首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
基于无人机数据的人工林森林参数估测   总被引:2,自引:0,他引:2  
《林业资源管理》2019,(5):61-67
无人机凭借低成本、高精度的优势在森林资源调查中被广泛应用,基于无人机高分影像及点云数据的森林主要参数估测及评价方法研究,可以为无人机技术在人工林调查中的推广应用提供科学参考。选取南京林业大学树木园内东方杉(Taxodium mucronatum)人工实验林为研究对象,以2018年无人机高分影像、点云数据以及地面实测数据为主要信息源,通过局部最大值以及种子点分割的方法对株数、树高、冠幅、郁闭度等森林参数进行提取,并进行精度检验。研究结果表明:1)提取的株树探测率为0.92,株数准确率为0.97,F参数为0.95。2)单木树高估测的决定系数(R~2)为0.795 7,均方根误差(RMSE)为0.594 0;单木冠幅直径的决定系数(R~2)为0.800 8,均方根误差(RMSE)为0.897 8。3)提取的总冠幅的提取率达到0.95,准确率达到0.93,f参数达到0.94。4)提取的样地郁闭度相对误差只有0.32%。基于无人机高分数据及少量地面实测数据的人工林主要参数估测,可以在很大程度上替代全林实测,在人工林中具有较大的推广价值。  相似文献   

2.
四川桤木天然林和人工林的单木生长模型研究   总被引:1,自引:0,他引:1  
预测和研究四川桤木天然林和人工林的生长与发展规律,以更好地经营四川桤木天然林。以四川桤木天然林和人工林为研究对象,基于实测的树高-胸径数据,通过比较分析9个树高曲线模型,建立四川桤木的单木树高曲线模型。结果显示,最终确定的四川桤木最优树高曲线模型的决定系数R~2为0.794,调整决定系数为0.792,均方根误差RMSE为0.886,相对均方根误差E_(RMSE)为0.045,平均误差ME为0.000,平均绝对误差MAE为2.641。最优的四川桤木单木树高曲线模型自变量为胸径,单木生长模型为H=1.3+27.176×(D/(1+D))~(11.856)。建立的单木树高曲线模型有较好的生物学意义,可为四川省四川桤木天然林和人工林的生长预测提供依据。  相似文献   

3.
【目的】提出一种基于分层叠加的单木分割算法,以充分利用高密度激光雷达点云信息,提高林分中下层单木分割精度。【方法】区别于传统将冠顶点作为聚类种子点的单木分割算法,基于分层叠加的单木分割算法以点云水平切片后各层的局部最大值为种子点进行分层聚类,并通过分层叠加与迭代优化,减少枝杈等因素导致的过分割现象,在保证上层树单木分割精度的同时提高对中下层单木的提取能力。【结果】基于分层叠加的单木分割算法在不同密度落叶松林分均有较高单木分割精度,提取单木与实测单木总体匹配成功率最高达94%,在中高密度林分匹配成功率最高达92%,相较其他算法,对中下层单木的匹配率可提高20%~40%;在单木树高提取精度方面,单木提取树高与实测树高相关系数为0.8,相对均方根误差为8.45%,提取冠幅与实测冠幅相关系数最高为0.83,相对均方根误差为16.5%。【结论】通过分层聚类、聚类种子点优化选取,充分利用林分各层次点云信息,可提高单木分割精度,为森林经营管理提供高精度数据支持。  相似文献   

