首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
露天煤矿周边存在潜在重金属污染隐患,快速获取土壤重金属空间分布是土壤污染评价、土地复垦与修复的前提。传统调查方法费时费力且易造成对环境的二次污染,高光谱遥感为土壤重金属反演提供了新的视角。该研究以某露天煤矿土壤锌(Zn)含量为研究对象,采集了111个原位表层(0~20 cm)土壤样品及反射光谱;对样品反射光谱进行Savitsky-Golay(SG)平滑、连续统去除(Continuum Removal,CR)和连续小波变换(Continuous Wavelet Transform,CWT)以降噪和增强;利用Boruta算法确定特征波段;采用偏最小二乘回归(Partial Least Squares Regression,PLSR)和随机森林(Random Forest,RF)构建土壤Zn含量反演模型,使用留一交叉验证评估反演模型精度以确定最优反演模型;基于最优反演模型,利用空间插值方法绘制土壤Zn含量空间分布图。结果表明:1)CWT可有效降低光谱噪声,增强光谱响应。2)Boruta算法能消除光谱信息冗余,并能有效提取特征波段;特征波段的数目随CWT分解尺度和光谱测量条件变化。3)RF估算土壤Zn含量性能优于PLSR,且RF结合CWT具有较好的土壤Zn反演能力;最优野外原位光谱反演模型精度(建模集R2=0.92,验证集R2=0.54)低于实验室光谱反演模型(建模集R2=0.95,验证集R2=0.72)。4) 土壤Zn空间分布表现出显著的异质性,呈现高值集中于研究区西南部和东北部的特征。研究结果可为利用高光谱遥感开展露天矿区土壤重金属反演提供借鉴,为其他类似区域土壤污染评价、土地复垦与整治、土壤修复提供前提与依据。  相似文献   

2.
不同土壤粒径大小差异致使土壤光谱反射率不近相同,从而影响土壤有机质含量的预测精度。因此探索不同粒径下土壤有机质含量估算精度,可为有机质的精确估算以及减少样品的前期处理提供参考依据。本文将分别过10、20、60、100目筛的土样于暗室内进行350~2500 nm波段光谱反射率测量,经多元散射校正(MSC)与小波变换(WT)平滑去噪后,首先将原始光谱(R)及其数学形式包括反射率倒数(1/R)、反射率对数(lgR)、反射率根号(R~(1/2))进行一阶微分变换,然后采用遗传算法结合偏最小二乘法(GA-PLS)筛选土壤有机质含量特征波段区间,再将R、R'及特征波段(CHR)作为偏最小二乘回归(PLSR)和支持向量机(SVM)的输入波段进行有机质含量建模。结果表明:1)土壤粒径越小,光谱反射率越高,特别是当波长大于600 nm时,反射率明显增加;2)土壤有机质含量的特征波段主要位于426~447 nm,1427~1459 nm,1948~1958nm,1970~1991 nm,2012~2039 nm,2165~2186 nm谱区;3)采用GA-PLS算法挑选特征波段建立SOM估算模型,模型精度和预测能力明显高于R和R';4)利用SVM方法建模模型精度明显高于PLSR方法;5)样本容量较大时,采用1mm(20目)粒径光谱数据建模最佳。  相似文献   

