首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Chestnut paleosols buried under steppe kurgans about 4800, 4000, and 2000 years ago and their background analogues were studied in the dry steppe zone on the Volga-Don interfluve. Morphological, chemical, microbiological, biochemical, and radiocarbon studies were performed. Paleoclimatic conditions in the region were reconstructed on the basis of paleosol data. The ages of microbial fractions isolated from the buried and surface soils were determined using the method of 14C atomic mass-spectrometry. It reached 2100 years in the A1 horizon of the buried paleosol, which corresponded to the archaeological age of the kurgan (1st century AD). The ages of microbial biomass isolated from the B2 horizons of the buried paleosol and the background surface soil comprised 3680 ± 35 and 3300 ± 30 years, respectively. The obtained data confirmed our assumption about preservation of microorganisms of the past epochs in the paleosols buried under archaeological monuments. It is ensured by various mechanisms of adaptation of soil microbial communities to unfavorable environmental conditions (anabiosis, transformation of bacteria into nanoforms, etc.). The possibility to stimulate germination of the ancient dormant microbial pool isolated from the buried paleosols by 2–3 orders of magnitude with the use of β-indolyl-3-acetic acid as a signal substance was demonstrated.  相似文献   

2.
The purpose of this study was to examine spatial variability in forest soils at several levels including variability due to soil structure, to the presence of individual trees and to populations of different species of trees. Both classic statistical and geostatistical methods were used. Soil chemical properties measured include pH and Al and C in solution which was in equilibrium with the surface mineral soil. Results indicated that soil cores 1.8 cm in diameter were as effective as larger cores in incorporating variability in surface mineral soil pH. There was no spatial correlation in soil pH in samples separated by a distance of 20 to 360 cm. The presence of individual Norway spruce and red pine trees affected soil in their vicinity. Soil pH was depressed and soluble Al elevated. in soil near the base of the tree compared to soil 120 cm from the tree, independent of direction. In addition, in soil sampled at least 100 cm from the base of trees, pH was lower in Norway spruce compared to sugar maple plantations and soluble C was greater in red pine compared to Norway spruce plantations. It is concluded that in less than 50 yr the presence of individual trees and populations of different tree species can affect chemical properties of surface mineral soils. These effects should be considered in the design and interpretation of experiments.  相似文献   

3.
The humus-accumulative layer of soils (podzolic, gray, rzhavozem, burozem, and karbolitozem) of old-age forests (>60–450 years old) localized in various vegetation subzones (middle-taiga, southern taiga, subtaiga, dark coniferous forests outside the boreal region, and mountain forests) of the European part of Russia (22 sites of soil sampling of them, 13 in nature reserves and specially protected territories) was studied. The carbon content of the microbial biomass (Cmic) in the soil was determined by the substrate-induced respiration method. The fungal to bacterial ratio was determined by the selective inhibition technique with antibiotics. The basal respiration (BR) was also measured. The BR/Cmic = qCO2 ratio and the portion of Cmic in the total organic soil carbon was determined. It was shown that the Cmic and BR in the soils of a separate vegetation subzone varied significantly; however, their values increased from the middle-taiga to dark coniferous subzone and decreased in the mountain-forest zone (348 ± 44, 670 ± 66, 1000 ± 86, 1142 ± 49, 789 ± 79 μkg C/g soil and from 0.68 ± 0.23, 1.85 ± 0.10, 2.13 ± 0.15, 1.56 ± 0.14, 0.92 ± 0.07 μkg CO2-C/soil h, respectively). The fungal component in the humus-accumulative layer of soils is 53–99% of the total Cmic; however, its absolute values increase from the middle subzone to the southern one. The Cmic pool and the total BR in the profile of some soils (mineral horizons and forest litter) were calculated.  相似文献   

