首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Seeds of Matthiola incana contain oil rich (55-65%) in (n-3) linolenic acid. Selected lines were developed and evaluated for their agronomic and chemical parameters. Extracted oil was fed for 6 weeks to rats, which were compared with rats fed a diet containing coconut oil or sunflower oil. Cholesterol levels were significantly lowest in rats fed diets rich in M. incana oil (27% reduction), and triglycerides were significantly lower in rats receiving either M. incana or sunflower oil (36% reduction). The contents of arachidonic acid and other (n-6) fatty acids were significantly the lowest in the liver and plasma of rats that had received M. incana oil. The levels of (n-3) fatty acids were significantly greater in both the liver and plasma of rats fed M. incana oil. The ratio of (n-3)/(n-6) long-chain fatty acids in the plasma was 7 times higher in rats fed with M. incana oil than in those fed with sunflower oil and 6 times higher than in those fed coconut oil. The results demonstrate for the first time a beneficial effect of dietary M. incana oil in reducing cholesterol levels and increasing (n-3) fatty acid levels in the plasma. This new, terrestrial plant source of (n-3) fatty acids could replace marine oils and thereby contribute beneficially to the human diet.  相似文献   

2.
The total lipid content and fatty acid composition of the muscle tissue of tilapia (Oreochromis niloticus) and of hybrid red tilapia (Oreochromis sp.) from different culture systems and from the natural and artificial environment of Thailand were compared. Wild fish and fish reared under the most extensive conditions had a more favorable fatty acid profile for human consumption as they contained higher proportions of 18:3n-3, 20:5n-3, and 22:6n-3, higher n-3/n-6 PUFA ratios, and lower proportions of 18:2n-6. The muscle tissue of intensively cultured fish was characterized by increased fat deposition that was mainly saturated and monounsaturated fatty acids and 18:2n-6. It is undesirable for the consumer to reduce 20:5n-3 and 22:6n-3 in farmed tilapia and replace them with elevated 18:2n-6. It is recommended that the amount of 18:2n-6 in the feed of the intensively reared tilapia should be reduced by substituting vegetable oils rich in 18:2n-6 with oils rich in 18:1n-9 and/or 18:3n-3.  相似文献   

3.
The aim of the present investigation was to quantify the fate of C18 and long chain polyunsaturated dietary fatty acids in the freshwater fish, Murray cod, using the in vivo, whole-body fatty acid balance method. Juvenile Murray cod were fed one of five iso-nitrogenous, iso-energetic, semipurified experimental diets in which the dietary fish oil (FO) was replaced (0, 25, 50, 75, and 100%) with a blended vegetable oil (VO), specifically formulated to match the major fatty acid classes [saturated fatty acids, monounsaturated fatty acids, n-3 polyunsaturated fatty acids (PUFA), and n-6 PUFA] of cod liver oil (FO). However, the PUFA fraction of the VO was dominated by C18 fatty acids, while C20/22 fatty acids were prevalent in the FO PUFA fraction. Generally, there was a clear reflection of the dietary fatty acid composition across each of the five treatments in the carcass, fillet, and liver. Lipid metabolism was affected by the modification of the dietary lipid source. The desaturation and elongation of C18 PUFAs increased with vegetable oil substitution, supported by the occurrence of longer and higher desaturated homologous fatty acids. However, increased elongase and desaturase activity is unlikely to fulfill the gap observed in fatty acid composition resulting from decreased highly unsaturated fatty acids intake.  相似文献   

4.
Many studies have shown beneficial effects of long chain n-3 polyunsaturated fatty acids (PUFA) on human health. Regardless of the positive effects of n-3 PUFA, the intake of these fatty acids remains low. An approach to increase the intake of n-3 PUFA in the population is to incorporate fish oil into food. In the present study, fish oil was incorporated into butter blends by enzymatic interesterification. The aim of the study was to investigate the effects of this butter product in comparison with a commercial butter blend and a product produced by interesterification but without fish oil. Golden Syrian hamsters received hamster feed blended with one of the three butter products. After 6 weeks of feeding, the fatty acid compositions of plasma, erythrocytes, liver, brain, and visceral fat were determined. The intake of butter product with fish oil resulted in a higher level of n-3 PUFA in plasma, erythrocytes, and liver. The incorporation of n-3 PUFA was significantly higher in phospholipids than in triacylglycerols. The results suggest that enriching butter blends with small amounts of fish oil can be used as an alternative method for improving the level of n-3 PUFA in biological tissues.  相似文献   

