首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Atlantic salmon, Salmo salar L., fingerlings with a mean weight of 1.5 g were fed one of four casein-gelatine-based purified diets supplemented with soya lecithin (LC) and choline chloride (CH) for 84 days. The diets were supplemented with either: 0 g kg−1 CH and 0 g kg−1 LC, 0 g kg−1 CH and 30 g kg−1 LC, or 5 g kg−1 CH and 0 g kg−1 LC, or 5 g kg−1 CH and 30 g kg−1 LC. The same diets were also fed to 100-g salmon to assess the effects of LC and CH supplementation on digestibility. Fingerlings fed the diet with neither LC nor CH (0 g kg−1 LC and 0 g kg−1 CH) grew at a significantly slower rate than fish fed the supplemented diets. There were significant effects on growth of supplementation of both LC and CH. The results indicate that the choline requirement of Atlantic salmon fingerlings is satisfied by 4 g kg−1 inclusion in a gelatine-casein-based diet, and that dietary soya lecithin can fully replace choline chloride. The digestibility study with the larger fish indicated a beneficial effect of lecithin on the digestibility of both protein and energy.  相似文献   

2.
Six isonitrogenous (350 g kg−1 crude protein) and isoenergetic (17573 kJ kg−1) experimental diets incorporating raw and fermented sesame ( Seasamum indicum ) seed meal at 200, 300, and 400 g kg−1 into a fishmeal based diet were fed to rohu Labeo rohita fingerlings for 60 days and the growth performance and feed utilization efficiency of the fish was studied. The antinutritional factor phytic acid, from raw sesame seed meal, could be reduced below detection limit by fermentation with lactic acid bacteria ( Lactobacillus acidophilus ). Fermentation of the oilseed meal resulted in reduction of the tannin content from 20 to 10 g kg−1. In terms of growth response, feed conversion ratio and protein efficiency ratio, a diet containing 400 g kg−1 fermented sesame seed meal resulted in a significantly ( P  < 0.01) best fish performance. In general, growth and feed utilization efficiencies of fish fed fermented sesame seed meal diets were superior to those fed raw oilseed meal diets. Apparent protein digestibility (APD) values decreased with increasing levels of raw oilseed meal. APD was, however, significantly ( P  < 0.01) higher at all levels of incorporation of fermented sesame seed meal, while diets containing raw oilseed meal resulted in poor protein and lipid digestibility. Carcass protein and lipid contents of fish fed fermented sesame seed meal diets increased with increasing level of incorporation, being highest with 400 g kg−1 fermented oilseed meal-containing diet. The results showed that sesame seed meal may be incorporated in carp diets up to 200 g kg−1 and 400 g kg−1 in raw and treated (fermented) forms respectively.  相似文献   

3.
Juvenile yellow perch Perca flavescens were fed semipurified diets with varying protein to metabolizable energy ratios (PME, g protein MJ−1 metabolizable energy) and nutrient densities in three experiments to determine recommended dietary protein and energy concentrations. Experiment 1 fish (18.6 g) were fed diets containing 450 g crude protein kg−1 dry diet and 14.5–18.8 MJ ME kg−1 dry diet for 10 weeks. No differences were found in the growth of experiment 1 fish fed the different diets. Experiment 2 fish (21.9 g) were fed diets containing 15.7 MJ ME kg−1 dry diet and 210–420 g crude protein kg−1 dry diet for 8 weeks. Fish fed the diet containing 340 g kg−1 protein (diet PME = 22) exhibited the greatest weight gain. Experiment 3 fish (27.1 g) were fed diets with a PME of 22 and varying nutrient density (yielding 205–380 g crude protein kg−1 dry diet) for 8 weeks. No differences were found in the growth of experiment 3 fish. Yellow perch fed the semipurified diets exhibited increased liver fat content, liver size and degree of liver discoloration compared with fish fed a commercial fish meal-based diet. Liver changes may have resulted from high dietary carbohydrate levels. We conclude that a protein level of 210–270 g kg−1 dry diet is suitable for juvenile yellow perch provided that the dietary amino acid profile and carbohydrate content are appropriate for yellow perch.  相似文献   