4.
基于地基激光雷达的亚热带森林单木胸径与树高提取   总被引:2,自引:0,他引:2  
【目的】以云南省普洱市天然林与杉木人工林为研究对象,针对云南省山区森林树种繁多、林下灌木草本茂密的林分环境,根据森林中树木的形态特征,利用地基激光雷达(TLS)扫描数据提取样地尺度单木胸径与树高,为森林调查工作提供参考。【方法】将获取的多站地基激光雷达扫描数据分为多站拼接及单站2种分析方式,采用Hough变换算法及树干的形态特征对样地内单木进行识别与胸径提取,根据树干生长方向及单木在垂直方向上的分布提取树高。【结果】1)对于多站拼接数据,即使在林分条件最为复杂的原始林,单木识别率仍可达到81%;对于单站数据,随着扫描距离增加,单木识别率降低,实际操作时单站布设比多站拼接简单;2)多站拼接胸径及胸高断面积估测结果更接近于样地真实值,多个单站平均结果比只使用一站扫描数据提取的结果更加适合估测样地胸径及胸高断面积,半径10 m比半径5 m及15 m范围内数据更加适合估测样地胸径及胸高断面积;3)天然林单木树高估测结果为R~2=0.77,RMSE=1.46 m;人工林单木树高估测结果为R~2=0.94,RMSE=0.96 m。【结论】本研究根据树干垂直向特征,设置的一系列参数可以剔除Hough变换算法在非树干处的识别圆,可提高单木识别及胸径、树高的估测精度。受扫描站布设及林分条件影响,人工林的估测结果好于天然林。多站拼接相比单站扫描更加接近于样地实测结果,多个单站平均更能代表样地实际情况,只用一站数据具有一定的偶然性。  相似文献   

5.
基于UAV遥感的单木冠幅提取及胸径估算模型研究   总被引:1,自引:0,他引:1  
在森林资源调查中冠幅和胸径是重要的测树因子,自动获取冠幅和胸径值可以提高森林资源调查效率。以云南松为研究对象,基于无人机影像自动提取单木冠幅参数,拟合不同密度等级样地的单木冠幅和树冠面积与胸径的关系以估测单株胸径。首先利用标记控制分水岭分割算法对样地冠层高度模型(CHM)中的单株树冠进行分割,获取最大、最小冠幅和树冠面积,并与实测数据进行精度评价,然后将提取冠幅与树冠面积与实测胸径进行拟合,建立不同密度等级样地的一元回归模型和二元回归模型。结果表明:单木树冠分割准确率为86.26%,冠幅相对误差平均值为6.04%,冠幅面积的相对误差平均值为11.23%;在拟合的模型中,冠幅树冠面积-胸径模型的拟合效果最好,决定系数均在0.7以上,该模型验证数据相对误差均不超过5%,符合A类森林资源调查胸径误差值低于5%的要求。提出的基于无人机影像提取冠幅及预测树木胸径的方法较为准确,可推动森林资源调查自动化发展。  相似文献   

6.
为提高森林单木材积估测精度和效率,选取贵州省织金县城郊典型马尾松林为研究对象,基于机载激光雷达点云和样地调查数据,以提取的树高、冠幅、树冠投影面积和树冠体积等单木结构参数为变量,构建基于机载激光雷达点云数据的马尾松单木材积估测模型。结果表明:1)基于点云数据提取的马尾松单木树高和冠幅因子与实际调查数据之间存在良好的相关性,决定系数R2在0.7以上,精度相对较高,可用于构建马尾松单木材积模型。2)在经典非线性CAR模型基础上,利用枚举法对树高、冠幅、树冠投影面积、树冠体积等4个变量组合构建的11个模型中,包含树高、冠幅及树冠体积三个林分因子的模型表现最佳,R2为0.774 1。3)树高、冠幅及树冠体积被确定为马尾松单木材积估测的关键因子,其中,树高的贡献最大且与单木材积呈极显著正相关关系(P<0.001)。利用机载激光雷达点云数据提取单木结构参数,并基于非线性CAR模型构建单木材积模型估测马尾松单木材积的方法是可行的,该方法不仅能满足森林资源调查的精度要求,且能有效提高调查效率。  相似文献   

