首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
OBJECTIVE: To evaluate cytotoxicity and antiviral activity of recombinant human interferon alfa-2a and recombinant human interferon alfa-B/D hybrid against cytopathic and noncytopathic bovine viral diarrhea virus (BVDV), infectious bovine rhinotracheitis virus (IBRV), and vesicular stomatitis virus (VSV) in vitro. SAMPLE POPULATION: Primary bovine testicular cells and Mardin Darby bovine kidney cells. PROCEDURES: To evaluate cytotoxicity, cells were added to serial dilutions of each interferon. To evaluate antiviral activity of each interferon, interferons were serially diluted 1:10, and tissue culture cells were added; virus was then added at 3 time points. Prevention of viral infection by interferon was defined as failure to induce cytopathologic effect for VSV, IBRV, and cytopathic BVDV and failure to detect virus immunohistochemically for cytopathic and noncytopathic BVDV. RESULTS: No evidence of cytotoxicity in either cell line was detected after incubation with interferon alfa-2a or interferon alfa-B/D. However, reduced growth rates of tissue culture cells were detected for each interferon when undiluted interferon was tested. Comparable and profound antiviral activities against cytopathic and noncytopathic BVDV were evident for each interferon. Interferon alfa-2a and interferon a-B/D had comparable antiviral activities against VSV. Neither interferon had antiviral activity against IBRV. CONCLUSIONS AND CLINICAL RELEVANCE: The safety and marked in vitro antiviral activity against noncytopathic BVDV, cytopathic BVDV, and VSV suggest that interferons alfa-2a and alfa-B/D may be useful for treatment of natural disease after infection with these viruses.  相似文献   

2.
Calves persistently infected (PI) with Bovine viral diarrhea virus (BVDV) represent an important source of infection for susceptible cattle. We evaluated vaccine efficacy using calves PI with noncytopathic BVDV2a for the challenge and compared tests to detect BVDV in acutely or transiently infected calves versus PI calves. Vaccination with 2 doses of modified live virus vaccine containing BVDV1a and BVDV2a protected the calves exposed to the PI calves: neither viremia nor nasal shedding occurred. An immunohistochemistry test on formalin-fixed ear notches and an antigen-capture enzyme-linked immunosorbent assay on fresh notches in phosphate-buffered saline did not detect BVDV antigen in any of the acutely or transiently infected calves, whereas both tests had positive results in all the PI calves.  相似文献   

3.
OBJECTIVE: To compare the efficacy of modified-live virus (MLV) vaccines containing either type 1 bovine viral diarrhea virus (BVDV) or types 1 and 2 BVDV in protecting heifers and their offspring against infection associated with heterologous noncytopathic type 2 BVDV challenge during gestation. DESIGN: Randomized controlled study. ANIMALS: 160 heifers and their offspring. PROCEDURES: After inoculation with a placebo vaccine, 1 or 2 doses of an MLV vaccine containing type 1 BVDV, or 1 dose of an MLV vaccine containing both types 1 and 2 BVDV, heifers were bred naturally and challenge exposed with a type 2 BVDV field isolate between 62 and 104 days of gestation. Pregnancies were monitored; after parturition, virus isolation and immunohistochemical analyses of ear-notch specimens were used to determine whether calves were persistently infected. Blood samples were collected at intervals from heifers for serologic evaluation and virus isolation. RESULTS: Persistent infection was detected in 18 of 19 calves from heifers in the control group and in 6 of 18 calves and 7 of 19 calves from heifers that received 1 or 2 doses of the type 1 BVDV vaccine, respectively. None of the 18 calves from heifers that received the type 1-type 2 BVDV vaccine were persistently infected. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that the incidence of persistent BVDV infection among offspring from dams inoculated with 1 dose of the MLV vaccine containing types 1 and 2 BVDV was decreased, compared with 1 or 2 doses of the MLV vaccine containing only type 1 BVDV.  相似文献   