3.
可溶性阴离子是土壤盐分的重要组成部分,对植物生长发育有重要影响。为探讨野外实测光谱对土壤可溶性阴离子的反演精度,以宁夏银北平罗县盐渍化土壤为研究对象,对野外实测光谱选用6种常规变换[平滑R、平滑倒数1/R、平滑对数lg(R)、平滑倒数的对数lg(1/R)、平滑一阶微分R′、平滑二阶微分R″]预处理,然后分别利用相关性分析和逐步回归法筛选离子敏感特征波段,最后采用主成分回归(PCR)、偏最小二乘回归(PLSR)和支持向量机(SVM)建立土壤各阴离子反演模型。结果表明:1)研究区土壤中Cl-和SO42-含量较高,CO32-含量最低,属于氯化物-硫酸盐盐渍土。2)原始反射率经R″变换后与土壤阴离子的相关性最强,与CO32-、HCO3-、Cl-和SO42-相关系数分别达到0.572、0.741、0.802和0.545。3)与相关性分析相比,逐步回归(SR)更好地解决了光谱间共线性的问题,反演精度更高。4)与PCR、PLSR相比,SVM所建可溶性阴离子反演模型效果最佳。土壤CO32-、Cl-、SO42-反演效果最佳的模型均为R″-SR-SVM,其中对CO32-的反演模型建模决定系数(Rc2)为0.984、验证决定系数(Rp2)为0.560、相对分析误差(RPD)为6.76;SO42-的反演模型Rc2为0.970、Rp2为0.841、RPD为5.59;Cl-的反演模型Rc2为0.925、Rp2为0.940、RPD为3.62;HCO3-效果最佳的模型为R′-SR-SVM,Rc2为0.970、Rp2为0.840、RPD为5.59。研究结果可为该区域及同类地区土壤盐渍化反演提供理论依据。  相似文献   

4.
土壤有机质含量的多少是衡量土壤肥力的重要指标,了解土壤有机质的状况及动态变化,为指导干旱区绿洲农业生产及生态环境保护提供科学依据。基于在塔里木盆地北缘绿洲-荒漠过渡带采集的80个土壤样品,测定有机质含量和光谱反射率。在原始反射率R的基础上,进行光谱反射率的一阶微分R′、倒数对数lg(1/R)、倒数对数的一阶微分[lg(1/R)]′以及去除包络线C(R)处理,并将处理后的光谱数据与土壤有机质进行相关性分析,从而选取568、578、803、806、845、955 nm等敏感波段构建土壤有机质含量的估测模型。结果表明:(1)土壤有机质与土壤反射率呈负相关,有机质含量越高反射率越低。(2)光谱变换处理可有效提升光谱对土壤有机质含量的敏感性,其相关系数最高可达0.654(P<0.001)。(3)比较多元线性逐步回归、偏最小二乘回归和反向传播神经网络(BPNN)3种建模方法发现,反向传播神经网络模型精度较高,稳定性更好,且以倒数对数的一阶微分[lg(1/R)]′为自变量的模型最优,决定系数为0.864,均方根误差为1.86,这表明[lg(1/R)]′-BPNN模型相较于其它模型可以更为准确地预测荒漠区土壤有机质含量。  相似文献   

5.
利用高光谱遥感数据结合统计建模是当前土壤有机质(SOM)含量高光谱估测的主要方法。为了探讨SOM含量高光谱估测适宜的光谱变换方法和光谱分辨率,以黑龙江省建三江黑土区土壤样本为研究对象,采用SR-6500便携式光谱仪在实验室测量土样的光谱反射率。对土壤光谱数据重采样为1、5、10、20、30、40、50、60、70、80、90、100 nm共12种光谱分辨率,经过Savitzky-Golay光谱曲线平滑处理后,将光谱反射率R进行反射率倒数1/R、对数log R、倒数对数log(1/R)、对数倒数1/log R、一阶导数R′、倒数一阶导数(1/R)′、对数一阶导数(log R)′、倒数对数一阶导数[log(1/R)]′和对数倒数一阶导数(1/log R)′共10种光谱变换;利用多元线性逐步回归(MLSR)和偏最小二乘回归(PLSR)的方法建立SOM含量估测模型。结果表明:(1)1/R和(1/R)′光谱变换对于提高SOM含量估测精度的效果较好,其中1/R光谱变换的SOM含量估测精度R2val均高于0.87,(1/R)′光谱变换的SOM含量估测精度R2val均高于0.90;(2)5、10 nm...  相似文献   