4.
Four extruded diets, differing in grain supplementation, were fed to triplicate groups of Atlantic salmon ( Salmo salar , L.) with a mean weight of 0.5 kg in a digestibility trial. The diets contained 100 or 150 g kg−1 of precooked rye or wheat, replacing fish meal. There were no significant differences in apparent digestibility coefficients (ADC) of protein, fat or starch which could be related to dietary carbohydrate source or inclusion level. The ADC of dry matter and energy were higher for the diets with wheat than for those with rye, and higher for the diets with wheat than for those with rye, and higher for the diets with 100 g precooked grain kg−1 than for those with 150 g kg−1. The mean ADC of starch was 52% for rye, and 53% for wheat.  相似文献   

5.
Dietary phosphorus requirement of juvenile Atlantic salmon, Salmo salar L.   总被引:5,自引:0,他引:5  
The objective of this study was to determine the dietary phosphorus (P) requirement of juvenile Atlantic salmon, Salmon salar L. Triplicate groups of fish (mean initial weight 1.4 g) were fed semipurified, casein-gelatine-based diets containing one of five levels of P (4, 8, 10, 15 and 25 g kg−1) from Ca(H2PO4)2·H2O, or a commercial feed (17 g kg−1 P) for 9 weeks. Weight gains did not differ significantly among treatment groups fed the experimental diets but were slightly less than gains in fish fed the commercial feed. Feed efficiency (wet weight gain/dry feed consumed) was similar in all groups, averaging 1.45. Availability of dietary P, estimated from apparent retention and apparent digestibility, was 86%. Whole-body P concentrations declined in fish fed diets containing less than 10 g kg−1 P. Fitting a logistic curve to dietary P vs. whole-body P concentrations indicated that a minimum of 11 g kg−1 dietary P (9 g kg−1 digestible P) was required by juvenile Atlantic salmon to maintain whole-body P concentrations at initial levels. Calculation of a dietary requirement using a simple factorial model which incorporated measurements of P availability, feed efficiency and normal whole-body P concentration indicated that the dietary requirement was approximately 10 g kg−1. The dietary requirement established in this study (10–11 g kg−1) is higher than previously reported for Atlantic salmon or other fishes. Possible reasons for the wide range of reported dietary P requirements in fishes are discussed.  相似文献   

6.
Juvenile rainbow trout Oncorhynchus mykiss (Walbaum) were fed six low-phosphorus (P) diets supplemented with two different sizes of ground fish bone-meals (fine, 68 μm or less; coarse, 250–425 μm) and a coarse bone-meal diet containing four levels of citric acid (0, 4, 8 or 16 g kg−1 diet) to investigate the effects of pH and bone particle size on P bioavailability. The basal diet provided 3.4 g P   kg−1 and bone-meal increased P contents to 5.4–6.0 g P   kg−1. Coarse bone-meal diets supplemented with 0, 4, 8 or 16 g kg−1 of citric acid had pH values of 6.0, 5.7, 5.4 and 5.0, respectively. Weight gain and whole-body water, protein and lipid contents were not influenced by bone-meal supplementation. Supplementing the basal diet with both coarse and fine bone-meal significantly increased whole-body ash content. Fish fed no bone-meal were hypophosphataemic compared with fish fed with either fine or coarse bone-meals. Phosphorus in fine bone-meal had higher availability than P in coarse bone-meal. Bone-meal supplementation significantly decreased whole-body manganese content from 8.9 μg g−1 in fish fed no bone-meal to 2.3 and 4.5 μg g−1 in fish fed with fine and coarse bone-meals, respectively. The concentration of magnesium increased but zinc concentration was not affected by bone-meal supplements. Citric acid increased whole-body ash content but the influence of citric acid on the body P content was not significant ( P  = 0.07). Dietary acidification by citric acid significantly increased whole-body iron in a linear fashion. The bioavailability of dietary P can be improved by fine grinding the bone in fish meals.  相似文献   