4.
Moen A  Sol J  Sampimon O 《Preventive veterinary medicine》2005,72(1-2):93-8; discussion 215-9
In a closed dairy herd all animals were tested serologically for BVD antibodies twice a year during a 6-year period. Seroconversions were detected every year. At the start of the 6-year monitoring period blood samples from all animals were examined by virus isolation. No persistently infected animals were identified. Entire-herd culturing for BVDV was repeated at the end of the third year. Samples from all newborn female calves were examined for BVDV at approximately 2 months of age and older. During the entire monitoring period BVDV was isolated in one newborn calf twice with an interval of 3 weeks. The mother had seroconverted during pregnancy. Five congenitally infected non-PI calves were identified, the mothers of which had seroconverted during late pregnancy; repeated sampling proved the calves to remain seropositive in a seronegative age cohort. Although direct and indirect introduction of BVDV from outside the herd can never be excluded it seems highly unlikely in this closed herd. The findings indicate that transmission of BVDV can take place over a long period of time in the absence of PI animals. This observation may have serious consequences for control programmes.  相似文献   

5.
OBJECTIVE: To determine whether use of serologic evaluation of a sentinel sample of calves or cows for antibodies against bovine viral diarrhea virus (BVDV) would accurately predict whether an animal persistently infected with BVDV could be detected in beef herds. SAMPLE POPULATION: 27 cow-calf herds in which the status of persistently infected calves was not known and 11 herds known to have persistently infected calves. Procedure-Detection of persistently infected calves was determined through immunohistochemical testing of tissue obtained at necropsy of all calves that died during calving season and skin (ear notch) specimens obtained from all young stock in the fall of 2002. Serum samples were collected from 30 spring-born calves and 10 mature cows. RESULTS: Optimum serologic test performance at time of weaning was detected when 10 calves were evaluated. At least 3 of 10 randomly selected calves were likely to have a titer > 1:1000 against BVDV type I or II in 53% of herds in which a persistently infected calf was detected during that year (sensitivity, 53%). However, at least 3 of 10 randomly selected calves were also likely to have a titer > 1:1000 in 20% of herds that did not have a persistently infected calf detected during that year (specificity, 80%). CONCLUSIONS AND CLINICAL RELEVANCE: Despite the use of a number of various cutoff values and sample sizes, serologic evaluation of a small number of calves or cows could not be used to accurately predict the presence of persistently infected cattle in a herd.  相似文献   

6.
None of 14 calves not previously exposed to BVDV became infected after being forced to have nose-to-nose contact with a group of 5 calves primarily infected with BVDV. These were 5 male calves primarily infected with a type I BVDV strain, after nose-to-nose contact with a persistently viraemic calf. All 5 became infected and were clinically affected. They were slightly depressed and pyretic at 8-9 days post-infection, with a body temperature of up to 41.6 degrees C, but no medical treatment was required. Seroconversions to BVDV were detected in these calves at 14 to 21 days post-infection. The 14 healthy calves, proved to be free from BVD virus--as well as antibodies, were introduced 2 by 2 into the group of 5 primarily infected calves on days 4, 7, 14, 21, 28, 35 and 42 after the 5 calves had been in contact with the persistently BVDV-infected calf. Each pair of calves stayed within the primarily infected group for 2 days. None of these 14 calves seroconverted to BVDV.  相似文献   

