucuna did not respond to rhizobial inoculation despite a higher population of rhizobia. Significant relationships between mycorrhizal colonization, growth and nodulation of mucuna were observed, and inoculated plants with rhizobia had a higher rate of colonization by arbuscular mycorrhizal fungi (%AMF) than uninoculated ones. Therefore, it was shown that mucuna will establish and fix N2 effectively in those fields where farmer's management practices such as good crop rotation and rhizobial inoculation allow a build up of AMF spores that might lead to a high degree of AMF infection and alleviate P deficiency. Received: 14 June 1999  相似文献   

12.
研究分析农业生态系统NPK养分循环和产量的可持续性,对实现养分资源优化管理和农业可持续发展具有重要意义。基于长期冬季作物-双季稻轮作种植定位试验,分析了2004—2017年冬闲-双季稻、马铃薯-双季稻、紫云英-双季稻、黑麦草-双季稻、油菜-双季稻等轮作种植模式早、晚稻产量的可持续性与稳定性;采用投入产出法(Input-Output Analysis)分析不同轮作种植模式NPK养分循环与平衡状况。结果表明:1)黑麦草-双季稻模式早稻产量变异系数与可持续性指数分别为0.09和0.81,说明稻田冬种黑麦草有利于促进早稻产量稳定性和可持续性的提高;油菜-双季稻模式晚稻产量变异系数与可持续性指数分别为0.07和0.82,说明稻田冬种油菜有益于晚稻产量稳定性和可持续性的提高;2)长期冬季作物-双季稻轮作种植未影响水稻产量和糙米NPK养分含量(P>0.05);3)在稻田轮作种植周年内目前的NPK投入水平下,黑麦草-双季稻、紫云英-双季稻、油菜-双季稻、马铃薯-双季稻等模式均存在严重的K亏缺现象,K亏缺量分别为375.70 kg(K)·hm-2、279.98 kg(K)·hm-2、363.71 kg(K)·hm-2、93.74 kg(K)·hm-2;黑麦草-双季稻、紫云英-双季稻、油菜-双季稻等模式均在冬季作物种植季存在严重的K亏缺现象,K亏缺量分别为240.07 kg(K)·hm-2、89.57 kg(K)·hm-2、140.08 kg(K)·hm-2,但马铃薯-双季稻模式在马铃薯种植季K盈余为255.21 kg(K)·hm-2;同时黑麦草-双季稻模式和紫云英-双季稻模式均存在冬季作物种植季存在N亏缺,N亏缺量分别为59.47 kg(N)·hm-2和89.17 kg(N)·hm-2;油菜-双季稻模式和马铃薯-双季稻模式在晚稻种植季均存在严重的K亏缺现象,K亏缺量分别为45.93 kg(K)·hm-2、124.33 kg(K)·hm-2。冬季作物-双季稻轮作种植模式的养分循环是冬季作物和外部投入的NPK肥料共同驱动的养分循环,建议科学管理冬季作物和3季的NPK养分投入。  相似文献   