7.
This study was conducted to determine the effects of feeding increasing lipid concentrations (310, 380 and 470 g kg–1 lipid on dry weight) in diets based mainly on herring byproducts to Atlantic salmon Salmo salar . The diets were isonitrogenous, varying in dietary lipid content at the expense dietary starch. Average fish weight increased from 1.2 kg in April to 2.2–2.7 kg at the end of the feeding trial in September. Significantly greater growth was found in fish fed either the 380 g kg−1 or the 470 g kg−1 lipid diets compared with the 310 g kg−1 lipid diet. Muscle lipid content increased in all dietary groups on a wet weight basis from 7.7 ± 1.4% to 12 ± 3% in salmon fed the 310 g kg−1 lipid diet, and to 16 ± 2% in salmon fed the 380 g kg−1 and 470 g kg−1 lipid diets. In fish of similar weight there was a positive correlation between dietary lipid and muscle lipid concentrations. Low concentrations of muscle glycogen were detected in fish fed each of the diets, while muscle vitamin E concentrations slowly decreased as muscle lipid increased. Muscle fatty acid composition reflected dietary fatty acid profiles, containing similar percentages of total saturated, monoenic and n-3 fatty acids (20:5n-3 and 22:6n-3) in fish from all dietary treatment groups. However, a higher ratio of n-3/n-6 was found in muscle from fish fed the 470 g kg−1 lipid diet compared with the other two groups. Blood chemistry values varied somewhat, but all values were within normal ranges for Atlantic salmon of these sizes.  相似文献   

8.
Five iso-nitrogenous (300 g crude protein kg−1 diet) semi-purified diets with graded levels of carbohydrate at 220 (D-1), 260 (D-2), 300 (D-3), 340 (D-4) and 380 (D-5) g kg−1 diet were fed ad libitum to Puntius gonionotus fingerlings (average weight 0.59±0.01 g) in triplicate groups (20 fish replicate−1) for a period of 90 days to determine the effect of the dietary carbohydrate level on the growth, nutrient utilization, digestibility, gut enzyme activity and whole-body composition of fish. Fifteen flow-through cement tanks of 100 L capacity with a flow rate of 0.5 L min−1 were used for rearing the fish. The maximum weight gain, specific growth rate, protein efficiency ratio, RNA:DNA ratio, whole-body protein content, protease activity, protein and energy digestibility and minimum feed conversion ratio (FCR) were found in the D-2 group fed with 260 g carbohydrate kg−1 diet. The highest protein and energy retention was also recorded in the same group. However, from the second-order polynomial regression analysis, the maximum growth and nutrient utilization of P. gonionotus fingerlings was 291.3–298.3 g carbohydrate kg−1 diet at a dietary protein level of 300 g kg−1 with a protein/energy (P/E) ratio of 20.58 −20.75 g protein MJ−1.  相似文献   

9.
Five iso-nitrogenous (300 g kg−1 diet) purified diets with graded level of lipid at 40 (D-1), 60 (D-2), 80 (D-3), 100 (D-4) and 120 (D-5) g kg−1 diet were fed to Puntius gonionotus fingerlings for 90 days to determine their dietary lipid requirement. Two hundred and twenty-five fingerlings (average weight 2.34 ± 0.03 g) were equally distributed in five treatments in triplicate groups with 15 fish per replicate. Fifteen flow-through cement tanks of 100 L capacity with a flow rate of 0.5 L min−1 were used for rearing the fish. Specific growth rate (SGR), feed conversion ratio (FCR), nutrient digestibility, retention, digestive enzyme activity, RNA : DNA ratio and whole-body composition were considered as the response parameters with respect to dietary lipid levels. Maximum SGR and minimum FCR with highest RNA : DNA ratio, whole-body protein content and digestive enzyme activity was found in D-3 group fed with 80 g kg−1 diet lipid. Nutrient digestibility was similar in all the groups irrespective of the dietary lipid level. Maximum protein and energy retention was recorded at 80 g kg−1 dietary lipid fed group. However, from the second-order polynomial regression analysis, the maximum growth of P. gonionotus fingerlings was found at 96.9 g lipid kg−1 diet.  相似文献   