7.
选取小兴安岭地区天然针阔混交林为样地,以红松、冷杉、云杉、水曲柳、枫桦、紫椴等6种主要优势树种为研究对象,分别进行树高和胸径、冠幅和胸径的相关性分析。通过SPSS 20.0软件将调查的数据代入备选的8个经典数学模型中进行回归分析,得到各方程的P值、决定系数R~2和相关参数,并采用总误差、平均误差、平均相对误差和均方根误差等验证拟合精度,最终选出最优的树木生长模型。结果表明:针叶树的树高和胸径、冠幅与胸径相关性显著,在树高-胸径模型中平均决定系数为0.809,在冠幅-胸径模型中平均决定系数为0.498。相对于针叶树来说,阔叶树树高和胸径、冠幅和胸径的相关性略差,其决定系数平均值分别为0.608,0.395。不同树种适应不同树木生长模型,在树高-胸径的相关性分析中,以幂函数、S函数模型居多,冠幅-胸径模型以三次多项式模型最为显著。  相似文献   

8.
该研究通过机载激光雷达和背包激光雷达对东莞同一区域常绿阔叶林结构参数进行监测,利用监测结果估算其生物量,实现了无人机监测技术在常绿阔叶林上的应用.结果显示:无人机搭载激光雷达可以快速获取常绿阔叶林三维地形情况和林冠上层乔木的树高、冠幅等单木参数;背包激光雷达可准确监测林冠下层林分结构信息,其中胸径监测精度最高.将获得参...  相似文献   

9.
针对无人机在森林资源监测中的便携性特点,利用无人机RGB三波段影像进行森林计测参数(株数、树高及蓄积量)的提取及精度验证。以华山松人工林为研究对象,以无人机RGB影像为主要信息源,在前期进行5块0.08hm~2华山松人工林标准地单木定位的基础上,采用冠层高度模型(CHM)最大值法和点云分割方法,提取华山松人工林计测参数,建立无人机RGB影像的华山松人工林单木二元材积模型。研究结果表明:1)采用CHM最大值分割法较点云分割方法精度高,单木株数分割精度分别为87.17%和80.79%;提取得到的树高与其地面实测所得树高的R~2相比较,使用CHM方法,R~2为0.71;而使用点云算法,R~2为0.69。2)基于CHM最大值法提取的单株冠幅和树高所建立的二元材积模型,其决定系数(R~2)为0.94,均方根误差(RMSE)为0.033 8m~3;与基于云南省华山松人工林二元材积表的标准地实测蓄积量调查结果相比,基于无人机RGB数据的5块标准地蓄积量监测精度分别为79.72%,81.64%,83.57%,82.49%,80.28%,平均精度达81.54%。基于无人机RGB影像的华山松人工林在森林计测参数提取中,CHM最大值分割法优于点云分割,所建立的树高和冠幅二元材积模型,可为华山松单层人工林无人机遥感监测提供参考。  相似文献   

10.
利用目前流行的高分辨率可见光无人机遥感影像生成树木冠层高度模型,采用分水岭分割算法提取单木树高的研究具有重要理论和实践意义。以位于云南省富民县的天然云南松纯林为研究对象,通过大疆Phantom 4 Pro无人机获取低空可见光遥感影像,利用Pix4D Mapper对无人机影像进行预处理及三维重建,生成三维点云,利用LiDAR360处理三维点云,构建DSM,DEM并生成CHM;采用分水岭分割算法对不同郁闭度条件下获得的CHM进行单木分割及树高提取,对提取结果进行精度评价。结果表明:分水岭分割算法能够准确分割CHM,利用无人机可见光遥感影像进行单木树高提取是可行的;将基于无人机可见光影像提取的树高值与野外实地调查得到的树高值进行对比,R2为0.893,RMSE为1.23m,估测精度为87.58%;同时,林分郁闭度会对单木树高估测产生影响,根据不同郁闭度条件下提取的3组样木树高与实地测量树高的决定系数(R2)分别是0.857,0.939和0.921,RMSE分别为1.450,1.097,0.896m,在低郁闭度林分内树高估测的精度显著高于高郁闭度林分。  相似文献   