4.
姜军  赵安珍  杨聪  朱大威  徐仁扣 《土壤》2011,43(6):987-992
利用采自江苏省农业科学院果园的旱地黄棕壤(对照)和由黄棕壤发育水耕20年和60年的水稻土,研究了土壤黏粒和粉粒的矿物组成,胶体和土体的化学性质随水耕年限的变化.粉粒的X-射线衍射图谱表明,3种供试土壤发育母质相似,胶体的矿物组成随水耕年限的变化不大.动电电位和表面负电荷的测定结果也表明,胶体表面化学性质未发生明显变化.随水耕年限增加,土壤黏粒含量降低,导致土体性质发生明显变化,土壤CEC和结构电荷量随水耕年限增加显著减少.  相似文献   

5.
Background, Aim and Scope   Grazing animals have a dominant effect on the movement and utilization of nutrients through the soil and plant system, and thus on the fertility of pasture soils. Grazing can accelerate and alter the timing of nutrient transfers, and increase the amount of nutrients cycled from plant to soil. Long periods, position of shade, and water resources for grazing cattle can influence the spatial distribution of soil biochemical properties including soil organic carbon (C), total extractable inorganic nitrogen (TEIN), and Melich 1 extractable total phosphorus (TP). The objective of this study is to test whether cattle congregation sites typical on most Florida ranches, such as mineral feeders, water troughs, and shade areas are more nutrient-rich and may contribute more nutrients to surface and groundwater supply than in other pasture locations under Florida conditions. Materials and Methods: Baseline soil samples around and beneath three congregations sites in established (>10 yr) grazed beef cattle pastures at the United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Subtropical Agricultural Research Station (STARS), Brooksville, FL, were collected in 2003, 2004, and 2005. Results: The levels of soil TEIN and TP were significantly (p ≤ 0.001) affected by the interaction of congregation sites and distance away from the center of the sites. Mineral feeders had the highest concentration of TP followed by shades and water troughs. The concentrations of soil TP decreased almost linearly with distance (x = meter) away from the center of the mineral feeders (-5.24x + 55.10; R2 = 0.92; p ≤ 0.001) and the shades (-6.25x + 57.21; R2 = 0.85; p ≤ 0.001). However, the level of TP around the water troughs (-0.25x + 16.91; R2 = 0.09) does not appear to change significantly with distance, staying close to about 13-18 mg kg-1. The levels of TEIN decreased linearly with distance away from the mineral feeders from the center of the shades. A linear model can describe the relationship between TEIN and distance away from the center of shades: -11.3x + 78.2; R2 = 0.95; p ≤ 0.001. The shaded sites (34.25 ± 1.7 mg kg-1) had higher levels than the mineral feeders (7.22 ± 0.60 mg kg-1) or water troughs (10.06 ± 0.8 mg kg-1) sites. Discussion: The higher soil TP near and around the mineral feeders can be attributed to the presence of phosphorus in the supplemental feeds. The average level of soil TP in the mineral feeders of 34.05 ± 0.44 mg kg-1 was not high enough to be of environmental concern. Losses of soil phosphorus by overland flow are becoming a big concern when the concentrations for soil phosphorus exceeded 150 mg kg-1 in the upper 20 cm of soils. With TN, the shaded sites (34.25 ± 1.7 mg kg-1) had either higher levels than the mineral feeders (7.22 ± 0.60 mg kg-1) or water trough (10.06 ± 0.80 mg kg-1) sites. Higher TEIN content at the shade sites may have been more likely due to frequent urination of animals and lack of vegetation immediately adjacent to shades. The lack of vegetation within and/or near the shades then had no uptake mechanism for removal of inorganic nitrogen, unlike the heavy demand for inorganic nitrogen by bahiagrass in other areas of the pasture. An accumulation of TEIN immediately adjacent to shades could lead to a potential point source that would be susceptible to leaching or gaseous losses to the environment. Conclusions: Early results of the study are suggesting that cattle congregation sites in beef cattle operations in Florida are not nutrient-rich, therefore may not contribute more nutrients to surface and groundwater supply under Florida conditions. Recommendations and Perspectives: Since there is no apparent vertical build up or horizontal movement of TEIN and TP in the landscape, we can then surmise that cattle congregation sites may be considered not a potential source of nutrients at the watershed level, at least on the sand ridge soils in Florida. Further research is continuing, including sampling at cattle congregation sites at other locations in north and south Florida, which started in July 2004.  相似文献   