10.
Two growth studies were conducted to determine the dietary threonine requirement of reciprocal cross hybrid striped (sunshine) bass. Semipurified diets were prepared with crystalline amino acids and lyophilized fish muscle to supply 350 g crude protein kg−1 diet. The basal diet contained 4.9 g threonine kg−1 from fish muscle, and test diets were supplemented with graded levels of L-threonine. In the first experiment, fish initially averaging ≊ 9.8 g each were fed diets containing threonine levels of 4.9, 7.5, 10.0, 12.5, 15.0 and 17.5 g kg−1 dry diet for 7 weeks. Weight gain, feed efficiency and protein efficiency ratio (PER) were significantly ( P < 0.01) influenced by dietary threonine level. Based on weight-gain responses, a threonine requirement (± SE) of 8.4 (± 0.8) g kg−1 dry diet was determined, and dietary threonine levels of 10.0 g kg−1 diet or greater resulted in the highest levels of free threonine in plasma.
Based on the results of the first experiment, a second feeding trial was conducted with diets containing threonine levels of 4.9, 6.5, 8.0, 9.5, 11.0 and 12.5 g kg−1 dry diet. Fish initially averaging ≊ 3.0 g each were fed each diet for 8 weeks. Weight gain, feed efficiency and PER values of fish were markedly improved, with increases in dietary threonine up to 8.0 g kg−1 dry diet. Regression analysis of weight gain, feed efficiency and PER data using the broken-line model resulted in threonine requirement estimates of 9.7, 8.5 and 8.6 g kg−1 dry diet, respectively. Based on these data, the threonine requirement of juvenile sunshine bass was determined to be ≊ 9.0 g kg−1 dry diet or 26 g kg−1 of dietary protein.  相似文献   

11.
A 12-week feeding trial was conducted to establish the minimum dietary vitamin E requirement of juvenile red drum by broken-line regression analysis. The semi-purified basal diet was supplemented with 10, 20, 30, 40, 60 or 80 IU vitamin E kg−1 as all-rac -α-tocopheryl acetate. Juvenile red drum were conditioned by feeding the basal diet for 8 weeks prior to the feeding trial to reduce whole-body vitamin E levels. Then, fish initially averaging 12.2 ± 0.4 g fish−1 (mean ± SD) were fed the experimental diets at a rate approaching apparent satiation for 12 weeks. Weight gain and feed efficiency responses of fish fed diets were significantly ( P  < 0.01) altered by the level of vitamin E supplementation but not strictly in a dose-dependent manner. Vitamin E concentrations in liver and plasma also were significantly ( P  < 0.001) influenced by dietary vitamin E level. Plasma ascorbic acid in fish fed the basal diet tended ( P  = 0.066) to be lower than in fish fed diets containing the various levels of vitamin E. In addition, fish fed the basal diet showed edema in the heart, while fish fed all other diets were normal. Fish fed 60 or 80 IU all-rac -α-tocopheryl acetate kg−1 diet had significantly higher respiratory burst of head kidney macrophages than fish fed all other diets, although dietary effects on hematocrit and neutrophil oxidative radical production were not significant. The minimum dietary vitamin E requirement of juvenile red drum was established based on broken-line regression of liver thiobarbituric acid reactive substances to be 31 mg all-rac -α-tocopheryl acetate kg−1 diet.  相似文献   

12.
Non-faecal phosphorus (P) was determined for large yellowtail to estimate a minimum available P requirement (Experiment  1) and to justify inorganic P supplementation in a fish meal-based diet (Experiment 2). In Experiment 1, purified diets with incremental P concentrations were fed to yellowtail (mean weight 917 g) at a feeding rate of 1.5% of body weight. The peaks of non-faecal P excretion appeared 5–6 h after feeding in fish fed more than 4.5 g available P kg−1 dry diet. Broken-line analysis indicated that the minimum available P requirement was 4.4 g kg−1 dry diet. In Experiment 2, a purified diet (PR) containing 6.5 g available P kg−1 and a fish meal-based diet with (F1) and without (F0) additional phosphorus were fed to yellowtail (mean weight 1.1 kg) at 1.5% (PR) and 2% (F0 and F1) feeding rates respectively. There was no significant difference in P excretion between fish fed the F0 (5.5 g soluble P kg−1 dry diet) and the PR diet. However, significantly higher (34.5%) amounts of non-faecal P excretions (7.4 g soluble P kg−1 dry diet) were found in fish fed F1 compared with the F0 diet. This suggested that there was an excess of dietary P in the F1 diet and that supplementation is not needed in fish meal-based diets for large yellowtail.  相似文献   