11.
利用蔡家川流域不同立地条件下48株刺槐样木生物量的实测数据,以胸径、树高、冠幅、冠长及胸径、树高的复合因子为自变量,构建生物量异速生长模型、多元线性模型和相容性生物量模型。采用决定系数(R2)、均方根误差(RMSE)、估计标准误差(SEE)、总相对误差(TRE)、平均相对误差(ARE)和平均百分比误差(MPE)等6个指标对模型进行拟合度和精确度的检验。结果表明:以胸径(DB H)、树高(h)的复合因子构建的生物量模型估测效果较好。3种模型的检验指标均在可接受的范围内,均适用于蔡家川流域刺槐生物量的预测。其中,多元线性模型对树枝、树叶生物量预测效果最佳,预测精度为90.11%和89.72%;相容性生物量模型对总树干、根系和总生物量的预测精度高达91.38%、90.83%、93.90%,并且解决了各器官生物量与总生物量的相容性问题。构建的模型中,相容性生物量模型的估测效果最好,多元线性模型和生物量异速生长模型次之。  相似文献   

12.
基于2014年12月3日获取的X波段Terra SAR-X数据和2008年10月19日获取的L波段ALOS PALSAR数据,引入树种类型为哑变量,采用逐步回归的方法,对云南省勐腊县森林蓄积量进行估测。结果表明,与X波段Terra SAR-X数据相比,基于L波段ALOS PALSAR数据建立的森林蓄积量模型具有更高的决定系数,R~2为0.843,模型估测精度为68.8%,均方根误差RMSE为38.8 m3·hm~(-2),最终结果证明波长较长的L波段ALOS PALSAR数据对森林蓄积量具有更好的估测效果。  相似文献   

13.
为探索西藏高海拔地区高山松最优树高曲线,提高高原森林资源调查精度。以西藏自治区东南部尼洋河流域高山松天然林为对象,基于22块样地共计588株高山松实测树高—胸径数据分析高山松树高曲线变化规律。选取10个经典树高曲线模型,通过对模型参数的求解,采用决定系数R~2、均方根误差RMSE、残差和MD对模型的精度进行检验。结果表明模型(5)Logistic方程H=a/(1+be~(-cD))拟合高山松的树高曲线效果最好(R~2=0.900 3),可作为尼洋河流域高山松的最优树高生长曲线模型。  相似文献   

14.
【目的】针对人工实测与地基激光雷达(TLS)在林业资源调查中数据获取效率低下的问题,以哈尔滨市城市林业示范基地黑皮油松林为研究对象,综合对比地基激光雷达和手持式移动激光雷达(HMLS)两种扫描方式,为高效的森林资源调查和经营管理提供有效的参考。【方法】利用TLS单站与多站扫描以及HMLS获取研究样地单木点云数据,然后基于点云数据处理软件提取单木结构参数并与实测数据进行匹配,综合对比两种扫描方式的数据获取效率、点云质量以及单木结构参数提取精度。【结果】1)HMLS在扫描高郁闭度黑皮油松林样地时扫描速度大约为27 m~2/min,TLS4站扫描该样地速度为10 m~2/min,扫描速度上HMLS扫描约为TLS多站扫描的3倍。2)TLS4站扫描的胸径处点云数量与单木点云数量远高于HMLS,且HMLS相比于TLS4存在冠层点云缺失的问题,但HMLS相较于TLS数据拥有更好的胸径处切片点云完整度。3)HMLS、TLS单站、TLS4站数据胸径估测结果的R~2分别为0.92、0.84、0.95,HMLS与TLS4站扫描均给出了较好的胸径估测结果,单站TLS扫描估测胸径结果较差。HMLS扫描与TLS单站扫描由于冠层点云扫描不完整导致估测树高和树冠面积的决定系数均小于0.5。TLS4站扫描相较于HMLS扫描在树高和树冠面积的估测精度上有了较大提升,R~2达到了0.7以上。【结论】TLS4站扫描拥有最高的点云数据质量与单木结构参数提取精度,但扫描效率最低,而单站扫描由于遮挡效应单木结构提取精度较低但扫描效率最高;HMLS具有较高的扫描效率与胸径估测精度,但由于冠层点云的缺失在树高和树冠面积等参数的估测精度较低。  相似文献   