6.
苏北沿海滩涂地区土壤有机质含量的高光谱预测   总被引:12,自引:6,他引:6  
基于反射高光谱快速、无损的检测优势,以苏北沿海滩涂地区不同成陆年代土壤作为光谱信息源,应用偏最小二乘回归(PLSR)方法,研究了原始反射光谱(REF)、微分光谱(FDR)、反射率倒数的对数(lg(1/R))和波段深度(BD)对不同成陆年代土壤有机质含量的预测精度。结果表明,不同成陆年代土壤有机质含量预测的最佳光谱指标存在差异。REF是构建总体样本有机质含量PLSR预测模型的最佳光谱指标,均方根误差(RMSE)和相关系数(r)分别为2.7231和0.8701;FDR是预测成陆千年土壤样本有机质含量的最佳光谱指标,RMSE和r分别为2.0110和0.9436;BD所构建的成陆百年土壤有机质含量的PLSR预测模型为最优,RMSE和r分别为2.7051和0.8770。相关分析表明,可见光波段、以1 400 nm为中心及1 900~2 450 nm的红外波段是估算土壤有机质含量的最佳波段。  相似文献   

7.
黑土有机质含量高光谱模型研究   总被引:54,自引:0,他引:54  
通过对黑龙江省典型黑土区土壤样品高光谱反射率的室内测定,研究了典型黑土可见光/近红外波段光谱反射特性;利用多元统计分析方法,以土壤光谱反射数据及其数学变换数据作为自变量,以黑土有机质含量对数变换数据作为因变量,建立黑土有机质含量高光谱预测模型,并对模型的稳定性和预测能力进行检验。结果表明:(1)620~810nm波段范围是黑土有机质的主要光谱响应区域,最大响应值在710nm附近;(2)对光谱数据进行归一化处理可以部分消除不同土样测试过程中存在的噪声;(3)模型及其检验的决定系数R2都在0.9以上,模型的总均方根差RMSE均小于2.1,模型具有很好的稳定性和预测能力,可以用于黑土有机质含量的快速测定;(4)归一化一阶微分模型为最优预测模型。  相似文献   

8.
基于连续小波变换和随机森林的芦苇叶片汞含量反演   总被引:3,自引:0,他引:3  
植物重金属污染是当今世界面临的重大生态环境问题之一,高光谱技术为快速、大面积监测植被重金属含量提供了可能性。本研究以重金属汞(Hg)和湿地植物芦苇为研究对象,采用连续小波变换(CWT)和随机森林(RF)算法相结合的方法建立芦苇叶片总汞含量反演模型,以期寻求一种较为精准的植物汞污染反演模型,未来可通过高光谱技术建立模型来无损、快速估测湿地植物重金属汞污染情况,为湿地生态系统的监测提供方法支持。结果表明:芦苇叶片总汞含量敏感波段主要分布在可见光波段419~522 nm、664~695 nm和724~876nm以及近红外波段1 450~1 558 nm和1 972~2 500 nm;经CWT变换后,小波系数与叶片总汞含量的相关系数绝对值提高0.04~0.18,所构建的预测反演模型拟合效果R~2提高0.107~0.177,模型精度RMSE提高0.008~0.013,其中利用经小波变换的去包络线光谱(CR-CWT)数据建立的RF模型对芦苇叶片总汞含量的反演精度和拟合效果最优(R~2=0.713,RMSE=0.127);同时在土壤总汞含量约为20 mg?kg~(-1)时,采用CR-CWT数据构建RF模型的方法来反演芦苇叶片总汞含量更为准确和可靠(R~2=0.825,RMSE=0.051)。因此,利用RF算法进行植被重金属含量的反演具有一定的现实可行性,而结合CWT后所构建的反演模型对指导植被重金属含量监测更具参考价值,应用前景广阔。  相似文献   