13.
To achieve higher yields and better soil quality under rice–legume–rice (RLR) rotation in a rainfed production system, we formulated integrated nutrient management (INM) comprised of Azospirillum (Azo), Rhizobium (Rh), and phosphate-solubilizing bacteria (PSB) with phosphate rock (PR), compost, and muriate of potash (MOP). Performance of bacterial bioinoculants was evaluated by determining grain yield, nitrogenase activity, uptake and balance of N, P, and Zn, changes in water stability and distribution of soil aggregates, soil organic C and pH, fungal/bacterial biomass C ratio, casting activities of earthworms, and bacterial community composition using denaturing gradient gel electrophoresis (DGGE) fingerprinting. The performance comparison was made against the prevailing farmers’ nutrient management practices [N/P2O5/K2O at 40:20:20 kg ha−1 for rice and 20:30:20 kg ha−1 for legume as urea/single super-phosphate/MOP (urea/SSP/MOP)]. Cumulative grain yields of crops increased by 7–16% per RLR rotation and removal of N and P by six crops of 2 years rotation increased significantly (P < 0.05) in bacterial bioinoculants-based INM plots over that in compost alone or urea/SSP/MOP plots. Apparent loss of soil total N and P at 0–15 cm soil depth was minimum and apparent N gain at 15–30 cm depth was maximum in Azo/Rh plus PSB dual INM plots. Zinc uptake by rice crop and diethylenetriaminepentaacetate-extractable Zn content in soil increased significantly (P < 0.05) in bacterial bioinoculants-based INM plots compared to other nutrient management plots. Total organic C content in soil declined at 0–15 cm depth and increased at 15–30 cm depth in all nutrient management plots after a 2-year crop cycle; however, bacterial bioinoculants-based INM plots showed minimum loss and maximum gain of total organic C content in the corresponding soil depths. Water-stable aggregation and distribution of soil aggregates in 53–250- and 250–2,000 μm classes increased significantly (P < 0.05) in bacterial bioinoculants-based INM plots compared to other nutrient management plots. Fungal/bacterial biomass C ratio seems to be a more reliable indicator of C and N dynamics in acidic soils than total microbial biomass C. Compost alone or Azo/Rh plus PSB dual INM plots showed significantly (P < 0.05) higher numbers of earthworms’ casts compared to urea/SSP/MOP alone and bacterial bioinoculants with urea or SSP-applied plots. Hierarchical cluster analysis based on similarity matrix of DGGE profiles revealed changes in bacterial community composition in soils due to differences in nutrient management, and these changes were seen to occur according to the states of C and N dynamics in acidic soil under RLR rotation.  相似文献   

14.
Increased crop diversity and length of rotation may improve corn (Zea mays L.) yield and water- and nitrogen-use efficiency (WUE and NUE). The objectives of this study were to determine effects of crop rotation on corn yield, water use, and nitrogen (N) use. No-tillage (NT) crop rotations were started in 1997 on a Barnes clay loam (fine-loamy, mixed, superactive, frigid Calcic Hapludoll) near Brookings, S.D. Rotations were continuous corn (CC), corn–soybean [Glycine max (L.) Merr.] (CS), a 3-year rotation of corn–soybean–oat/pea (Avena sativa L. and Pisum sativum L.) hay (CSH), a 3-year rotation of corn–soybean–spring wheat (Triticum aestivum L.) (CSW), and a 5-year rotation of corn–soybean–oat/pea hay companion seeded with alfalfa (Medicago sativa L.)–alfalfa–alfalfa (CSHAA). Fertilizer N was applied to corn on all rotations at planting (16 kg N ha?1) and side-dressed (64 kg N ha?1). Average corn grain yields (1998–2007) were greatest under CSW (7.38 Mg ha?1) and least under CC (4.66 Mg ha?1). Yields were not different among CSH, CSW, and CSHAA rotations. Water-use efficiency of rotation was ordered as CSW > CSH > CSHAA > CS > CC. Nitrogen-use efficiency was greatest under CSW and least under CC. There were no differences in yield advantage (YA) among crop rotations during years with plentiful early-season rainfall (May 1–July 31). In years with low spring rainfall, YA was greatest under CSW (54%) and least under CSHAA (33%). Corn yields under extended rotations (CSH, CSW, and CSHAA) were greater than under CC and CS, but lack of rainfall may result in reduced yields under CSHAA.  相似文献   