13.
The objective of the present study was to investigate the effect of dietary phospholipid (PL) level on growth and feed intake of juvenile amberjack ( Seriola dumerili ) fed non-fishmeal (non-FM) diet containing alternative protein sources; soybean protein isolate, tuna muscle by-product powder and krill meal. Three non-FM diets were prepared to contain three levels (14, 37 and 54 g kg−1 dry diet) of PL (soybean lecithin acetone insoluble, 886 g kg−1) and growth performance was monitored in a 30-day growth trial by using 2.6 g of fish. The results indicated that final body weight, weight gain and feed intake significantly increased with increasing dietary PL level. At the highest dietary PL level (54 g kg−1 dry diet), the fish consumed 14.8% and 10.2% as much feed as those fish fed diets containing 14 g kg−1 dry diet and 37 g kg−1 dry diet PL, respectively. An increasing tendency with increasing dietary PL level on feed efficiency was observed. In conclusion, the present study demonstrated that dietary PL supplementation could increase feed intake, and improve the growth of juvenile S. dumerili fed non-FM diets. Therefore, purified PL might be a good candidate to stimulate the growth of fish through enhancing the feed intake when they are fed diets containing alternative protein sources.  相似文献   

14.
The quantitative dietary sulphur amino acid requirement of the Indian major carp, Labeo rohita (Hamilton), was determined by conducting a growth study. The experimental diets contained 400 g crude protein kg−1 from casein, gelatine and supplemental crystalline amino acids. Diets containing six graded levels of methionine (3.2, 6.5, 9.0, 11.5, 14 and 16.5 g kg−1) with a constant level of cystine (1.4 g kg−1) were formulated and fed to triplicate groups of Labeo rohita fingerlings twice a day to satiation for 60 days. The optimum dietary requirement for methionine was estimated using the break-point regression analysis at 11.5 g kg−1 of diet or 28.8 g kg−1 of dietary protein. Thus the total sulphur amino acid (Met + Cys) requirement was determined to be 12.9 g kg−1 of diet or 32.3 g kg−1 of protein. Higher survival, specific growth rate and food conversion efficiency values were observed for fish fed the diet containing optimum levels of sulphur amino acids.  相似文献   

15.
Nutritional strategies to reduce both phosphorus (P) and nitrogen (N) excretion relative to growth of rainbow trout were tested in a 2 × 3 factorial experiment. The two factors were `dietary P level' and `dietary lipid level.' Reduction in dietary P from 14 to 8 g kg–1 dry diet was achieved by partial substitution of dietary fish meal with a combination of full-fat soyabean meal, corn gluten and spray-dried blood meal. Triplicate tanks of 35 rainbow trout per tank were fed experimental diets for 16 weeks and grew from approximately 40 to 250 g, in 15 °C spring water. All tanks were fed the same percent biomass per day. Diets were isonitrogenous, and dietary energy varied with dietary lipid. Diet digestibility data and results of the experiment were used to construct N and P budgets for the fish fed the various diets. A reduction in dietary fish meal from 500 to 200 g kg–1 dry diet, corresponding to a reduction in dietary P from 14 to 8 g kg–1 dry diet, resulted in >50% reductions in both solid and dissolved P waste, but did not affect growth, feed efficiency ratio (FER) or sensory characteristics of rainbow trout. Increasing dietary lipid from 170 to 310 g kg–1 dry diet led to higher growth rate and FER, and lower total N waste relative to weight gain, but did not change protein retention. Increasing dietary lipid level increased deposition of lipid in whole bodies of rainbow trout, and resulted in discernible differences in sensory characteristics of trout fillets.  相似文献   

16.
In a 8-week production-scale experiment at a commercial trout farm, the effects of dietary lipid level and phosphorus level on phosphorus (P) and nitrogen (N) utilization of rainbow trout (initial mean weight 99 g) were assessed. A low-phosphorus, high-lipid experimental diet (457 g protein, 315 g lipid, 9.1 g P  kg–1 dry diet) was compared with a commonly used commercial diet (484 g protein, 173 g lipid, 13.6 g P  kg–1 dry diet). P and N budgets were constructed using data from the production-scale experiment and digestibility data for the two diets. In addition, orthophosphate and ammonia-N waste were measured in effluent over one 24-h period. Relative to the commercial diet, the experimental diet resulted in significantly increased feed efficiency ratio, N retention and P retention, and substantially reduced dissolved, solid and total P waste (g kg–1 dry feed). Although N retention resulting from the experimental diet was higher, this was attributable to higher N (protein) digestibility of the experimental diet. Solid N waste (g kg–1 dry feed) resulting from the experimental diet was substantially lower, but dissolved N waste (g kg–1 dry feed) was not significantly different relative to the commercial diet. Mean effluent orthophosphate production (mg day–1 kg–1 fish) of fish fed the experimental diet was substantially lower than that of fish fed the commercial diet ( P  < 0.05), but effluent ammonia-N production (mg day–1 kg–1 fish) was not significantly affected by dietary treatment.  相似文献   