7.
A noncytopathic bovine viral diarrhea virus (BVDV), BVDV-890, isolated from a yearling heifer that died with extensive internal hemorrhages, was compared for virulence in calves with noncytopathic BVDV-TGAN, isolated from an apparently healthy persistently infected calf. After challenge exposure with BVDV-890, nonimmune calves (n = 7) developed fever > 40 C, diarrhea, leukopenia, lymphopenia, neutropenia, and thrombocytopenia. Most calves (n = 6) died or were euthanatized by 19 days after challenge exposure. Challenge exposure with BVDV-890 did not induce disease in 2 calves that had congenital persistent infection with BVDV or in 3 calves that had neutralizing antibody titer > 4 against BVDV-890. After challenge exposure with BVDV-TGAN, nonimmune calves (n = 7) developed fever > 40 C and, rarely, diarrhea or lymphopenia. All of those calves survived challenge exposure. The average maximal titer of BVDV-890 isolated from serum was 1,000 times that of BVDV-TGAN. In calves infected with BVDV-890, the average maximal percentages of lymphocytes and platelets associated with virus were greater than those found in calves infected with BVDV-TGAN. Additional findings of epidemiologic significance were prolonged shedding of virus and delayed production of viral-neutralizing antibody in 1 calf challenge-exposed with BVDV-890. Also, after production of neutralizing antibody, mutant virus that was refractory to neutralization was isolated from calves challenge-exposed with BVDV-TGAN.  相似文献   

8.
Four calves were infected with noncytopathic (NCP) New York-1 strain of bovine viral diarrhea virus (BVDV). During the observation period of one month the calves remained clinically normal but the virus was repeatedly recovered from their pharyngeal swabbings and blood. Thirty days following infection the four calves were vaccinated, together with two uninfected calves, with a modified-live vaccine containing cytopathic (CP) BVDV, infectious bovine rhinotracheitis virus and parainfluenza-3 virus. No detrimental effects were observed after vaccination. Forty-three days after vaccination the calves were challenged by exposure either with the CP TVM-2 strain or the NCP New York-1 strain of BVDV. The vaccinated calves remained healthy throughout the 60-day observation period.  相似文献   

9.
Eight healthy cattle that were persistently infected with noncytopathic bovine viral diarrhea virus (BVDV) were inoculated with cell culture fluids that contained noncytopathic or cytopathic BVDV. A severe disease occurred after inoculation with cytopathic BVDV. The clinical signs, lesions, and immune response were consistent with those of clinical BVDV infections.  相似文献   

10.
In 1992, significant calf losses occurred between birth and weaning in a 650-cow Saskatchewan beef herd. These losses occurred subsequent to ill-thrift and disease, and every calf necropsied was found to be persistently infected with bovine viral diarrhea virus (BVDV). The objectives of this study were to describe the losses associated with fetal infection with BVDV in this herd and to determine why they occurred. For investigative purposes, blood samples were collected from the entire cow herd and the surviving calves at pregnancy testing in 1992, and tested by virus isolation for BVDV. Between 51 and 71 persistently infected calves were born in 1992. Bovine viral diarrhea virus was only isolated from calves. The only confirmed fetal infections with BVDV were recorded as the birth of persistently infected calves. However, abortions, reduced pregnancy rates, and delayed calvings were also recorded in the cow herd and may have been the result of fetal infections. The herd was monitored again in 1993. Fetal infections with BVDV were recorded as the birth of stunted, deformed, and persistently infected calves. The greatest losses due to fetal infection with BVDV in the 2 years of this study occurred in cows that were 3-years-old at calving (second calves). Bovine viral diarrhea virus appears to have remained endemic in this herd by transmission from persistently infected calves on young 3- and 4-year-old cows to naive calved 2-year-old cows that were mingled with them annually for rebreeding. Significant numbers of the 2-year-old cows remained naive to BVDV, because they were segregated from persistently infected calves at weaning, preventing cross-infection with BVDV.  相似文献   

