首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 867 毫秒
1.
地形起伏度是废弃采石场水土保持治理和生态重建的重要地形指标之一。以0.5m,0.7m,1m,1.5m等12种不同水平分辨率DEM为数据源,采用GIS的窗口递增分析法和均值变点分析法对12种不同分辨率DEM的地形起伏度的最佳分析窗口进行了分析。结果表明:12种不同分辨率的最佳分析窗口都是为9×9网格,相应地提取地形起伏度的最佳统计面积与其相应的水平分辨率关系比较密切,呈幂函数的关系。以0.5m水平分辨率的DEM数据提取地形起伏度的最佳分析窗口面积为20.25m~2,并计算出大于5m地形起伏度的区域占总面积的13.12%。均值变点分析法确定地形起伏度也同样适用于废弃采石场的地形分析。  相似文献   

2.
陕西省地形起伏度最佳计算单元研究   总被引:2,自引:2,他引:0  
[目的]确定陕西省地形起伏度最佳计算单元,分析地形起伏度的空间分布规律,为地貌类型划分提供基础数据。[方法]以陕西省90 m×90 m的航天飞机雷达地形测绘使命(SRTM)数字高程模型(DEM)数据为基础,首先利用邻域统计分析法〔矩形邻域选取2×2,3×3,4×4,…,35×35共34个不同大小的邻域窗口,圆形邻域窗口选取20个(邻域半径R为2~21)〕对陕西省地形起伏度进行提取,然后统计不同矩形窗口和圆形窗口下的各种地形起伏度类型所占面积比例,接着运用均值变点分析法计算最佳计算单元,最后完成陕西省地形起伏度分级图的绘制,并对地形起伏度特征进行分析。[结果]不同地形起伏度类型所占面积比例的变化各有不同。按矩形邻域计算的地形起伏度最佳计算单元为12×12,对应面积为898 704m2,按圆形邻域计算的地形起伏度最佳计算单元为R=8,对应面积为1 254 191.4m2,这说明在使用邻域分析法提取地形起伏度时,采用圆形邻域有别于采用矩形邻域。陕西省地形总体较平缓,主要以小起伏、中起伏为主。[结论]简单实用的均值变点分析法,是确定最佳计算单元的一种较为理想的方法。  相似文献   

3.
基于3S技术的地形起伏度与区域土壤侵蚀的相关性研究   总被引:3,自引:1,他引:2  
地形起伏度直接影响着地面的径流变化,是导致土壤侵蚀的主要根源之一。分析两者相关性的前提是准确提取地形起伏度,而确定研究数据尺度下地形起伏度的最佳分析窗口是得出可靠结果的保障。在3S技术的支持下,运用均值变点法分析罗甸县基于DEM(空间分辨率为30 m×30 m)的最佳分析窗口,并依据2007年修正的土壤侵蚀分类分级标准估算研究区各样本单元的土壤侵蚀量,对两者进行相关性分析。结果表明:罗甸县在该尺度数据源下的最佳分析窗口为32×32,最佳统计面积为0.921 6 km2,实证了均值变点分析方法提取地形最佳分析窗口的可行性;地形起伏度与区域土壤侵蚀模数的相关系数为0.519 1,充分说明了作为宏观地形因子之一的地形起伏度是区域土壤侵蚀的主导因素之一。  相似文献   

4.
地形起伏度能够反映特定区域的地势起伏特征,采用均值变点法可以有效确定地形起伏度的最佳分析窗口。利用措勤县ASTER GDEM 30 m分辨率高程数据,在GIS平台支持下,通过Python编程,采用邻域分析法在不同窗口大小下提取地形起伏度,运用均值变点法确定措勤县最佳分析窗口。研究表明:(1)措勤县最佳分析窗口为27×27的矩形单元,分析窗口面积为0.656 1 km2。(2)措勤县地形起伏度范围为0~688 m,将其分为5类,起伏度值为70~200 m的丘陵地形和200~500 m的小起伏山地地形为措勤县主要地形,占比分别为37.62%和33.24%;起伏度值为30~70 m的台地地形和0~30 m的小起伏平地地形,占比分别为16.22%和12.57%;地形起伏度值为500 m以上的中起伏山地地形面积最小,占比为0.35%。  相似文献   