6.
During surface mining and subsequent reclamation efforts, physical, chemical, and biological properties of soils are disturbed. A study was conducted to evaluate the effects of age chronosequence on soil physical property and microbial activity in chronosequence reclaimed sites covering successional ages in the ranges 1, 4, 8, 11, and 13 years under forest and pasture ecosystems. The adjacent normal and unmined pasture and forest were used as a control for comparison purposes. The study site was located at the Red Hill Mine in east central Mississippi (approximately 33.3 N latitude and 89 W longitude), which is used by the North America Mining Company, LLC. Soil samples were collected from the reclaimed and unmined sites at 0–15- and 15–30-cm depth and analyzed for selected soil quality indicators. Results indicated that water stable aggregate and infiltration were increased, but soil bulk density and compaction decreased with increasing reclamation age. Soil penetration resistance was greater in the pasture than forest ecosystem. All reclaimed soils had less microbial enzyme activity than an unmined forest ecosystem; however, bacteria population level after 11 years since reclamation was similar to that of unmined forest soils. Soil organic carbon increased with increasing reclamation age strongly correlated with soil physical indicators and appears to be the main driving force during the development of soil physical and biological properties in the humid southeast.  相似文献   

7.
Presently, among the works considering the influence of forest trees on soil properties, the idea that spruce (Picea abies) promotes the acidification of soils predominates. The aim of this work is to assess the effects of spruce trees of different ages and Kraft classes on the acidity and content of available nutrient compounds in the soils under boreal dwarf shrub–green moss spruce forests by the example of forest soils in the Kola Peninsula. The soils are typical iron-illuvial podzols (Albic Rustic Podzols (Arenic)). Three probable ways of developing soils under spruce forests with the moss–dwarf shrub ground cover are considered. The soils under windfall–soil complexes of flat mesodepressions present the initial status. The acidity of organic soil horizons from the initial stage of mesodepression overgrowth to the formation of adult trees changed nonlinearly: the soil acidity reached its maximum under the 30–40-year-old trees and decreased under the trees older than 100 years. The contents of nitrogen and available nutrients increased. The acidity of the mineral soil horizons under the trees at the ages of 110–135 and 190–220 years was comparable, but higher than that under the 30–40-year-old trees. The differences in the strength and trends of the trees’ effect on the soils are explained by the age of spruce trees and their belonging to different Kraft classes.  相似文献   