11.
Previous studies have shown that the brain is a target of persistent infection with bovine viral diarrhea virus (BVDV) and have demonstrated viral tropism for neurons as well as other endogenous cell types in diverse brain areas. Apart from foci of mild residual inflammation in some postnatal calves, consistent brain lesions, per se, have not been reported. No similar comprehensive studies of the brain have been reported in bovine fetuses. In the current study, 12 BVDV-seronegative heifers were inoculated intranasally with a 2-ml 4.4 log(10) TCID(50)/ml dose of noncytopathic type 2 BVDV at 75 and 175 days of gestation to create persistently and transiently infected fetuses, respectively. In only persistently infected fetuses, encephaloclastic lesions resulting in pseudocysts were observed in the subependymal zone in the region of the median eminence and adjacent corona radiata as well as in the region of the external capsule associated with lenticulostriate arteries. Additionally, areas of rarefaction in white matter were observed at the tips of cerebrocortical gyri and in the external capsule. The distribution of viral antigen was examined by immunohistochemical labeling using the 15C5 anti-BVDV monoclonal antibody. Viral antigen was detected only in calves inoculated at 75 days of gestation, i.e., persistently infected. The pattern of BVDV immunolabeling revealed both similarities and differences compared with previous studies in postnatal calves, suggesting that viral infection in the brain is a dynamic and progressive rather than static process.  相似文献   

12.
Six calves, aged 24 to 58 days and not previously exposed to bovine viral diarrhoea virus (BVDV), were infected with this agent by nose-to-nose contact with a persistently BVDV viraemic calf. The study was conducted in two trials, using 3 calves in each. All 6 calves showed a peak interferon level in serum at 4 days post infection (dpi), and they seroconverted to BVDV at 16-21 dpi. The calves in trial 1 had diarrhoea for 2 or 3 days between 2 and 6 dpi and one calf again from 9 to 11 dpi. During the periods of fever, the calves were slightly depressed. Those in trial 2 were more depressed and their oral and nasal mucous membranes were reddened but they never had diarrhoea. In both trials, fever (up to 41.3 degrees C) was a prominent symptom at 8 to 9 dpi and 2 calves showed a diphasic fever course. Respiratory affection was mild and no medical treatment was required. Haematological assessment demonstrated a transient but significant leukopenia and lymphopenia at 4 dpi (P less than 0.01 and P less than 0.05 respectively) and 11 dpi (P less than 0.05 and P less than 0.01 respectively). A significant decrease in thrombocyte count was seen at 4 dpi (P less than 0.05, n = 3). This study has demonstrated that nose-to-nose contact is an effective way of transmitting BVDV from persistently infected to susceptible cattle.  相似文献   

13.
OBJECTIVE: To develop a method for percutaneous collection of fetal fluid from cattle in the late stages of gestation and determine whether bovine viral diarrhea virus (BVDV) can be isolated from such fluids. DESIGN: Case series. ANIMALS: 169 pregnant beef cattle. PROCEDURE: Animals were restrained in a squeeze chute, and hair was clipped from a region of the right flank. Pregnancy was confirmed, and fetal fluids were identified by means of abdominal ultrasonography. Fetal fluid was collected with a spinal needle. Virus isolation was performed on fetal fluids, WBC lysates from 160 live calves, and tissues from 12 calves that died or were aborted. Blood samples collected from adult cattle were assayed with an immunoperoxidase monolayer assay. RESULTS: Fourteen animals aborted or delivered premature calves within 3 weeks after fetal fluid collection; however, it could not be determined whether this was a complication of the procedure or attributable to other factors. Results of BVDV isolation from fetal fluid samples were negative for 168 animals. However, a noncytopathic BVDV was isolated from fetal fluid obtained from a 2-year-old heifer; results of the immunoperoxidase assay of serum from this heifer were also positive, and a noncytopathic BVDV was isolated from tissue specimens from a stillborn calf produced by this heifer. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that fetal fluids can be collected percutaneously from cattle in the late stages of gestation and that virus isolation performed on fetal fluids can be used to identify fetuses infected with BVDV in utero. However, safety of the procedure could not be evaluated.  相似文献   