9.
  目的  建立辽宁省黄土状母质发育土壤有机质含量的高光谱预测模型,以便快速获取土壤样品的有机质含量。  方法  对省域内黄土状母质发育土壤进行了样品采集,获取样品有机质含量和高光谱数据;选择原始光谱及其一阶微分、二阶微分、倒数对数、倒数对数一阶微分、倒数对数二阶微分6种光谱变换数据作为自变量,与土壤有机质含量进行相关分析,选取特征波段,分别建立多元逐步线性回归(SMLR)、偏最小二乘回归(PLSR)和主成分回归(PCR)3种土壤有机质高光谱线性预测模型,并进行了支持向量机(SVM)方法的非线性模型拟合。  结果  土壤有机质含量与其光谱反射率呈负相关关系,对光谱进行不同的数学变换,可以提高土壤有机质含量与光谱反射率的相关性,其中一阶微分和二阶微分的提升效果最佳;相同光谱数据在不同模型中建模精度存在显著差异,以原始光谱反射率一阶微分为自变量的PLSR模型精度最高,建模集和验证集的决定系数(R2)分别为0.958和0.976;3种线性方法建立的最佳预测模型的检验精度为:PLSR > SMLR > PCR。  结论  PLSR模型是辽宁省黄土状母质发育土壤有机质含量的最佳高光谱预测模型,且基于特征波段的建模效果优于全波段;SVM非线性模型的预测精度较低。  相似文献   

10.
基于偏最小二乘回归的土壤有机质含量高光谱估算   总被引:14,自引:16,他引:14  
为实现基于光谱分析土壤有机质含量的快速测定,该文以江汉平原公安县的土壤为研究对象,进行室内理化分析、光谱测量与处理等一系列工作,在土壤原始光谱反射率(raw spectral reflectance,R)的基础上,提取了其倒数之对数(inverse-log reflectance,LR)、一阶微分(first order differential reflectance,FDR)和连续统去除(continuum removal,CR)3种光谱指标,分析4种不同形式的光谱指标与有机质含量的相关性,对相关系数进行P=0.01水平上的显著性检验来确定显著性波段的范围,并基于全波段(400~2 400 nm)和显著性波段运用偏最小二乘回归(partial least squares regression,PLSR)建立了该区域土壤有机质高光谱的预测模型,通过模型精度的比较确定最优模型。结果表明,进行CR变换后,光谱曲线的特征吸收带更加明显,相关系数在可见光波段范围内有所提高;基于全波段的PLSR建模效果要优于显著性波段,其中以CR的预测精度最为突出,其模型的决定系数R2和相对分析误差RPD分别为0.84、2.58;显著性波段的PLSR模型与全波段对比在模型精度方面虽有一定差距,但从模型的复杂程度来比较,具有模型简单、运算量小、变量更少的特点;最后,综合比较了全波段和显著性波段4种光谱指标的反演精度,发现CR-PLSR模型的建模和预测的效果比R-PLSR、LR-PLSR、FDR-PLSR模型都要显著。该研究可为将CR-PLSR高光谱反演模型用于该区域土肥信息的遥感监测提供参考。  相似文献   

11.
基于连续小波变换的潮土有机质含量高光谱估算   总被引:6,自引:4,他引:2  
土壤有机质含量快速估算对于土壤肥力评价、土壤信息化管理和精准施肥具有重要意义。该文通过对北京顺义地区64个土壤样品高光谱曲线进行连续小波变换,估算了该地区潮土有机质质量分数,并与4种常用光谱变换方法进行了比较。结果表明,潮土具有与其他类型土壤类似的光谱曲线,经过去包络线处理后,在可见与近红波段都出现了明显吸收峰;采用连续小波变换方法所确定的潮土有机质估算的敏感波段为1194、486和866nm,对应小波分解尺度为2,3和4;利用小波能量系数与有机质质量分数所构建的多元线性回归模型的决定系数R2为0.67,模型实测值与预测值的检验精度R2为0.75,RMSE为0.21;而采用4种常用光谱变换方法建立的潮土有机质估测模型的R2最高只有0.09,说明连续小波变换方法更适合于潮土有机质质量分数估测。Kringing插值分析表明,应在顺义地区东南部增加取样点,以提高模型估算精度。该研究可为潮土土壤肥力的快速测定提供参考。  相似文献   