5.
Reducing the lipid content in fish prior to feeding a fish oil finishing diet (FOFD) has the potential to improve n-3 long-chain (≥ C(20)) polyunsaturated fatty acid (LC-PUFA) restoration. This study had two main objectives: (1) determine whether feeding Atlantic salmon smolt a 75% palm fatty acid distillate diet (75PFAD) improves the apparent digestibility (AD) of saturated fatty acids (SFA) and (2) examine whether a food deprivation period after growth on 75PFAD leads to higher n-3 LC-PUFA restoration in the fillet when applying a FOFD. The AD of SFA was higher for 75PFAD compared to that of a fish oil (FO) diet. The relative level (as % total fatty acids (FA)) of n-3 LC-PUFA was higher in unfed fish compared to that in continuously fed fish after 21 and 28 day FOFD periods, respectively. Our results suggest that a food deprivation period prior to feeding a FOFD improves the efficiency of n-3 LC-PUFA restoration in the fillet of Atlantic salmon smolt.  相似文献   

6.
Fish oil replacement in aquaculture feeds results in major modifications to the fatty acid makeup of cultured fish. Therefore, in vivo fatty acid biosynthesis has been a topic of considerable research interest. Evidence suggests that pyridoxine (vitamin B(6)) plays a role in fatty acid metabolism, and in particular, the biosynthesis of LC-PUFA has been demonstrated in mammals. However, there is little information on the effects of dietary pyridoxine availability in fish fed diets lacking LC-PUFA. This study demonstrates a relationship between dietary pyridoxine supplementation and fatty acid metabolism in rainbow trout. In particular, the dietary pyridoxine level was shown to modulate and positively stimulate the activity of the fatty acid elongase and Δ-6 and Δ-5 desaturase enzymes, deduced by the whole-body fatty acid balance method. This activity was insufficient to compensate for a diet lacking in LC-PUFA but does highlight potential strategies to maximize this activity in cultured fish, especially when fish oil is replaced with vegetable oils.  相似文献   

7.
OBJECTIVE: To validate intakes of protein, folic acid, retinol and n-3 fatty acids estimated from a food-frequency questionnaire in week 25 of pregnancy (FFQ-25). DESIGN: Validation was done against a 7-day weighed food diary (FD) and biomarkers of the nutrients in gestation week 32-38. SUBJECTS AND SETTING: The FFQ-25 to be validated was used in the Danish National Birth Cohort comprising 101 042 pregnant Danish women, of whom 88 participated in the present validation study. RESULTS: Estimated intakes of protein, retinol and folic acid did not differ significantly between the two dietary methods, but intake of n-3 fatty acids was one third larger when estimated from the FFQ-25. The intakes estimated from the two dietary methods were all significantly correlated, ranging from 0.20 for retinol intake to 0.57 for folic acid intake. Sensitivities of being correctly classified into low and high quintiles were between 0.22 and 0.77, and specificities were between 0.62 and 0.89. Urinary protein content did not correlate significantly with protein estimated from the FFQ (r = 0.17, P > 0.05), but did with intake estimated from the FD (r = 0.56, P < 0.0001). Erythrocyte folate correlated significantly with the estimated total intake from the FFQ (r = 0.55, P < 0.0001) and the FD (r = 0.52, P < 0.0001). No correlations with plasma retinol were found. Erythrocyte eicosapentaenoic acid (C20:5n-3) correlated significantly with n-3 fatty acids intake estimated from both the FFQ-25 (r = 0.37, P < 0.001) and the FD (r = 0.62, P < 0.0001). CONCLUSION: The FFQ-25 gives reasonable valid estimates of protein, retinol and folic acid intakes, but seems to overestimate intake of n-3 fatty acids.  相似文献   