8.
This paper aims to characterise soils of 12 wetlands, of which ten are Ramsar sites, in the ecocomplex of wetlands of the Hauts Plateaux region in Northeast Algeria. Soil samples from every site were collected following the four cardinal directions, along a transect covering the peripheral vegetation belts, and from two depths of the surface horizon. Each soil sample was analysed to determine electrical conductivity, pH, total carbonates, gypsum, chlorides, bicarbonates, sulfates and the particle size. The soil texture and chemical facies (Cl–SO4–HCO3) of each site were identified and discussed. Changes in physicochemical parameters were tested according to the spatial features of sites (orientations, vegetation transects and sample depth). A great heterogeneity was found between soils of sampled sites. Indeed, soil physicochemical characteristics differed from one site to another and between belts of the natural vegetation within the same site. Overall, the study wetlands were characterised by salty to very salty soils (electrical conductivity = 3·46 ± 2·44 dS m−1), of neutral to alkaline pH (6·9–8·1), moderately calcareous (CaCO3 ranged between 15·7% and 33·7%) and little to extremely gypsiferous (gypsium varied from 2·1% to 39·4%). The dominant soil texture classes were medium textures (loam, sandy loam or silty clay loam). Chemically, chlorides (18·5 ± 16·3 Meq/100 g) and/or sulfates (16·5 ± 12·5 Meq/100 g) dominated soil solutions of these environments but with slight bicarbonate contents (0·6 ± 2·6 Meq/100 g). Moreover, there were poor correlations between physicochemical parameters, which indicates interactions between certain parameters under the effect of specific habitat conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Permafrost degradation may cause strong feedbacks of arctic ecosystems to global warming, but this will depend on if, and to what extent, organic matter (OM) is protected against biodegradation by mechanisms other than freezing and anoxia. Here, we report on the amount, chemical composition and bioavailability of particulate (POM) and mineral‐associated OM (MOM) in permafrost soils of the East Siberian Arctic. The average total organic carbon (OC) stock across all soils was 24.0 ± 6.7 kg m?2 within 100 cm soil depth. Density fractionation (density cut‐off 1.6 g cm?3) revealed that 54 ± 16% of the total soil OC and 64 ± 18% of OC in subsoil horizons was bound to minerals. As well as sorption of OM to clay‐sized minerals (R2 = 0.80; P < 0.01), co‐precipitation of OM with hydrolyzable metals may also transfer carbon into the mineral‐bound fraction. Carbon:nitrogen ratios, stable carbon and nitrogen isotopes, 13C‐NMR and X‐ray photoelectron spectroscopy showed that OM is transformed in permafrost soils, which is a prerequisite for the formation of mineral‐organic associations. Mineral‐associated OM in deeper soil was enriched in 13C and 15N, and had narrow C:N and large alkyl C:(O‐/N‐alkyl C) ratios, indicating an advanced stage of decomposition. Despite being up to several thousands of years old, when incubated under favourable conditions (60% water‐holding capacity, 15°C, adequate nutrients, 90 days), only 1.5–5% of the mineral‐associated OC was released as CO2. In the topsoils, POM had the largest mineralization but was even less bioavailable than the MOM in subsoil horizons. Our results suggest that the formation of mineral‐organic associations acts as an important additional factor in the stabilization of OM in permafrost soils. Although the majority of MOM was not prone to decomposition under favourable conditions, mineral‐organic associations host a readily accessible carbon fraction, which may actively participate in ecosystem carbon exchange.  相似文献   

10.
Near-stream and upslope soil chemical properties were analyzed to infer linkages between soil and surface water chemistry atthe Bear Brook Watershed in Maine [BBWM]. Organic and mineral soil samples were collected along six 20 m transects perpendicular to the stream and one 200 m transect parallel tothe stream. O horizon soils immediately adjacent to the streamhad a significantly higher pH (4.20) and lower soil organic matter percentage (54%) than upslope O horizons (3.84 and 76%,respectively). Additionally, near-stream O horizon soils hadsignificantly higher concentrations of water-soluble Al (2.7 ×),exchangeable Al (2.3 ×), and organically-bound Al (3.9 ×) andsignificantly lower concentrations of exchangeable Ca (0.4 ×) than O horizons upslope. These results suggest that Al can accumulate in non-hydric near-stream zone soils at this site. Mobilization of labile Al from near-stream zone soils duringhydrologic events could play a key role in explaining controls on Al in stream water at BBWM.  相似文献   