12.
干旱区典型绿洲土壤有机质的反演及影响因素研究   总被引:5,自引:0,他引:5  
为了大面积、高精度地反演土壤有机质含量,为农业可持续发展提供数据支撑。以新疆渭干河-库车河三角洲绿洲为研究区,采用波段平均法将实测高光谱窄波段拟合为Landsat 8 OLI遥感影像的宽波段,建立土壤有机质含量的估算模型,并将最优估算模型应用到经过波段校正的Landsat 8OLI遥感影像中。结果表明:(1)反射率进行倒数、对数、平方、一阶微分等数学变换后与有机质含量的相关性显著提高;(2)土壤有机质的高光谱估算模型拟合度较高,最优估算模型的决定系数R2为0.852,采用比值法对多光谱波段反射率进行校正,校正后的遥感影像反演结果得到了较大提高,检验样本的决定系数R2从0.711提升至0.849。从反演结果来看,将高光谱估算模型应用到经过订正的多光谱影像,土壤有机质反演模型的精度得到了大幅度提高,运用此方法可以实现高精度的土壤有机质区域化反演。(3)有机质的分布受土地利用类型、土壤颗粒组成、土壤质地的影响,其中土壤质地对有机质的空间分布影响最为显著。  相似文献   

13.
基于HJ卫星的棉田土壤有机质空间分布格局反演   总被引:4,自引:2,他引:4  
以北疆绿洲区棉田表层土壤为研究对象,利用国产HJ-1A/1B卫星CCD多光谱数据对裸土有机质空间分布格局进行研究。通过分析多光谱数据不同波段的光谱反射率及其变换形式与实地采样得到的土壤有机质含量的相关性,探寻适合绿洲区棉田表层土壤有机质含量快速反演的敏感波段及参数,并针对不同参数分别建立一元线性、二次、三次、对数、倒数、幂函数、生长型、S型回归模型,以及多元回归模型;对生成的模型进行综合对比分析,获取北疆绿洲区棉田表层土壤有机质含量的最佳反演模型,从而实现整个研究区土壤有机质空间格局的遥感反演。结果表明:HJ卫星多光谱数据4个波段的反射率均与土壤有机质含量存在显著的相关性,第3波段的倒数与土壤有机质含量相关性最为显著;且以第3波段光谱反射率作为因变量得到的三次线性回归模型对土壤有机质含量进行反演的效果最佳;通过空间布局反演得到研究区土壤有机质空间分布整体呈现南北两端有机质含量较高,中部有机质含量较低的格局。该研究表明虽然与黑土有机质含量具有差别,但是遥感技术仍能够作为绿洲区土壤有机质含量空间布局反演的方法,为遥感技术在土壤参数监测中更好的发挥作用提供理论支持,同时也为新疆棉田生产管理和农田可持续利用提供科学依据。  相似文献   

14.
西河流域不同海拔区土壤有效钾的高光谱反演   总被引:1,自引:1,他引:0  
为探究不同海拔条件对土壤有效钾含量高光谱反演的影响以及筛选效果最好的光谱指标。采集118个土壤样本后进行其室内理化分析、光谱测量与处理等一系列工作,在土壤原始光谱(R)处理的基础上提取了反射率倒数一阶微分((1/R)')、反射率倒数的对数一阶微分((log(1/R))')和反射率对数的倒数一阶微分((1/(log R))')三种光谱变换指标,分析土壤原始光谱和三种变换后的光谱指标与不同海拔区土壤有效钾含量的相关性,并运用偏最小二乘回归法(PLSR)建立不同海拔条件下土壤有效钾的高光谱预测模型。结果表明:(1)比较土壤原始光谱和三种变换后的光谱指标,基于(log(1/R))'变换结果构建的PLSR模型在土壤有效钾的反演效果最好,其决定系数(R2)最高,为0.89,均方根误差(RMSE)为12.45 mg kg-1;(2)相比全区域而言,依据海拔分区所建立的模型能够更好的预测土壤有效钾的含量。该结果对今后地形复杂区域土壤养分的光谱预测具有一定的指导作用。  相似文献   