8.
This study evaluates the effects of replacing beef tallow added to rabbit feeds (3% w/w) by different doses (0%, 1.5% and 3% w/w) of n-6- or n-3-rich vegetable fat sources (sunflower and linseed oil, respectively) and alpha-tocopheryl acetate supplementation (0 and 100 mg/kg) on the fatty acid composition, alpha-tocopherol content, and oxidation levels [assessed by analyzing thiobarbituric acid (TBA) and lipid hydroperoxide values] in rabbit meat. We also measured these parameters after cooking and refrigerated storage of cooked rabbit meat. Both dietary alpha-tocopheryl acetate supplementation and the dose and source of fat added to feeds influenced meat fatty acid composition, modifying the n-6/n-3 ratio, which was more nutritionally favorable when linseed oil was used. Furthermore, the addition of linseed oil and the supplementation with alpha-tocopheryl acetate enhanced long-chain PUFA biosynthesis. However, the addition of 3% linseed oil increased meat oxidation, and although it was reduced by dietary supplementation with alpha-tocopheryl acetate in raw meat, this reduction was not as effective after cooking. Therefore, dietary supplementation with 1.5% linseed oil plus 1.5% beef tallow and with alpha-tocopheryl acetate would be recommended to improve the nutritional quality of rabbit meat.  相似文献   

9.
An international collaborative study of IUPAC methods II.D.19 and II.D.25 for preparation and GLC analysis of fatty acid methyl esters was begun in 1976. The IUPAC methodology, applicable to animal and vegetable oils and fats and fatty acids from all sources, contains special instructions for preparation and analysis of methyl esters of fatty acids containing 4 or more carbon atoms (analysis of milk fat). Twenty-three collaborators participated in the analysis of 5 known mixtures, 4 vegetable oils, 1 fish oil, and 2 butterfats. Several blind duplicate samples were included. The experimental data were subjected to statistical analysis to examine intra- and interlaboratory variation. Reproducibility and accuracy data for the higher fatty acid (14:0-22:1) mixtures and fish and vegetable oils were satisfactory and were in good agreement with results from an AOCS Smalley Committee check sample program involving analysis of the same samples. Typical coefficients of variation (%) at various concentrations were 15 (2% level), 8.5 (5% level), 7 (10% level), and 3 (50% level). Low recoveries and poor reproducibility were characteristics of results obtained for butyric acid in the butterfat and related known mixtures. A coefficient of variation of about 19% was found for analysis of butyric acid in butterfat, vs coefficients of variation in the range of 4-13% for similar levels of other components in butterfat and other samples. The IUPAC methodology for GLC analysis of fats and oils other than milk fats has been adopted by the AOAC as official first action to replace the current GLC method, 28.063-28.067.  相似文献   

10.
OBJECTIVE: Recent research indicates that n-3 fatty acids can inhibit cognitive decline, perhaps differentially by hypertensive status. DESIGN: We tested these hypotheses in a prospective cohort study (the Atherosclerosis Risk in Communities). Dietary assessment using a food-frequency questionnaire and plasma fatty acid exposure by gas chromatography were completed in 1987-1989 (visit 1), while cognitive assessment with three screening tools--the Delayed Word Recall Test, the Digit Symbol Substitution Test of the Wechsler Adult Intelligence Scale-Revised and the Word Fluency Test (WFT)--was completed in 1990-1992 (visit 2) and 1996-1998 (visit 4). Regression calibration and simulation extrapolation were used to control for measurement error in dietary exposures. SETTING: Four US communities--Forsyth County (North Carolina), Jackson (Mississippi), suburbs of Minneapolis (Minnesota) and Washington County (Maryland). SUBJECTS: Men and women aged 50-65 years at visit 1 with complete dietary data (n = 7814); white men and women in same age group in the Minnesota field centre with complete plasma fatty acid data (n = 2251). RESULTS: Findings indicated that an increase of one standard deviation in dietary long-chain n-3 fatty acids (% of energy intake) and balancing long-chain n-3/n-6 decreased the risk of 6-year cognitive decline in verbal fluency with an odds ratio (95% confidence interval) of 0.79 (0.66-0.95) and 0.81 (0.68-0.96), respectively, among hypertensives. An interaction with hypertensive status was found for dietary long-chain n-3 fatty acids (g day-1) and WFT decline (likelihood ratio test, P = 0.06). This exposure in plasma cholesteryl esters was also protective against WFT decline, particularly among hypertensives (OR = 0.51, P < 0.05). CONCLUSION: One implication from our study is that diets rich in fatty acids of marine origin should be considered for middle-aged hypertensive subjects. To this end, randomised clinical trials are needed.  相似文献   