15.
In the Mekong Delta, alluvial clay soils have been used intensively over many generations for rice monoculture. Currently, farmers are confronted by problems of declining land productivity. Rotations comprising rice and upland crops can increase soil quality, but appropriate cropping systems for paddy soils have received relatively little attention. We therefore established a multiyear field experiment to evaluate the long‐term effects of cropping systems with different rotations on soil chemical quality. Systems laid out in a randomized complete block design with four replications were as follows: (i) traditional rice monoculture with three rice crops per year (R‐R‐R), (ii) rotation with two rice crops and maize (R‐M‐R), (iii) rotation with two rice crops and mung bean (R‐Mb‐R) and (iv) rotation with one rice crop and two upland crops – mung bean and maize (R‐Mb‐M). We hypothesized that systems with rotations of upland crops and their temporary beds improve chemical quality of paddy rice soil. Soil chemical parameters were determined to better understand and evaluate the sustainability of the cropping systems. Results showed an improvement in soil chemical quality for cropping systems with rotations of rice and mung bean or maize grown on temporary beds (R‐M‐R, R‐Mb‐R and R‐Mb‐M), particularly the content of soil organic carbon and a presumed hydrolysable labile carbon fraction compared with rice monoculture. Less pronounced improvements in EC, CEC and total acidity were also found with inclusion of upland crops. Cropping systems of rice with upland crops improved rice grain and straw yield in subsequent season in contrast with rice monoculture.  相似文献   

16.
Abstract

Even though Mg is an essential nutrient. the response of upland rice, common bean, and cowpea to Mg application has not been adequately documented in Brazilian oxisols. This study was conducted to examine the influence of Mg application on growth and nutrient uptake by upland rice (Oryza sativa L.), common bean (Phaseolus vulgaris L.), and cowpea (Vigna unguiculata L. Walp.) on an oxisol. Magnesium levels in the soil were created at sowing by application of MgO at rates of 0.30, 1.05, 1.15, 1.33, 3.52, and 6.22 cmol Mg/kg of soil. Application of Mg did not have a significant beneficial effect on dry weight of roots and tops of rice and cowpea. Common bean root and top dry weights were increased with Mg applications up to 1 cmol Mg/kg of soil. Uptake of N, P, K, Ca, Cu, Zn, Fe, and Mn by the three crops was significantly (P < 0.01) decreased by increasing Mg levels in the soil. Results related to changes in chemical properties of soil with the application of Mg are also presented.  相似文献   

17.
Nutrient concentrations in the soil and crop uptake from incorporated green manure and urea in flooded rice was studied in field experiments. Release of plant-available nitrogen (NH4 +-N) from green manure was slightly delayed compared with that from prilled urea (PU) because Sesbania rostrata L. and Aeschynomene afraspera L. released the N gradually after their decomposition, whereas N became available immediately after PU application. Exchangeable NH4 +-N concentration in soil peaked at 163 mg kg–1 in the transplanted rice (TPR) and 198 mg kg—1 in broadcast-seeded rice (BSR) at 0 and 1 week after PU application. Broadcast-seeded rice depleted NH4 +-N faster than did TPR because of the crop‘s vigorous growth in the former during the early stage. Soil solution NH4 +-N followed a similar trend to that of soil NH4 +-N. Incorporation of S. rostrata and A. afraspera increased the concentration of P, K+, Fe2+ and Mn2+ in soil solution more than did the application of PU. However, zinc concentration decreased in all treatments. Both PU and green manure increased the N status of the rice plants and enhanced the uptake of P, K, Fe, Mn and Zn by the rice crop. This suggests that application of green manures improves the uptake of these nutrients by the crop. The highest apparent N recovery was obtained with PU followed by green manure. Received: 11 November 1996  相似文献   

18.
 The impacts of crop rotations and N fertilization on different pools of urease activity were studied in soils of two long-term field experiments in Iowa; at the Northeast Research Center (NERC) and the Clarion-Webster Research Center (CWRC). Surface soil samples (0–15 cm) were taken in 1996 and 1997 in corn, soybeans, oats, or meadow (alfalfa) plots that received 0 or 180 kg N ha–1, applied as urea before corn and an annual application of 20 kg P and 56 kg K ha–1. The urease activity in the soils was assayed at optimal pH (THAM buffer, pH 9.0), with and without toluene treatment, in a chloroform-fumigated sample and its nonfumigated counterpart. The microbial biomass C (Cmic) and N (Nmic) were determined by chloroform fumigation methods. The total, intracellular, extracellular and specific urease activities in the soils of the NERC site were significantly affected by crop rotation, but not by N fertilization. Generally, the highest total urease activities were obtained in soils under 4-year oats–meadow rotations and the lowest under continuous corn. The higher total activities under multicropping systems were caused by a higher activity of both the intracellular and extracellular urease fractions. In contrast, the highest values for the specific urease activity, i.e. of urease activity of the microbial biomass, were found in soils under continuous soybean and the least under the 4-year rotations. Total and extracellular urease activities were significantly correlated with Cmic (r>0.30* and >0.40**) and Nmic (r>0.39** and >0.44**) in soils of the NERC and CWRC sites, respectively. Total urease activity was significantly correlated with the intracellular activity (r>0.73***). About 46% of the total urease activity of the soils was associated with the microbial biomass, and 54% was extracellular in nature. Received: 25 May 1999  相似文献   