15.
采煤矿区表层土壤有机质含量遥感反演   总被引:4,自引:0,他引:4  
利用LandSat ETM+影像反演煤炭开采区表层土壤有机质含量的空间格局,对采样点各波段光谱反射率进行数学变换,并将所得结果与有机质含量进行相关性分析.挑选出敏感波段,建立了表层土壤有机质含量的光谱预测模型.结果表明,研究区表层土壤有机质含量与第5波段和第7波段反射率呈极显著的负相关关系(R分别为-0.585和-0.543,P<0.001);对反射率进行数学变换可以改善其与有机质之间的相关性;用第1波段反射率对数的倒数和第5波段反射率的倒数建立二元回归方程(R2 =0.616 2,p<0.001)对研究区土壤有机质有很好的预测能力(R2 =0.616 2,RMSE=0.89);有机质含量在10~15g/kg范围的图斑面积最大,占研究区总面积的50.44%;表层土壤有机质随开采沉陷坡度的增加呈减少的趋势;煤炭开采沉陷对表层土壤有机质含量的扰动属于失碳效应.  相似文献   

16.
小波法反演条锈病胁迫下冬小麦冠层叶片全氮含量   总被引:1,自引:3,他引:1  
为监测条锈病胁迫下冬小麦的氮素营养状况,该文通过野外试验测量了感染条锈病的冬小麦冠层光谱数据和相应叶片全氮(leaf total nitrogen,LTN)含量,分析了冬小麦条锈病病情指数(disease index,DI)与LTN之间的关系,对冠层光谱进行了连续小波变换(continuous wavelet transform,CWT)处理得到小波系数,并选择一些高光谱指数,分别利用支持向量机(support vector machine,SVM)回归方法构建了小波系数、高光谱指数与冬小麦LTN含量之间的反演模型。研究表明,随着冬小麦DI增大,LTN含量逐渐减小,相关系数为-0.784;CWT处理得到的小波系数为自变量构建的反演冬小麦LTN含量的模型精度普遍高于高光谱指数为自变量的模型精度,其中以Mexican Hat小波函数处理得到的小波系数423(4)建立的反演模型为最优模型,RMSE为0.315,RE为7.62%。因此,该研究表明可以联合应用CWT与SVM方法对条锈病胁迫下冬小麦LTN含量进行反演,且具有较高的估测精度。该研究成果对小麦作物病害预防、指导作物施肥具有重要现实应用意义。  相似文献   

17.
基于不同光谱变换的土壤盐含量光谱特征分析   总被引:4,自引:0,他引:4  
跟踪初生盐渍土壤的微生物修复实验,采用同步实测得土壤盐含量和光谱数据,详细分析了基于34种光谱变换,修复过程中盐渍土的光谱特征。对于选取的6种光谱变换,采用全波段(400~1650 nm)和分析获得的最佳敏感波段分别建立了土壤盐含量的光谱反演PLSR(partial least squares regression)模型。研究表明,光谱变换处理使土壤盐含量与平滑后的光谱反射数据的相关性明显增强,且最佳敏感波段范围进一步聚焦。本研究得到最佳光谱变换为导数变换,基于全波段的土壤盐含量预测模型以SGSD变换效果最好,与原始光谱相比,模型的r、RMSEP分别从0.537和1.928改善到0.823和1.256。而SGSD(Log R)是基于最佳波段所建立的盐含量预测模型的有效光谱变换方法,该研究为进一步实现盐渍土中盐含量快速定量分析提供了方法和数据参考。  相似文献   