14.
This study demonstrated that the bovine viral diarrhea virus (BVDV; types 1 and 2) fractions of a multivalent vaccine protected pregnant heifers and their fetuses at 149 to 217 days of gestation against exposure to calves persistently infected with BVDV type 2a. Eighty percent (eight of 10) of the control heifers were viremic at least 1 day following challenge, whereas all (20 of 20) BVDV-vaccinated heifers were virus isolation-negative on all postchallenge assessment days. Ninety percent (nine of 10) of the calves born to control heifers but only 5% (one of 20) of calves born to BVDV-vaccinated heifers seroconverted to BVDV type 2 before ingesting colostrum. One calf born to a control heifer was persistently infected. No calves from BVDV-vaccinated heifers were persistently infected.  相似文献   

15.
Bovine viral diarrhea virus (BVDV) infections resulting in clinical disease developed in calves, despite vaccination of dams and high maternal BVDV antibody titers in calves. Eight persistently infected (PI) calves born to immunocompetent dams were identified in the herd. Neutralizing BVDV antibody titers of PI calves had decreased greatly by the time the calves were 1 to 2 months old. Antibody titers of PI calves decreased more rapidly than antibody titers of calves that were not PI. Reduced antibody titers in PI calves allowed detection of BVDV in serum specimens of all PI calves by the time they were 8 weeks old. Persistent infection in suspect calves was detectable serologically and was confirmed by virologic examination of serum specimens 4 months after weaning, when the calves were 9 months old. Growth rates were reduced in viremic calves.  相似文献   

16.
Twelve heifers that did not have antibodies to bovine virus diarrhoea virus (BVDV) were inseminated with semen from a bull that was persistently infected with the virus and contained 10(4.0)-10(6.5) TCID50 0.1 ml-1. All 12 became infected, as indicated by seroconversion within 2 weeks of insemination. Four control heifers were inseminated with virus-free semen. The virus was not transmitted to these animals in spite of close contact with the heifers inseminated with the infected semen. All the heifers became pregnant and gave birth to clinically normal calves at term. However, one calf was born persistently infected with BVDV. After the birth of this persistently-infected calf the control heifers and their calves seroconverted. The study demonstrates that BVDV may be transmitted in cattle by artificial insemination (AI). Therefore entry of persistently-infected animals into AI centres should be prevented.  相似文献   

17.
Bulls shedding bovine viral diarrhoea virus (BVDV) in semen and simultaneously having a high concentration of circulating antibodies may cause reproductive problems and spread the viral infection within cattle populations. To investigate this in detail, three heifers were inseminated with BVDV‐infected semen from a non‐viraemic, seropositive Holstein–Friesian bull, named `Cumulus'. One control heifer was inseminated with semen from a healthy bull that was free of BVDV. All four heifers remained clinically healthy throughout the experiment. The conception succeeded in the control animal and in two of the three heifers inseminated with semen containing BVDV. The heifer with the failed conception was the only one that became systemically infected with BVDV. This animal was deemed non‐pregnant by ultrasonic examination on day 34 after insemination and showed no signs of subsequent oestrus during the entire experimental period. At slaughter, 42 days after insemination, there were no histopathological changes in the ovaries and virus was not detected in ovarian tissue. The fact that seronegative dams served with semen from persistently infected bulls have occasionally produced persistently infected calves together with the present findings and the fact that non‐viraemic, seropositive bulls can constantly shed BVDV, suggest that the use of semen from such bulls in BVDV‐free herds could have far‐reaching consequences, especially if it led to the birth of persistently infected (P1) calves.  相似文献   