11.
Atlantic salmon (Salmo salar L.) juveniles were fed either 100% fish oil (FO), 75% vegetable oil (VO), or 100% VO throughout their life cycle to harvest weight followed by a finishing diet period when all groups were fed 100% FO. The two experimental VO diets were tested at two different locations (Scotland and Norway) against the same control diet (100% FO). The VO blend was composed of rapeseed oil, palm oil, and linseed oil using capelin oil as a control for fatty acid class compositions. Flesh fatty acid profiles were measured regularly throughout the experiment, with the times of sampling determined by changes in pellet size/lipid content and fish life stage. Growth and mortality rates were not significantly affected by dietary fatty acid compositions throughout the life cycle, except during the seawater winter period in Norway when both growth and protein utilization were increased in salmon fed 100% VO compared to 100% FO. Flesh fatty acid composition was highly influenced by that of the diet, and after the finishing diet period the weekly intake recommendations of very long chain n-3 polyunsaturated fatty acid (VLCn-3 PUFA) for human health were 80 and 56% satisfied by a 200 g meal of 75% VO and 100% VO flesh, respectively. No effect on flesh astaxanthin levels was observed in relation to changing dietary oil sources. Sensory evaluation showed only minor differences between salmon flesh from the dietary groups, although prior to the finishing diet period, flesh from 100% VO had less rancid and marine characteristics and was preferred over flesh from the other dietary groups by a trained taste panel. After the finishing diet period, the levels of typical vegetable oil fatty acids in flesh were reduced, whereas those of VLCn-3 PUFA increased to levels comparable with a 100% FO fed salmon. No differences in any of the sensory characteristics were observed between dietary groups. By blending VOs to provide balanced levels of dietary fatty acids, up to 100% of the fish oil can be replaced by the VO blend without compromising growth or flesh quality. At the same time, 75% of the dietary fish oil can be replaced without compromising flesh VLCn-3 PUFA content, thereby providing a beneficial nutritional profile for human consumption.  相似文献   

12.
The limited activity of Δ6 fatty acid desaturase (FAD6) on α-linolenic (ALA, 18:3n-3) and linoleic (LA, 18:2n-6) acids in marine fish alters the long-chain (≥C(20)) polyunsaturated fatty acid (LC-PUFA) concentration in fish muscle and liver when vegetable oils replace fish oil (FO) in aquafeeds. Echium oil (EO), rich in stearidonic acid (SDA, 18:4n-3) and γ-linoleic acid (GLA, 18:3n-6), may enhance the biosynthesis of n-3 and n-6 LC-PUFA by bypassing the rate-limiting FAD6 step. Nutritional and environmental modulation of the mechanisms in LC-PUFA biosynthesis was examined in barramundi, Lates calcarifer , a tropical euryhaline fish. Juveniles were maintained in either freshwater or seawater and fed different dietary LC-PUFA precursors present in EO or rapeseed oil (RO) and compared with FO. After 8 weeks, growth of fish fed EO was slower compared to the FO and RO treatments. Irrespective of salinity, expression of the FAD6 and elongase was up-regulated in fish fed EO and RO diets, but did not lead to significant accumulation of LC-PUFA in the neutral lipid of fish tissues as occurred in the FO treatment. However, significant concentrations of eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid (ARA, 20:4n-6), but not docosahexaenoic acid (DHA, 22:6n-3), appeared in liver and, to a lesser extent, in muscle of fish fed EO with marked increases in the phospholipid fraction. Fish in the EO treatment had higher EPA and ARA in their liver phospholipids than fish fed FO. Endogenous conversion of dietary precursors into neutral lipid LC-PUFA appears to be limited by factors other than the initial rate-limiting step. In contrast, phospholipid LC-PUFA had higher biosynthesis, or selective retention, in barramundi fed EO rather than RO.  相似文献   