11.
A weathering sequence with soils developing on volcanic, trachy-basaltic parent materials with ages ranging from 100–115,000 years in the Etna region served as the basis to analyse and calculate the accumulation and stabilisation mechanisms of soil organic matter (SOM), the transformation of pedogenic Fe and Al, the formation and transformation of clay minerals, the weathering indices and, by means of mass-balance calculations, net losses of the main elements. Although the soils were influenced by ash depositions during their development and the soil on the oldest lava flow developed to a great extent under a different climate, leaching of elements and mineral formation and transformation could still be measured. Leaching of major base cations coupled with a corresponding passive enrichment of Al or Fe was a main weathering mechanism and was especially pronounced in the early stages of soil formation due to mineral or glass weathering. With time, the weathering indexes (such as the (K + Ca)/Ti ratio) tend to an asymptotic value: chemical and mineralogical changes between 15,000 and 115,000 years in the A and B horizons were small. In contrast to this, the accumulation of newly formed ITM (imogolite type materials) and ferrihydrite showed a rather linear behaviour with time. Weathering consisted of the dissolution of primary minerals such as plagioclase, pyroxenes or olivine, the breakdown of volcanic glass and the formation of secondary minerals such as ITM and ferrihydrite. The main mineral transformations were volcanic glass ? imogolite ? kaolinite (clay fraction). In the most weathered horizons a very small amount of 2:1 clay minerals could be found that were probably liberated from the inner part of volcanic glass debris. The rate of formation and transformation of 2:1 clay minerals in the investigated soils was very low; no major changes could be observed even after 115,000 years of soil evolution. This can be explained by the addition of ash and the too low precipitation rates. In general, soil erosion played a subordinate role, except possibly for the oldest soils (115,000 years). The youngest soils with an age < 2000 years had the highest accumulation rate of organic C (about 3.0 g C/m2/year). After about 15,000 years, the accumulation rate of organic C in the soils tended to zero. Soil organic carbon reached an asymptotic value with abundances close to 20 kg/m2 after about 20,000 years. In general, the preservation and stabilisation of SOM were due to poorly crystalline Al- and Fe-phases (pyrophosphate-extractable), kaolinite and the clay content. These parameters correlated well with the organic C. Imogolite-type material did not contribute significantly to the stabilisation of soil organic matter.  相似文献   

12.
Preservation of organic matter in soils depends on the chemical structure of organic compounds and on the surface properties of the mineral matrix. We tested the effect of mineral surface reactivity on organic matter decomposition by (i) investigating changes of organic matter composition in clay subfractions of an illitic Haplic Chernozem along a time series of fertilizer deprivation and (ii) simultaneously characterizing the reactivity of mineral surfaces. The soil was subjected to fertilizer deprivation for 18, 44 and 98 years, respectively. Mineral surface properties were characterized by selective dissolution of pedogenic oxides. The number of hydroxyls released after exposure to sodium fluoride was taken as an index for mineral surface reactivity. Organic soil constituents were determined by 13C cross‐polarization magic‐angle spinning nuclear magnetic resonance (13C CPMAS NMR). Clay subfractions had different mineral surface properties. The coarse fractions have more reactive surfaces and contain more organic carbon than the fine clay fractions. Mineral surface properties are constant over time and are not affected by fertilizer deprivation. Surface reactivity is a function of iron oxide density and controls carbon concentrations in the clay subfractions. Within the time frame of our investigation, alkyl C and aromatic C responded to the duration of fertilizer deprivation, but were indifferent to mineral surface reactivity. O–alkyl C seems to be protected by interactions with pedogenic oxides.  相似文献   

13.
A study of soil morphological, physical and chemical properties was performed in woodland of different ages, in which spruce (Picea abies), aspen (Populus tremula) and birch (Betula pendula) growing stocks have colonized former agricultural land. The aim of the study was to clarify changes in soil genesis, morphology and properties due to the afforestation of abandoned agricultural land in glacial till deposits. The research showed that soil in these deposits (loamy sand, loam, clay) retains the morphological properties of agricultural land for up to 100 years. Secondary podzolization features in the soil profiles were observed within 100 years of the start of afforestation, whereas the diagnostic properties of Albic and Spodic horizons had not developed in the soil profile after 200 years. This study demonstrated that the morphological and physico-chemical properties of forest litter horizons, including the accumulation of organic substances, are dependent on forest age; however, changes in the properties of mineral soil horizons are mainly related to woodland age. Following the afforestation of agricultural lands, changes in soil pHKCl, organic matter content and extractable Al and Fe concentrations occur more rapidly than changes in soil diagnostic properties and profile formation.  相似文献   