19.
We investigated conservation and cycling of N under oat–oat and lupine–oat rotations in disturbed and undisturbed soil, when roots or roots plus aboveground residues were retained. Crop residues were labelled with 15N in Year 1, and differential soil disturbance was imposed after harvest. In Year 2, plant growth, N transfer from residue into the various sinks of the second crop (plant, soil, and residual residues), and changes in microbial activity and numbers were determined. Oat biomass was greater after lupine than after oat due to differences in supply of N from these residues. Buried residues of both crops appeared to decompose faster than when left on the soil surface. Lupine residues decomposed faster than oat residues. Oat biomass was not affected by soil disturbance if grown after lupine but decreased when oat straw was buried in the soil. More residue N was recovered from soil than from the crop. Most 15N was recovered from disturbed soil, which also had greater dehydrogenase activity and more culturable fungi. At the end of the oat–oat rotation, 20 and 5 kg N ha−1 were derived from the roots of the first crop in undisturbed or disturbed soil, respectively. Equivalent values for the lupine–oat rotation were 18 and 44 kg N ha−1. Returning aboveground residues provided an extra 52–80 kg N ha−1 for oat and 61–63 kg N ha−1 for lupine relative to treatments where they were removed. Over a year, lupine contributed 9 to 20 kg N ha−1 more to the agroecosystem than did oat.  相似文献   

20.
Soil microbial biomass carbon and nitrogen as affected by cropping systems   总被引:12,自引:0,他引:12  
 The impacts of crop rotations and N fertilization on microbial biomass C (Cmic) and N (Nmic) were studied in soils of two long-term field experiments initiated in 1978 at the Northeast Research Center (NERC) and in 1954 at the Clarion-Webster Research Center (CWRC), both in Iowa. Surface soil samples were taken in 1996 and 1997 from plots of corn (Zea mays L.), soybeans (Glycine max (L.) Merr.), oats (Avena sativa L.), or meadow (alfalfa) (Medicago sativa L.) that had received 0 or 180 kg N ha–1 before corn and an annual application of 20 kg P and 56 kg K ha–1. The Cmic and Nmic values were determined by the chloroform-fumigation-extraction method and the chloroform-fumigation-incubation method, respectively. The Cmic and Nmic values were significantly affected (P<0.05) by crop rotation and plant cover at time of sampling, but not by N fertilization. In general, the highest Cmic and Nmic contents were found in the multicropping systems (4-year rotations) taken in oats or meadow plots, and the lowest values were found in continuous corn and soybean systems. On average, Cmic made up about 1.0% of the organic C (Corg), and Nmic contributed about 2.4% of the total N (Ntot) in soils at both sites and years of sampling. The Cmic values were significantly correlated with Corg contents (r≥0.41**), whereas the relationship between Cmic and Ntot was significant (r≤0.53***) only for the samples taken in 1996 at the NERC site. The Cmic : Nmic ratios were, on average, 4.3 and 6.4 in 1996, and 7.6 and 11.4 in 1997 at the NERC and CWRC sites, respectively. Crop rotation significantly (P<0.05) affected this ratio only at the NERC site, and N fertilization showed no effect at either site. In general, multicropping systems resulted in greater Cmic : Corg (1.1%) and Nmic : Ntot (2.6%) ratios than monocropping systems (0.8% and 2.1%, respectively). Received: 9 February 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号