13.
The levels of hydrophilic, lipophilic, and enzymatic antioxidants, as well as the fatty acids composition, of triglyceride and phospholipid fractions were determined in the muscle tissue of 21 species of teleosts, 3 species of cephalopods, and 6 species of crustaceans, just caught from the central Tyrrhenian Sea (Mediterranean Sea). The enzymatic activities and the levels of low-molecular-weight antioxidants, and the percentages of fatty acids, showed marked interspecies differences. Our results showed that total polyunsaturated fatty acids (21.7-61.5%) were the highest, followed by saturated (16.9-41.3%) and monounsaturated (9.1-42.8%) fatty acids. The total n-3 fatty acids content (16.6-57.1%) was found to be higher than the total n-6 fatty acids content (4.1-10.6%). All of the species studied had an n-3/n-6 ratio of more than 1, confirming the great importance of fish and shellfish as a significant dietary source of n-3 polyunsaturated fatty acids and their beneficial role in the Mediterranean type of diet.  相似文献   

14.
This study examined the effects of feeding diets rich in either n-3 or n-6 polyunsaturated fatty acids (PUFA) on the fatty acid composition of longissimus muscle in beef bulls. Thirty-three German Holstein bulls were randomly allocated to either an indoor concentrate system or periods of pasture feeding (160 days) followed by a finishing period on a concentrate containing linseed to enhance the contents of n-3 PUFA and conjugated linoleic acids (CLA) in beef muscle. The relative proportion and concentration (mg/100 g fresh muscle) of n-3 fatty acids in the phospholipid and triglyceride fractions were significantly increased (p < or = 0.05) in muscle lipids of pasture-fed bulls. The pasture feeding affected the distribution of individual CLA isomers in the muscle lipids. The proportion of the most prominent isomer, CLA cis-9,trans-11, was decreased from 73.5 to 65.0% of total CLA in bulls fed on concentrate as compared to pasture. The second most abundant CLA isomers were CLA trans-7,cis-9 and CLA trans-11,cis-13 in bulls fed on concentrate and pasture, respectively. Diet had no effect on the concentration of C18:1 trans-11. In contrast, the concentration of the C18:1 trans-13/14, trans-15, and trans-16 isomers in the muscle lipids was up to two times higher in pasture-fed as compared to concentrate-fed bulls. Pasture feeding enhanced the concentration of n-3 fatty acids, but the diet had no effect on the concentration of CLA cis-9,trans-11.  相似文献   

15.
The present study was undertaken to know the effect of supplementation of fish oil with high n-3 polyunsaturated fatty acids (PUFA) on oxidative stress-induced DNA damage of rat liver in vivo. Male Wistar rats were fed a diet containing fish oil or safflower oil with high n-6 PUFA at 50 g/kg of diet and an equal amount of vitamin E at 59 mg/kg of diet for 6 weeks. Livers of rats fed fish oil were rich in n-3 PUFA, whereas those of rats fed safflower oil were rich in n-6 PUFA. Ferric nitrilotriacetate was intraperitoneally injected to induce oxidative stress. The degree of lipid peroxidation of the liver was assessed by the levels of phospholipid hydroperoxides and thiobarbituric acid-reactive substances (TBARS), and the degree of oxidative DNA damage was assessed by comet type characterization in alkaline single-cell gel electrophoresis and 8-hydroxy-2'-deoxyguanosine levels. The levels of TBARS of the livers of the fish oil diet group increased to a greater extent than those of the safflower oil diet group, whereas the levels of the hydroperoxides of the livers of both diet groups increased to a similar extent. The vitamin E level of livers of the fish oil diet group was remarkably decreased. The degree of DNA damage of both diet groups was increased, but the increased level of the fish oil diet group was remarkably lower than that of the safflower oil diet group. The above results indicate that fish oil supplementation does not enhance but appears to protect against oxidative stress-induced DNA damage and suggest that lipid peroxidation does not enhance but lowers the DNA damage.  相似文献   