14.
Cost‐effective strategies for using chemically amended organic fertilizers need to be developed to minimize nutrient losses in surface and groundwater. Coupling specific soil physical and chemical characteristics with amendment type could increase their effectiveness. This study investigated how water‐extractable phosphorus (P) was affected by chemical amendments added to pig slurry and how this effect varied with soil properties. A 3‐month incubation study was conducted on 18 different mineral soils, stored at 10 °C and 75% humidity and treated with unamended and amended slurry which was incorporated at a rate equivalent to 19 kg total P (TP )/ha. The amendments examined were commercial‐grade liquid alum, applied at a rate of 0.88:1 [Al:TP ], and commercial‐grade liquid poly‐aluminium chloride (PAC ), applied at a rate of 0.72:1 [Al:TP ]. These amendments were previously identified by the authors as being effective in reducing incidental losses of P. The efficacy of the amendments varied with the soil test P, the degree of P saturation (DPS ) and the Mehlich aluminium, iron and calcium, but not soil texture. Chemical amendments were most effective in soils with DPS over approximately 20%. Due to their high cost, the incorporation of amendments into existing management practices can only be justified as part of a holistic management plan where soils have high DPS .  相似文献   

15.
ABSTRACT

A reliable and practical test that can provide timely measurements of the levels of mineralizable nitrogen (MN) in soil is critical for improving the accuracy of N fertilizer applications for grassland and crops. The Illinois soil N test (ISNT) is considered to be a good estimate of MN, once soils are grouped according to soil characteristics such as the drainage type and sampling depth. To date, development and evaluation of the ISNT method has been conducted using arable soils mainly in North America where, in general, soils have lower levels of soil organic matter (SOM) compared to temperate grassland soils. We evaluated the effects of two pre-treatment soil aggregate sizes of <1 mm and <2 mm on the yield and recovery of MN (1) across temperate grassland soil types, and (2) across a 6-h interval diffusion period. No significant difference existed in the concentrations of ISNT-N between the two soil aggregate sizes of each soil type. For both aggregate sample sizes, the recovery of spiked amino sugar-N glucosamine from a temperate grassland soil was generally linear until hour 5, after which the quantities of recovered N diminished. Although N recovery after 6 h of diffusion at 50°C (±1°C) was less than 100% in both aggregate size samples, the response models indicated that the standard ISNT protocol using a 5-h diffusion period is appropriate for temperate grassland soils. The incomplete recovery of N in these mineral soils suggested that the protocol could be further optimized for temperate soils with high organic matter content and additional evaluation of the temperature during diffusion within an enclosed environment may be required using N (spiked glucosamine-N) recovery studies.  相似文献   