15.
【目的】选择适合的单木地上生物量异速生长模型形式,获得区域尺度马尾松林生物量及其误差在不同立地等级下的估计,为精准估计不同立地质量的森林生物量提供技术支持,进而为森林立地生产力估计提供参考。【方法】在马尾松林3种单木生物量模型g_i=aD_i~b+ε[式(1)]、gi=a(D_i~2H_i)~b+ε[式(2)]、g_i=aD_i~bH_i~c+ε[式(3)]形式下(式中:g_i为单木生物量,D_i为单木胸径,H_i为单木树高,a、b、c为估计参数,ε为残差),运用优势木树高分级法对我国江西省马尾松林占优势的样地进行立地质量分级,采用蒙特卡洛模拟法估计3种模型形式下不同立地质量的单位面积生物量均值和不确定性。【结果】1)3种生物量模型形式的决定系数(R~2)及调整决定系数(R_(adj)~2)均达到0.95以上,拟合效果良好。从综合平均偏差、平均绝对偏差及均方根误差来看,式(3)模型较优。2)用优势木树高等级代替立地等级,利用树高分级法建立优势木树高-胸径模型,曲线的R2为0.907,平均偏差为0.001,平均绝对偏差为0.559,均方根误差为0.027,模型拟合效果良好。相同立地等级的样地成片分布,相对集中,每一立地等级的样地在江西省全境范围内均有分布。3)采用蒙特卡洛法对马尾松不同立地等级下的3种单木地上生物量模型估计结果及误差进行10 000次模拟后,马尾松地上生物量均值和误差的估计结果均达到稳定。在同一单木生物量模型形式下,不同立地等级的地上生物量均值估计结果随着立地等级的升高而增大;相对误差估计值在中间立地等级(3级)时最小,并有随着立地等级升高或降低而增大的趋势。相同立地等级下,3种模型地上生物量均值估计结果为式(1)式(3)式(2);绝对误差和相对误差估计结果为式(2)式(3)式(1)。【结论】1)区域尺度下的3种马尾松单木地上生物量模型从评价指标来看式(3)最好;从生物量估计误差结果相比较,3种模型的估计效果为式(2)好于式(3)好于式(1),带有树高因子的式(2)和式(3)的相对误差较式(1)更小。2)不同立地条件下,立地质量越接近平均水平,单位面积生物量均值估计的相对误差越小。3)结合优势木树高分级对立地等级进行划分,采用蒙特卡洛模拟法对不同立地等级下的生物量均值和误差进行估计,可以得到生物量及估计误差在不同立地条件下的分布。  相似文献   

16.
基于机载LiDAR的单木结构参数及林分有效冠的提取   总被引:4,自引:0,他引:4  
【目的】基于机载激光雷达(LiDAR)数据提取单木树冠三维结构参数(树冠顶点位置、树高、冠幅和冠长),并在此基础上对林分有效冠进行提取,为进一步研究林分尺度上的有效冠结构及其动态提供依据,以更好掌握并改进林业经营措施。【方法】采用一定规则下的局部最大值窗口搜索树冠顶点,进行单木树冠顶点探测和单木树高提取;以树冠顶点为标记,利用标记控制分水岭分割算法提取单木冠幅;采用垂直方向点云高程检测方法获取枝下高位置,提取冠长;在标记控制分水岭分割出的树冠边界,提取树冠接触高,取平均值作为该样地的林分有效冠高。【结果】树冠分割正确率为88.5%;结合样地实测参数对提取值进行相关性分析,树高R~2=0.886 2,冠幅R~2=0.786 4,冠长R~2=0.800 0,树高、冠幅和冠长精度分别为90.34%、86.80%和89.90%;同一林分内单木接触高相对比较稳定,对提取的林分有效冠高进行单因素方差分析,无显著差异。【结论】基于机载LiDAR数据,采用可变大小的动态窗口搜索局部最大值点,能提高单木结构参数的提取精度;利用树冠顶点标记控制分水岭算法,将高空间分辨率航片作为辅助数据,可完成较高精度的单木冠幅提取;垂直方向点云高程检测方法可提取单木冠长;LiDAR点云数据可对林分有效冠进行提取,在同一林分中,不同样本数量对接触高提取的变异性影响不大,有效冠高大致相同。机载LiDAR数据具有良好的单木树冠三维结构参数提取能力,能够满足现代林业调查对单木结构参数提取的需要,实现对林分有效冠的提取。  相似文献   