5.
基于DEM数据的祁县地形起伏度分析   总被引:1,自引:0,他引:1  
地形的起伏是造成水土流失的重要因素,以空间分辨率为30 m×30 m ASTER GDEM数据和全国1∶400万矢量数据为基础数据源,运用邻域分析法提取祁县最佳地形起伏度,均值变点分析确定最佳统计单元,最后对祁县地形起伏度进行分级。结果显示,祁县地形起伏度的最佳统计单元为23×23,最佳统计面积为47.61×104 m~2,地形起伏度可分为4级:平原(30 m)占全县总面积的29.82%、台地(30~70 m)占19.81%、丘陵(70~200 m)占40.87%、小起伏山地(200~500 m)占9.51%;西北以平原(30 m)和台地(30~70 m)为主,东南部地形起伏较大,起伏度70 m的丘陵区和小起伏山地占全县总面积的50.38%,地形坡度较大,加之祁县降雨集中,土壤结构松散,侵蚀作用较强,水土流失严重。提出治理祁县的水土流失"应积极建设小型水利工程,加强水土保持监管制度,在丘陵和小起伏山地实行退耕还草还林,发展林业生产基地或者水果种植基地,不断恢复生态平衡"的建议。  相似文献   

6.
基于DEM的地形起伏度算法的比较研究   总被引:4,自引:2,他引:2  
地形起伏度是描述宏观地形变化状况的地形因子,可作为区域水土流失评价的地形指标之一。基于全国1000 m分辨率DEM分别选取黄土高原、四川盆地、横断山区、东南丘陵、山东丘陵、东北地区6个典型样区,采用局地高差法、局地标准差、表面积与投影面积比、RUGN法、矢量法、RDLS(地表起伏度)6种算法进行起伏度的提取,对提取结果进行了对比分析,并对各种算法的提取结果进行了信息容量计算。结果表明,局地标准差和局地高差法是两种相对较好的提取起伏度的方法,且针对不同的地形区,不同起伏度算法也具有各自的适宜性。  相似文献   

7.
基于中低分辨率的DEM提取地形湿度指数,对于区域土壤侵蚀因子和区域土壤侵蚀模型等研究有着重要的意义.但随着DEM分辨率的降低,坡度趋于平缓,单元栅格高程信息的改变也会影响单元汇流面积的计算,基于中低分辨率提取地形湿度指数必须考虑这两方面的影响.以1:5万数字地形图分别构TIN得到分辨率为10,20,40和60 m的DEM,进行频率和累计频率统计,以10 m分辨率DEM为参考对其它分辨率DEM做坡度变换,提出根据高分辨率DEM若干栅格的单元汇流面积的均值作为低分辨率DEM的单元汇流面积,根据这两方面对地形湿度指数进行了改正.  相似文献   

8.
中国地形起伏度的提取及在水土流失定量评价中的应用   总被引:73,自引:11,他引:73       下载免费PDF全文
基于全国 1:10 0万的栅格数字高程模型 ( DEM)数据 ,在 ARC/ INFO的 GRID模块支持下 ,利用窗口分析方法 ,经过采样统计 ,确定中国水土流失地形起伏度的最佳分析窗口大小为 5 km× 5 km;基于 5 km× 5 km的分析窗口 ,提取了中国水土流失地形起伏度 ,完成了中国水土流失地形起伏度制图 ;最后对中国水土流失地形起伏度进行了适用性分析 ,并将其初步应用于中国潜在水土流失评价  相似文献   