17.
A study was undertaken to estimate the effects of isonitrogenous diets (ca. 604 g kg−1 crude protein) containing formaldehyde-treated (FT) fish meal and graded levels of digestible protein (DP) (541, 491, 372, 347 and 247 g kg−1) on growth performance and tissue composition of juveniles white seabass. Five diets were formulated to contain increasing levels of FT fish meal (from 0 to 384 g kg−1) and decreasing levels of non-treated fish meal (from 480 to 96 g kg−1). Each dietary treatment was fed in triplicate to apparent satiation to groups of 25 fish for 50 days. Significantly higher growth performance and feed conversion ratio were obtained in fish-fed diets containing 491 or 541 g kg−1 DP, compared with all other treatments. Apparent digestibility coefficient of protein in the diets was not significantly affected by the inclusion of treated fish meal in the diets. Estimation of protein requirements using a broken-line regression analysis indicated that maximum weight gain would be obtained with a diet containing 503 ± 23 g kg−1 DP. The results from this study suggest that a single-diet formulation using protein treated with formaldehyde as filler might be useful to estimate the requirement of DP for fish.  相似文献   

18.
A 14-week feeding trial was conducted to determine the effects of dietary organic acids. The experimental diets were added with 0, 1, 2 or 3 g kg−1 of a novel organic acid blend or with 2 g kg−1 of potassium diformate and fed to triplicate groups of red hybrid tilapia ( Oreochromis sp.). Upon completion, tilapia were challenged by immersion with Streptococcus agalactiae . There was no significant difference ( P >0.05) in the growth, feed utilization and nutrient digestibility among treatment groups despite a trend towards improved results with fish fed organic acid-supplemented diets. Diet pH decreased, causing a reduction in the digesta pH of the stomach and gut. Total bacteria per gram of faeces were significantly ( P <0.05) reduced from 1.81 × 108 colony-forming units (CFU) (control group) up to 0.67 × 108 CFU in the fish fed organic acid diets. A similar trend was observed for adherent gut bacteria. Cumulative mortality of fish fed no organic acids was higher compared with fish fed organic acid-supplemented diets at 16 days post challenge. The data showed that dietary organic acids can exert strong anti-microbial effects and have the potential to exert beneficial effects on growth, nutrient utilization and disease resistance in tilapia.  相似文献   

19.
Four diets (1, 2, 3 and 4) were formulated to contain different potato protein concentrate (PPC) levels (0, 22, 56, and 111 g kg−1). Diet 5 contained 56 g kg−1 PPC and 17 g kg−1 methionine. A growth trial was conducted to investigate the effect on growth and feed utilization of incorporation of PPC and supplementation of methionine in the diet of rainbow trout. When the proportion of PPC exceeded 56 g kg−1 the growth of fish decreased while both growth and feed utilization decreased when the dietary PPC was 111 g kg−1. Protein productive value and condition factor of the fish decreased and mortality increased with the increase in the proportion of dietary PPC.  相似文献   

20.
Five iso-nitrogenous (300 g protein kg−1 diet) and iso-lipidic (80 g kg−1 diet) semi-purified experimental diets with variable energy levels of 10.5 (D-1), 12.5 (D-2), 14.6 (D-3), 16.7 (D-4) and 18.8 (D-5) MJ kg−1 diets were fed to Puntius gonionotus fingerlings (average weight 1.79 ± 0.02 g) in triplicate groups (15 healthy fishes per replicate) for a period of 90 days to assess the optimum dietary energy level and protein-to-energy ratio (P/E). Fifteen flow-through cement tanks of 100 L capacity with a flow rate of 0.5 L min−1 were used for rearing the fish. Maximum specific growth rate, protein efficiency ratio, protein productive value, RNA : DNA ratio, whole body protein content, digestive enzyme activity and minimum feed conversion ratio was found in fish-fed diet D-3 with 14.6 MJ kg−1 energy level. There were no improvements in all these parameters with the further rise in dietary energy level. Hence, it may be concluded that the optimum dietary gross energy level for maximum growth and nutrient utilization of silver barb is 14.6 MJ kg−1 diet with a resultant P/E ratio of 20.2 g protein MJ−1 diet, when the dietary protein and lipid are maintained at optimum requirement levels of 300 and 80 g kg−1 diet, respectively, for this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号