16.
Soils with unfavourable characteristics (pronounced acidity, disturbed structure, compaction, exhaustion, tiredness, etc.) cover a considerable area of Serbia. Specific crops, the fruit ones in particular, are being grown on these soils, yielding, however, considerably lower yields. The paper presents results of two‐year studies on the effect of natural zeolites, organic fertiliser—cattle manure and mineral NPK fertiliser (15:15:15) on soil properties and fruit yield and fruit properties of strawberry and blackberry plants grown on shallow eroded vertisol. The results have shown that the chemical properties of the soil improved with the natural zeolite ‘Agrozel’ (1 kg m−2) + Manure (1 kg m−2) treatment—resulting in a 0·94‐unit acidity decrease and a 0·58% humus content increase at a 0–20 cm soil depth. Positive but less pronounced changes were also detected at greater soil depths. The strawberry and blackberry cultivation in these soils using the above substances gave rise to a yield increase. In the second year of study, strawberry and blackberry yields increased by 13·15% and 6·27%, respectively. Basic chemical properties of strawberry and blackberry fruits (soluble solids and total acid contents) were not significantly affected by zeolite and organic fertiliser additions to the soil. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Genesis and micromorphology of loess-derived soils from central Kansas   总被引:1,自引:0,他引:1  
H. Gunal  M.D. Ransom 《CATENA》2006,65(3):222-236
The genesis and micromorphology of three Harney soils from different precipitation regions (from 540 mm to 715 mm) (fine, smectitic, mesic Typic Argiustolls) in the Smoky Hills of central Kansas were investigated. The objectives were to (1) examine the morphological, chemical, physical and mineralogical characteristics of Harney soils formed in loess; (2) determine the clay mineral distribution with depth and the origin of the clay minerals present; and (3) investigate the relationship between the clay mineralogy and other soil properties such as soil plasmic fabric, COLE values and fine clay/total clay ratios. Mineralogical and micromorphological techniques were used to evaluate the characteristics of the loess-derived soils. The first pedon was formed in 88 cm of Bignell loess over Peoria loess and the other two pedons were formed from Peoria loess. The chemical properties were similar for the pedons studied. Differences were observed in physical properties, especially in particle size distribution, oven-dry bulk density and coefficient of linear extensibility values. Although the soils were mapped in the same soil series, the geomorphic positions of the pedons and the nature of the parent material affected the characteristics of the soils. Smectite was the predominant clay mineral, especially in the fine clay fraction, regardless of the location in the precipitation gradient. The dominance of smectite increased in the C-horizons. This implies a detrital source of smectite in the B-horizons formed in both Bignell and Peoria loess units. The presence of randomly interstratified mica-smectite and the micromorphological observations of weathering biotite indicate that weathering also plays an important role in the mineralogy of Harney soils. The high content of clay mica in the surface horizons was caused by dust fall in the study area. Thick and continuous argillans were observed when FC/TC and COLE values were low and crystalline smectite was present. In the lower part of the soil profiles, the plasmic fabric was mostly ma-skelsepic (granostriated b-fabric) and smectite was more crystalline as indicated by sharper X-ray diffraction peaks.  相似文献   

18.
Effects of charcoal production on soil physical properties in Ghana   总被引:15,自引:0,他引:15  
Charcoal production, widespread in Ghana like in other W African countries, is a major driver of land‐cover change. Effects of charcoal production on soil physical, including hydrological, properties, were studied in the forest–savannah transition zone of Ghana. Core and composite samples from 12 randomly selected sites across the width of Kotokosu watershed were taken from 0–10 cm layer at charcoal‐site soils and adjacent field soils (control). These were used to determine saturated hydraulic conductivity (Ksat), bulk density, total porosity, soil texture, and color. Infiltration rates, surface albedo, and soil‐surface temperature were also measured on both sites. The results showed that the saturated hydraulic conductivity of soils under charcoal kilns increased significantly (p < 0.01) from 6.1 ± 2.0 cm h–1 to 11.4 ± 5.0 cm h–1, resulting to a relative increase of 88%. Soil color became darkened under charcoal kilns with hue, value, and chroma decreasing by 8%, 20%, and 20%, respectively. Bulk density on charcoal‐site soils reduced by 9% compared to adjacent field soils. Total porosity increased from 45.7% on adjacent field soils to 50.6% on earth kilns. Surface albedo reduced by 37% on charcoal‐site soils while soil‐surface temperature increased up to 4°C on average. Higher infiltration rates were measured on charcoal‐site soils, which suggest a possible decrease in overland flow and less erosion on those kiln sites.  相似文献   