16.
The ability of different lipases to incorporate omega3 fatty acids, namely, eicosapentaenoic acid (EPA, C20:5n-3), docosapentaenoic acid (DPA, C22:5n-3), and docosahexaenoic acid (DHA, C22:6n-3), into a high-laurate canola oil, known as Laurical 35, was studied. Lipases from Mucor miehei (Lipozyme-IM), Pseudomonas sp. (PS-30), and Candida rugosa (AY-30) catalyzed optimum incorporation of EPA, DPA, and DHA into Laurical 35, respectively. Other lipases used were Candida anatrctica (Novozyme-435) and Aspergillus niger (AP-12). Response surface methodology (RSM) was used to obtain a maximum incorporation of EPA, DPA, and DHA into high-laurate canola oil. The process variables studied were the amount of enzyme (2-6%), reaction temperature (35-55 degrees C), and incubation time (12-36 h). The amount of water added and mole ratio of substrates (oil to n-3 fatty acids) were kept at 2% and 1:3, respectively. The maximum incorporation of EPA (62.2%) into Laurical 35 was predicted at 4.36% of enzyme load and 43.2 degrees C over 23.9 h. Under optimum conditions (5.41% enzyme; 38.7 degrees C; 33.5 h), the incorporation of DPA into high-laurate canola oil was 50.8%. The corresponding maximum incorporation of DHA (34.1%) into Laurical 35 was obtained using 5.25% enzyme, at 43.7 degrees C, over 44.7 h. Thus, the number of double bonds and the chain length of fatty acids had a marked effect on the incorporation omega3 fatty acids into Laurical 35. EPA and DHA were mainly esterified to the sn-1,3 positions of the modified oils, whereas DPA was randomly distributed over the three positions of the triacylglycerol molecules. Meanwhile, lauric acid remained esterified mainly to the sn-1 and sn-3 positions of the modified oils. Enzymatically modified Laurical 35 with EPA, DPA, or DHA had higher conjugated diene (CD) and thiobarbituric acid reactive substance (TBARS) values than their unmodified counterpart. Thus, enzymatically modified oils were more susceptible to oxidation than their unmodified counterparts, when both CD and TBARS values were considered.  相似文献   

17.
Arachidonic acid (AA) content, long-chain n-3 polyunsaturated fatty acid (PUFA) equivalent [LCE; calculated as 0.15 x linolenic acid (LA) + eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA)], and PUFA n-6/PUFA n-3 ratio were determined in meat [breast meat (BM), thigh meat (TM), and fillets (F), respectively] within four sets of chickens, five sets of turkeys, one set of common carp, and four sets of rainbow trout, fed either commercial diet or diets with manipulated PUFA n-3 and PUFA n-6 contents. AA content was within the range of 20 mg/100 g (F of rainbow trout fed the diet with linseed oil, LO) to 138 mg/100 g (TM of chickens fed restrictively the diet based on maize to the age of 90 days). AA content in BM of turkeys fed the diet with LO or fish oil (FO) did not differ (P > 0.05) from that of rainbow trout F. LCE was in the range of 16 mg/100 g (BM of turkeys fed a commercial feed mixture) to 681 mg/100 g (F of rainbow trout fed a commercial feed mixture). With regard to BM, only turkeys fed the diet with LO deposited more (P < 0.01) LCE (71 mg/100 g) as compared to all other poultry sets except turkeys fed the diet with FO (123 mg/100 g). Apart from all fish samples, also both BM and TM of turkeys fed the diet with either LO or FO met the recommended value of the PUFA n-6/PUFA n-3 ratio (<4). AA content in the tissue increased significantly (P < 0.001) with increasing dietary LA in both all chicken tissues and all turkey tissues, which is contrary to the suggested strong metabolic regulation of the AA formation. When all tissues within all animal species were taken as a one set, both AA percentage and EPA + DHA percentage in the tissue (Y, %) decreased (P < 0.001) with increasing fat content in the tissue (X, %), according to the equation Y = 4.7 - 0.54X (R (2) = 0.41) and Y = 6.0 - 0.33X (R (2) = 0.35), respectively. AA content in chicken BM, chicken TM, and turkey BM, respectively, decreased linearly (P < 0.01) with increasing live weight reached at the slaughter age.  相似文献   