9.
中国西南地区地形起伏度的最佳分析尺度确定   总被引:2,自引:0,他引:2  
钟静  卢涛 《水土保持通报》2018,38(1):175-181,186
[目的]确定中国西南地区地形起伏度的最佳分析尺度并进行地形分级,明确区域地形结构特点并进行地貌结构划分。[方法]以ASTER GDEMv2数据为基础,通过Python模块编程,利用窗口分析方法提取西南地区各典型地貌以及整个区域n×n(n=2,3,4,…,181,182,183)窗口下的平均地形起伏度,进而采用均值变点分析方法确定最佳统计窗口。[结果](1)西南地区地形起伏度的最佳分析尺度为2.43km^2;(2)区域地形起伏度以中小起伏为主,其中小起伏(200~500m)占38.68%,中起伏(500~1 000m)占23.58%;(3)从空间分布来看,西南地区的地形起伏度呈现中部高,东南部次之,西北部和东北部较低的特征。[结论]以2.43km^2为最佳统计窗口提取的西南地区地形起伏度符合区域地形起伏特征,同时较好地兼顾了各地貌类型的起伏特点。  相似文献   

10.
[目的]探究喀斯特高原山区水土流失的特征与空间变化规律,为制定符合喀斯特山地环境的水土流失防治对策提供科学依据。[方法]以典型喀斯特山区重点生态功能区贵州省荔波县为研究区,综合运用地理空间分析方法,确定提取地形起伏度最佳的分析单元,结合水土流失敏感性评价,分析地形起伏度与水土流失敏感性的空间分布规律及其相互关系。[结果]基于10 m空间分辨率DEM数据,提取地形起伏度的最佳网格大小为54×54,地形起伏度(RDLS)在0.32~2.12之间;荔波县水土流失敏感主要为微度侵蚀,占县域总面积达88.40%;水土流失敏感性区域主要集中在RDLS为0.7~1.7的分级范围内,RDLS在1~1.5区间对水土流失的响应最敏感,为水土流失敏感性的优势因子区间。[结论]研究区内RDLS与不同敏感度的水土流失分布具有一定的一致性,总体上水土流失受地形起伏度变化的影响显著。  相似文献   

11.
基于四种分辨率DEM的侵蚀模型地形因子差异分析   总被引:1,自引:0,他引:1  
郭春香  梁音  曹龙熹 《土壤学报》2014,51(3):482-489
通过提取江西省兴国县潋水河流域10 m、25 m、50 m和100 m四种分辨率数字高程模型(DEM,Digital Elevation Model)的坡度、坡长因子,在GIS数字地形分析和数理分析等方法支持下,研究不同分辨率DEM计算坡度坡长组合因子(LS)的精度差异。结果表明:(1)基于4种分辨率DEM提取的坡度结果存在明显差异,随分辨率的降低,坡度整体变缓,DEM精度越低,对地形的概括作用越大,100 m分辨率DEM平均坡度降为10m分辨率DEM平均坡度的45.04%。(2)流域坡长以0~80 m的短坡为主,随着分辨率的降低,地面坡长明显整体延伸。(3)不同分辨率DEM计算的LS因子平均值变化范围为6.10~7.10,坡度和坡长的组合消弱了单一坡度和坡长的影响,随着地形起伏程度增大,在LS因子计算过程中,坡度的主导作用越来越弱,坡长的主导作用越来越强。  相似文献   

12.
高分辨率的DEM往往可以囊括更多更详细的地形信息,但过于详细的数据可能会造成数据冗余给计算带来不便。为了研究不同分辨率的数字高程模型(DEM)在对地形信息表达的现实意义,基于不同比例尺、不同栅格空间分辨率的DEM进行了地形特征的提取与分析,结果表明:(1)地面整体坡度随着分辨率降低逐渐减小,对地形的描述越来越粗糙,概括性越来越高,地形整体趋于平坦化。(2)基于较小分辨率DEM提取的坡向更具有宏观意义,而高分辨率DEM提取的坡向可反映地形的细部朝向。(3)随着DEM分辨率下降,地面平面曲率能更加概括区域地形,使山谷线和山脊线更明显,但会导致大量细部信息的丢失。(4)DEM所提取的地面剖面曲率值随着DEM分辨率的下降显著减小,即地面坡度的变化减小,地面的转折棱角逐渐趋于平滑,地形起伏变化特征精度降低。  相似文献   