19.
Land use and mineral characteristics affect the ability of surface as well as subsurface soils to sequester organic carbon and their contribution to mitigation of the greenhouse effect. There is less information about the effects of land use and soil properties on the amount and composition of organic matter (OM) for subsurface soils as compared with surface soils. Here we aimed to analyse the long‐term (≥ 100 years) impact of arable and forest land use and soil mineral characteristics on subsurface soil organic carbon (SOC) contents, as well as on amount and composition of OM sequentially separated by Na pyrophosphate solution (OM(PY)) from subsurface soil samples. Seven soils with different mineral characteristics (Albic and Haplic Luvisol, Colluvic and Haplic Regosol, Haplic and Vertic Cambisol, Haplic Stagnosol) were selected from within Germany. Soil samples were taken from subsurface horizons of forest and adjacent arable sites continuously used for >100 years. The OM(PY) fractions were analysed for their OC content (OCPY) and characterized by Fourier transform infrared spectroscopy. Multiple regression analyses for the arable subsurface soils indicated significant positive relationships between the SOC contents and combined effects of the (i) exchangeable Ca (Caex) and oxalate‐soluble Fe (Feox) and (ii) the Caex and Alox contents. For these soils the increase in OC (OCPY multiplied by the relative C=O content of OM(PY)) and increasing contents of Caex indicated that OM(PY) mainly interacts with Ca2+. For the forest subsurface soils (pH < 5), the OCPY contents were related to the contents of Na‐pyrophosphate‐soluble Fe and Al. The long‐term arable and forest land use seems to result in different OM(PY)‐mineral interactions in subsurface soils. On the basis of this, we hypothesize that a long‐term land‐use change from arable to forest may lead to a shift from mainly OM(PY)‐Ca2+ to mainly OM(PY)‐Fe3+ and ‐Al3+ interactions if the pH of subsurface soils significantly decreases to <5.  相似文献   

20.
Background and Objective  Largely influenced by the passage of the Swamp Land Act of 1849, many wetlands have been lost in the coastal plain region of southeastern United States primarily as a result of drainage to convert land for agriculture. While further wetland conversion or loss is universally acknowledged, the process continues with little public recognition of the causes or consequences. This study examined changes in soil carbon, pH, and Mehlich extractable nutrients in soils following conversion of wetland to beef cattle pasture. Methods  To better understand the chemical response of soils during wetland conversion to beef cattle pasture, soil samples were collected from the converted beef cattle pastures and from the adjoining reference wetland. Soil samples were collected from eleven sites in the beef cattle pasture, and from four in the adjoining reference wetland. Data that were collected from the reference wetland sites were used as the reference/baseline data to detect potential changes in soil properties associated with the conversion of wetlands to beef cattle pastures from 1940 to 2002. Results and Discussion  Compared with the adjoining reference wetland, the beef cattle pasture soils in 2002, 62 years after being drained, exhibited: (1) a decrease in organic carbon, TOC (-172.3 g kg-1), nitrogen, TN (-10.1 g kg-1), water soluble phosphorus, WSP (-5.1mg kg-1), and potassium, K (-0.7 mg kg-1); (2) an increase in soil pH (+1.8 pH unit), calcium, Ca (+88.4 mg kg-1), magnesium, Mg (+7.5 mg kgc), manganese, Mn (+0.3 mg kg-1), and iron, Fe (+6.9 mg kg-1); and (3) no significant changes in sodium (Na), zinc (Zn), copper (Cu), and aluminum (Al). In 2002, the amount of TOC and the concentration of soil organic matter (OM) in pasture fields were significantly lower than the concentration in the reference wetland with average values of 7.8 ± 8 g kg-1 and 36 ± 26 g kg-1 and 180.1 ± 188 g kg-1 and 257 ± 168 g kg-1, respectively. It appeared that conversion of wetlands was proceeding toward a soil condition/composition like that of mineral soils. Conclusion and Outlook  Overall, conversion of wetland had significant effects on soil carbon, pH, nitrogen, phosphorus, and extractable nutrients. Results of our study have shown a decrease in TOC, TN, WSP, and K and an increase in soil pH, Ca, Mg, Mn, and Fe. These results are important in establishing useful baseline information on soil properties in pasture and adjoining reference wetland prior to restoring and converting pasture back to its original wetland conditions as a major part of the restoration effort being underway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号