18.
Seasonal variations of fatty acids in various Korean shellfish were investigated in relation to the changes in total fatty acids contents, the ratio of polyunsaturated fatty acids to saturated fatty acids (P/S), and that of n-3 fatty acids to n-6 fatty acids (n-3/n-6). A distinct seasonal pattern was found in total fatty acids contents with maximal values in early summer and minimal values in late summer. The percentage of monounsaturated fatty acids was lowest in most species throughout the year. In summer months, the proportion of polyunsaturated fatty acids decreased while that of saturated fatty acids increased. The major contributing factor to the seasonal variation of polyunsaturated fatty acids was n-3 fatty acids. These results led to the lowest levels of P/S and n-3/n-6 in summer. Nevertheless, the data suggest that bivalve shellfish would be excellent sources of n-3 fatty acids, especially eicosapentaenoic acid and docosahexaenoic acid.  相似文献   

19.
Fatty acid composition and stable isotope ratios of carbon (delta(13)C) and nitrogen (delta(15)N) were determined in muscle tissue of turbot (Psetta maxima). The multivariate analysis of the data was performed to evaluate their utility in discriminating wild and farmed fish. Wild (n=30) and farmed (n=30) turbot of different geographical origins (Denmark, The Netherlands, and Spain) were sampled from March 2006 to February 2007. The application of linear discriminant analysis (LDA) and soft independent modeling of class analogy (SIMCA) to analytical data demonstrated the combination of fatty acids and isotopic measurements to be a promising method to discriminate between wild and farmed fish and between wild fish of different geographical origin. In particular, IRMS (Isotope Ratio Mass Spectrometry) alone did not permit us to separate completely farmed from wild samples, resulting in some overlaps between Danish wild and Spanish farmed turbot. On the other hand, fatty acids alone differentiated between farmed and wild samples by 18:2n-6 but were not able to distinguish between the two groups of wild turbot. When applying LDA isotope ratios, 18:2n-6, 18:3n-3, and 20:4n-6 fatty acids were decisive to distinguish farmed from wild turbot of different geographical origin, while delta(15)N, 18:2n-6, and 20:1n-11 were chosen to classify wild samples from different fishing zones. In both cases, 18:2n-6 and delta(15)N were determinant for classification purposes. We would like to emphasize that IRMS produces rapid results and could be the most promising technique to distinguish wild fish of different origin. Similarly, fatty acid composition could be used to easily distinguish farmed from wild samples.  相似文献   

20.
The authenticity of vegetable oils consumed in Slovenia and Croatia was investigated by carbon isotope analysis of the individual fatty acids by the use of gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS), and through carbon isotope analysis of the bulk oil. The fatty acids from samples of olive, pumpkin, sunflower, maize, rape, soybean, and sesame oils were separated by alkaline hydrolysis and derivatized to methyl esters for chemical characterization by capillary gas chromatography/mass spectrometry (GC/MS) prior to isotopic analysis. Enrichment in heavy carbon isotope ((13)C) of the bulk oil and of the individual fatty acids are related to (1) a thermally induced degradation during processing (deodorization, steam washing, or bleaching), (2) hydrolytic rancidity (lipolysis) and oxidative rancidity of the vegetable oils during storage, and (3) the potential blend with refined oil or other vegetable oils. The impurity or admixture of different oils may be assessed from the delta(13)C(16:0) vs. delta(13)C(18:1) covariations. The fatty acid compositions of Slovenian and Croatian olive oils are compared with those from the most important Mediterranean producer countries (Spain, Italy, Greece, and France).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号