13.
为更加准确判定流域水系最佳集水面积阈值,以陕西省安塞县纸坊沟流域30 m DEM为例,采用均值变点分析方法对流域水系分维值、DEM分辨率与集水面积阈值之间的关系进行了分析。结果表明:(1)集水面积阈值与分维值的关系:不同分辨率DEM,随着集水面积阈值的增加,分维值呈先增后减趋势,且其下降速度由急剧变为缓慢;(2) DEM分辨率与分维值的关系:在最佳集水面积阈值条件下,随着DEM分辨率的减小,分维值整体趋于下降,且其下降速度越来越缓慢;(3)纸坊沟流域水系分维值为1.20,所对应的最佳集水面积阈值、DEM分辨率分别为100,15 m。均值变点分析方法可用于最佳集水面积阈值和DEM分辨率的快速确定,且可靠性较高,判定系数达0.99。研究结果为流域河网水系提取时集水面积阈值的确定提供了方法参考依据。  相似文献   

14.
京津冀地区地貌类型复杂,全局单值最佳分析窗口在该地区地形起伏度提取中具有局限性。采集了区内不同地貌、地貌组合样本,采用均值变点法分别提取了各样本地形起伏度的最佳分析窗口,分析了地形地貌对最佳分析窗口的影响,在此基础上提取了京津冀地区的地形起伏度。结果表明:京津冀地区地形起伏度随分析窗口面积的增大而增大,对两者对应关系的拟合效果幂函数优于对数函数;区内因地形地貌差异存在4.64和5.35 km2两个最佳分析窗口,前者可以表达400 m以内的高差,后者更适合于表达400 m以上的高差;利用4.64和5.35 km2双窗口方案提取的地形起伏度优于单窗口方案,前者改善了后者对平坦地区起伏度的夸大;京津冀地区的地形起伏度在0~1 145 m之间,以平坦、中起伏和小起伏为主。  相似文献   

15.
基于DEM的甘肃省地貌形态特征分类   总被引:2,自引:0,他引:2  
[目的]分析微观尺度上的地貌分类指标,为甘肃省的水土流失、地质灾害防治以及农业规划决策提供数据支持。[方法]利用甘肃省DEM数据,通过窗口递增分析、均值变点分析、叠加分析、水系盒维数检验等方法,得到甘肃省地貌形态特征分类试验的最佳分析窗口以及甘肃省地貌形态特征分类结果。[结果](1)利用均值变点分析得到甘肃省DEM分类试验的最佳分析窗口为29×29。(2)根据分类指标体系,结合地表起伏度、地表切割度、地形位置指数(TPI)因子将甘肃省地貌形态分为13类。[结论]提取研究区内5个小流域对得到的甘肃省地貌形态特征分类结果进行了检验,分类结果符合实际情况。构建的甘肃省地貌形态特征的分类指标体系实现了甘肃省地貌形态特征分类试验。  相似文献   

16.
基于SRTM-DEM数据,以青藏高原东缘白龙江流域33个子流域为例,利用Arc GIS的邻域分析及均值变点分析方法确定了白龙江流域地势起伏度提取的最佳分析窗口面积,并分析了子流域地势起伏度与坡度、坡度变率、高差等微观地形因子之间的关系,结果表明:白龙江流域地势起伏度的最佳分析窗口面积为2.340 9 km2;白龙江不同子流域的地势起伏度可依据流域高差、平均坡度、平均坡度变率等微观地形因子建立相应的计算模型。  相似文献   