17.
【目的】基于双向选择判断原理,提出一种将激光雷达(LiDAR)点云数据提取到的单木信息与地面实测单木信息进行匹配的方法,以得到更为合理的信息匹配结果。【方法】采用机载LiDAR点云数据分割单木,提取单木位置、数量、树高和冠幅等信息,从LiDAR提取单木位置出发,依据树高和距离正向确定候选地面实测单木,再根据候选地面实测单木位置和距离信息逆向确认LiDAR提取单木是否为最合适的匹配对象木。【结果】以匹配精度、匹配后的单木树高和冠幅精度为判断指标,与邻域最高匹配法、最邻近匹配法和双因素匹配法相比,在匹配精度一致的情况下,双向选择判断法匹配的单木树高精度可从75.21%提升至91.01%,冠幅精度从60.50%提升至68.64%;在保证匹配信息精度一致的情况下,双向选择判断法可将匹配精度从传统方法的33.52%提升至61.11%。【结论】点云数据双向选择单木提取与地面数据匹配方法可快速、高效地将激光雷达点云数据提取到的单木信息与地面实测单木信息进行匹配,与传统方法相比,能够在高密度、多林层林分中发挥更高优势。  相似文献   

18.
通过对191株黑松立木结构特征因子的实测,基于立木地径、胸径、冠幅、树高等特征因子的关系分析,构建了黑松立木结构特征模型。研究表明:黑松地径(D_0)、距地面10cm直径(D_(0.1))、胸径(D_(1.3))、树高(H)、枝下高(h)、冠幅(CW)等指标之间均存在极显著的正相关关系。D_(1.3)-D_0、D_(1.3)-D_(0.1)、D_0-D_(0.1)之间的相关模型可分别用线性式、多项式和多项式表示,模型的决定系数R~2分别为0.950 8、0.939 3和0.969 5。黑松树高胸径(HD_(1.3))之间的关系用指数式拟合优度最佳,决定系数R~2为0.768 9。黑松的胸径D_(1.3)与冠幅CW之间存在显著的线性相关关系,其决定系数R~2为0.805 8。  相似文献   

19.
本文通过单木分割获取单木坐标及冠幅,并在此基础上对实验区内单木点云进行多特征提取,根据提取到的单木点云特征进行模型构建,从而完成对测区单木胸径的反演。实验结果表明该方法具有较优的拟合精度和较小的相对均方误差,且对不同密度下的点云数据均具有较高的稳定性。  相似文献   

20.
为了提高林分尺度下单木参数的识别精度,研究了基于三维激光扫描的单木胸径和树高的辨识方法。在东北林业大学实验林场,采用Trimble S60三维激光扫描仪,对104株蒙古栎进行多测站扫描,获得样本树的点云数据。在对点云数据进行配准、去噪、地形数据提取、切片栅格化等一系列处理基础上,基于霍夫变换和连续生长法分别构建了胸径和树高的提取方法,对林分尺度下单木定位识别、胸径和树高提取精度进行了对比分析。研究结果表明:所构建方法单木定位识别精度均值为87.50%,胸径和树高提取的均方根误差分别为2.88 cm、2.61 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号