18.
为了评价国产星载高分五号(GF-5)高光谱影像估测土壤有机质(SOM)含量的潜力,以及不同土壤类型对SOM含量光谱估测精度的影响,本研究以黑龙江省建三江农垦区为研究对象,获取了覆盖研究区域的GF-5高光谱影像和188个土壤样本。对提取的样点GF-5光谱反射率数据进行了反射率倒数、对数、一阶微分等9种光谱数学变换,并采用相关系数法确定了SOM含量的光谱敏感波段。采用偏最小二乘回归(PLSR)线性统计建模方法,对研究区域全部土壤类型以及草甸土、沼泽土、黑土等主要土壤类型,分别构建了光谱全波段和敏感波段的SOM含量估测模型,并进行了精度评价。结果表明,基于GF-5光谱数据的研究区域全部土壤类型的SOM含量估测精度不理想,最优模型精度决定系数(R2)为0.265,均方根误差(RMSE)为4.647%,相对分析误差(RPD)为1.135;不同类型土壤在SOM含量光谱估测精度差异较大,草甸土和沼泽土的SOM含量估测精度不高,但黑土的SOM含量估测精度较高,其中全波段光谱反射率对数一阶微分(LnR)′的SOM含量估测精度最高,R~2=0.729,RMSE=1.065%,RPD=1.850,SOM含量估测模型可用。按照不同土壤类型构建SOM含量估测模型可以进一步挖掘GF-5高光谱遥感估测SOM含量的潜力。  相似文献   

19.
基于灰度关联-岭回归的荒漠土壤有机质含量高光谱估算   总被引:6,自引:7,他引:6  
为改善高光谱技术对荒漠土壤有机质的估测效果,该文采集了以色列Seder Boker地区的荒漠土壤,经预处理、理化分析后将土样分为砂质土和黏壤土2类,再通过光谱采集、处理得到6种光谱指标:反射率(reflectivity,REF)、倒数之对数变换(inverse-log reflectance,LR)、去包络线处理(continuum removal,CR)、标准正态变量变换(standard normal variable reflectance,SNV)、一阶微分变换(first order differential reflectance,FDR)和二阶微分变换(second order differential reflectance,SDR)。通过灰度关联(gray correlation,GC)法确定SNV、FDR、SDR为敏感光谱指标,采用偏最小二乘回归(partial least squares regression,PLSR)法和岭回归(ridge regression,RR)法,构建基于敏感光谱指标的土壤有机质高光谱反演模型,并对模型精度进行比较。结果表明:砂质土有机质含量的反演效果要优于黏壤土;基于SNV指标建立的模型决定系数R~2和相对分析误差RPD均为最高、均方根误差RMSE最低,所以SNV是土壤有机质的最佳光谱反演指标;对SNV-PLSR模型和SNV-RR模型综合比较得出,SNV-RR模型仅用全谱4%左右的波段建模,实现了更为理想的反演效果:其中,对砂质土有机质的预测能力极强(R_p~2为0.866,RMSE为0.610 g/kg、RPD为2.72),对黏壤土有机质的预测能力很好(Rp2为0.863,RMSE为0.898 g/kg、RPD为2.37)。荒漠土壤有机质GC-SNV-RR反演模型的建立为高光谱模型的优化、土壤有机质的快速测定提供了一种新的途径。  相似文献   

20.
方少文  杨梅花  赵小敏  郭熙 《土壤学报》2014,51(5):1003-1010
通过对江西省吉安县不同有机质含量土壤的光谱曲线吸收特征进行分析,得到不同有机质含量土壤的光谱曲线特征响应波段,建立了县级尺度基于有机质响应波段的定量估算模型。结果表明,红壤和水稻土土壤光谱曲线特征具有明显差异,560~710 nm为吉安县土壤有机质含量的特征吸收波段;基于特征吸收波段范围的吸收面积(s)的对数和有机质含量的相关性为0.86,拟合方程为y=-20.91 ln(s)-27.26,决定系数为0.74,经不同类型土壤的有机质数据检验,预测的决定系数(R2)、均方根误差(RMSE)和预测相对分析误差(RPD)分别为0.75、0.61和1.88;包络线去除和反射率的倒数的对数处理建立的偏最小二乘回归(PLSR)模型预测效果最佳,预测决定系数均达0.83以上,相对偏差均为2.4以上,基于特征吸收波段560~710 nm建立的模型能定量估算红壤地区有机质含量,为土壤有机质估测提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号