17.
DEM水平分辨率对流域特征提取的影响分析   总被引:1,自引:0,他引:1  
在基于数字高程模型(DEM)的流域地形分析中,栅格DEM的分辨率对分析结果具有很大的影响。以舒城县内面积为7.9 km2的龙潭小流域作为研究区域,分别对分辨率为5 m×;5 m~50 m×;50 m的10幅DEM数据进行流域特征提取和分析,计算地形指数并分析其分布特征。研究表明:在小流域尺度上,DEM分辨率的变化对流域面积、最长河道长度等参数影响不大,对河道总长度、河网密度及平均坡度等参数有较大影响,对流域特征的提取影响规律为DEM分辨率越低,提取的流域特征越粗糙;且分辨率低于15 m的DEM计算出的地形指数值较为离散、概率分布曲线形状较之5 m分辨率DEM的地形指数概率分布曲线有明显不同,表明分辨率低于15 m的DEM对小流域水文地形信息的反映较差,为小流域尺度水文模型DEM数据适宜分辨率选取提供一定的理论依据。  相似文献   

18.
[目的]探讨湖北省地形起伏度及其与人口和经济的定量关系,为制定合理的人口经济政策、引导人口经济合理布局和治理生态环境等方面提供科学依据。[方法]采用邻域分析法、均值变点法等方法,确定湖北省地形起伏度最佳统计单元,根据分级标准绘制湖北省地形起伏度分级图,并分析地形起伏度对研究区人口和经济分布的影响。[结果]湖北省地势整体上以平原、丘陵为主,平原地貌类型主要分布在江汉平原,丘陵主要分布在黄冈北部、咸宁、黄石南部、鄂西北和鄂西南大部,两者占湖北省面积的70%。随着地形起伏度的增加,县域人口密度和经济密度逐渐降低,呈显著负相关,而且县域地形起伏度越小,人口密度和经济密度在垂直方向越分散。[结论]地形起伏度与县域人口密度和经济密度有负相关性,对区域人口和经济分布有一定的影响。  相似文献   

19.
四川省地形起伏度与人口/经济的空间自相关关系   总被引:1,自引:0,他引:1  
[目的]分析四川省地形起伏度与人口经济的空间关系,为区域人口合理布局、经济格局优化提供参考依据。[方法]以ASTER GDEM数据为基础,通过均值变点法确定四川省地形起伏度最佳统计单元,分析地形起伏度的分布特征;通过空间自相关分析法探讨地形起伏度与人口/经济的空间关系。[结果]四川省地形以山地和丘陵为主,整体呈现西高东低的趋势。地形起伏度与人口/经济呈空间负相关,聚集特征显著。甘孜、阿坝、凉山自治州是高地形起伏度,低人口分布,低经济水平地区;成都市是低地形起伏度,高人口分布,高经济水平地区;南充市南部县、阆中市等是低地形起伏度,高人口分布,低经济水平地区;攀枝花市仁和区、甘孜州石渠县等因自然资源或地理位置因素,地形对人口或经济影响不明显。[结论]四川省地形起伏度与人口经济呈空间负相关,但这种关系因地而异。  相似文献   

20.
流域分布式坡长不确定性的初步分析   总被引:1,自引:0,他引:1  
地形因子坡长对水土保持和土壤侵蚀有着重要的影响作用,其不确定性又制约着坡长的应用,因此坡长不确定性的研究尤为重要。以水文地貌关系正确DEM(Hc—DEM)为基础,利用LS_Tool软件计算坡长,主要从流向算法、分辨率和数据范围影响三个方面对提取的坡长不确定性进行比较分析。结果表明,不同流向算法提取的坡长结果不同,多流向算法提取的坡长更光滑、连续,更能体现地形凹凸的影响;随着分辨率的降低,坡长会发生扩张现象,使地形变得平滑;坡长的计算应以流域边界或者行政单元边界向外缓冲一定宽度为界(本实验结果为120m缓冲区),以避免边际效应的产生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号