18.
Previous reports on the spread of bovine virus diarrhoea virus (BVDV) from animals primarily infected with the agent are contradictory. In this study, the possibility of transmission of BVDV from calves simultaneously subjected to acute BVDV and bovine coronavirus (BCV) infection was investigated. Ten calves were inoculated intranasally with BVDV Type 1. Each of the 10 calves was then randomly allocated to one of two groups. In each group there were four additional calves, resulting in five infected and four susceptible calves per group. Virulent BCV was actively introduced in one of the groups by means of a transmitter calf. Two calves, susceptible to both BVDV and BCV, were kept in a separate group, as controls. All ten calves actively inoculated with BVDV became infected as shown by seroconversions, and six of them also shed the virus in nasal secretions. However, none of the other eight calves in the two groups (four in each) seroconverted to this agent. In contrast, it proved impossible to prevent the spread of BCV infection between the experimental groups and consequently all 20 study calves became infected with the virus. Following infection, BCV was detected in nasal secretions and in faeces of the calves and, after three weeks in the study, all had seroconverted to this virus. All calves, including the controls, showed at least one of the following clinical signs during days 3-15 after the trial started: fever (> or =40 degrees C), depressed general condition, diarrhoea, and cough. The study showed that BVDV primarily infected cattle, even when co-infected with an enteric and respiratory pathogen, are inefficient transmitters of BVDV. This finding supports the principle of the Scandinavian BVDV control programmes that elimination of BVDV infection from cattle populations can be achieved by identifying and removing persistently infected (PI) animals, i.e. that long-term circulation of the virus without the presence of PI animals is highly unlikely.  相似文献   

19.
Viral distribution and lesions were compared between calves born with persistent infection (PI) and calves acutely infected with the same bovine viral diarrhea virus (BVDV) isolate. Two PI calves from 1 dairy herd were necropsied. The PI viruses from these calves were isolated, characterized by sequencing, and found to be identical. This virus strain, designated BVDV2-RS886, was characterized as a noncytopathic (ncp) type 2 BVDV. To establish acute infections, BVDV2-RS886 was used to inoculate clinically healthy, seronegative calves which were 3 weeks to 3 months old. Nine calves received 10(6)-10(7) tissue culture infective dose of BVDV2-RS886 intranasally. Four additional age-matched animals served as noninfected controls. Infected calves were necropsied at 3, 6, 9, or 13 days postinoculation (dpi). Viral antigen was detected by immunohistochemistry in frozen sections, and lesions were evaluated in hematoxylin eosin-stained paraplast sections. In the PI calves, a wide distribution of viral antigen was found in all tissues and was not associated with lesions. In the acutely infected calves, viral antigen was widespread in lymphoid tissues at 6 dpi but had been mostly eliminated at 9 and 13 dpi. Depletion of lymphoid tissues was seen at 6, 9, and 13 dpi and repopulation at 9 and 13 dpi. In 1 of the calves at 13 dpi, severe arteritis was present in lymph nodes and myocardium. This comparison shows that an ncp BVDV strain that causes no lesions in PI animals is able to induce marked depletion of lymphoid tissues in calves with acute infection. Therefore, the failure to eliminate PI cattle from a herd causes problems not only in pregnant cattle but may also affect other age groups.  相似文献   

20.
OBJECTIVE: To determine the ability of a modified-live virus (MLV) bovine viral diarrhea virus (BVDV) type 1 (BVDV1) vaccine administered to heifers prior to breeding to stimulate protective immunity that would block transmission of virulent heterologous BVDV during gestation, thus preventing persistent infection of a fetus. ANIMAL: 40 crossbred Angus heifers that were 15 to 18 months old and seronegative for BVDV and 36 calves born to those heifers. PROCEDURE: Heifers were randomly assigned to control (n = 13) or vaccinated (27) groups. The control group was administered a multivalent vaccine where-in the BVDV component had been omitted. The vaccinated heifers were administered a single dose of vaccine (IM or SC) containing MLV BVDV1 (WRL strain). All vaccinated and control heifers were maintained in pastures and exposed to BVDV-negative bulls 21 days later. Thirty-five heifers were confirmed pregnant and were challenge exposed at 55 to 100 days of gestation by IV administration of virulent BVDV1 (7443 strain). RESULTS: All control heifers were viremic following challenge exposure, and calves born to control heifers were persistently infected with BVDV. Viremia was not detected in the vaccinated heifers, and 92% of calves born to vaccinated heifers were not persistently infected with BVDV. CONCLUSIONS AND CLINICAL RELEVANCE: These results document that vaccination with BVDV1 strain WRL protects fetuses from infection with heterologous virulent BVDV1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号