首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
基于机载LiDAR的单木结构参数及林分有效冠的提取   总被引:4,自引:0,他引:4  
【目的】基于机载激光雷达(LiDAR)数据提取单木树冠三维结构参数(树冠顶点位置、树高、冠幅和冠长),并在此基础上对林分有效冠进行提取,为进一步研究林分尺度上的有效冠结构及其动态提供依据,以更好掌握并改进林业经营措施。【方法】采用一定规则下的局部最大值窗口搜索树冠顶点,进行单木树冠顶点探测和单木树高提取;以树冠顶点为标记,利用标记控制分水岭分割算法提取单木冠幅;采用垂直方向点云高程检测方法获取枝下高位置,提取冠长;在标记控制分水岭分割出的树冠边界,提取树冠接触高,取平均值作为该样地的林分有效冠高。【结果】树冠分割正确率为88.5%;结合样地实测参数对提取值进行相关性分析,树高R~2=0.886 2,冠幅R~2=0.786 4,冠长R~2=0.800 0,树高、冠幅和冠长精度分别为90.34%、86.80%和89.90%;同一林分内单木接触高相对比较稳定,对提取的林分有效冠高进行单因素方差分析,无显著差异。【结论】基于机载LiDAR数据,采用可变大小的动态窗口搜索局部最大值点,能提高单木结构参数的提取精度;利用树冠顶点标记控制分水岭算法,将高空间分辨率航片作为辅助数据,可完成较高精度的单木冠幅提取;垂直方向点云高程检测方法可提取单木冠长;LiDAR点云数据可对林分有效冠进行提取,在同一林分中,不同样本数量对接触高提取的变异性影响不大,有效冠高大致相同。机载LiDAR数据具有良好的单木树冠三维结构参数提取能力,能够满足现代林业调查对单木结构参数提取的需要,实现对林分有效冠的提取。  相似文献   

2.
无人机(Unmanned Aerial Vehicle,UAV)遥感可快捷获取高分辨率正射影像。本文探讨利用无人机采集高分辨率影像,生成三维点云数据获取树高和冠幅,并与实测数据对比。实验地点选择北京市京西林场,采用无人机搭载激光雷达扫描系统获取点云数据,使用LiDAR360软件进行数据处理分析,获取树木位置、株数、树高、树冠直径等信息,并与实测数据对比,结果表明:最大类间方差法可分割树木点云数据;利用三维点云技术可获取树木高度及冠幅;树高提取平均精度为94%,冠幅提取平均精度为89%。  相似文献   

3.
【目的】基于双向选择判断原理,提出一种将激光雷达(LiDAR)点云数据提取到的单木信息与地面实测单木信息进行匹配的方法,以得到更为合理的信息匹配结果。【方法】采用机载LiDAR点云数据分割单木,提取单木位置、数量、树高和冠幅等信息,从LiDAR提取单木位置出发,依据树高和距离正向确定候选地面实测单木,再根据候选地面实测单木位置和距离信息逆向确认LiDAR提取单木是否为最合适的匹配对象木。【结果】以匹配精度、匹配后的单木树高和冠幅精度为判断指标,与邻域最高匹配法、最邻近匹配法和双因素匹配法相比,在匹配精度一致的情况下,双向选择判断法匹配的单木树高精度可从75.21%提升至91.01%,冠幅精度从60.50%提升至68.64%;在保证匹配信息精度一致的情况下,双向选择判断法可将匹配精度从传统方法的33.52%提升至61.11%。【结论】点云数据双向选择单木提取与地面数据匹配方法可快速、高效地将激光雷达点云数据提取到的单木信息与地面实测单木信息进行匹配,与传统方法相比,能够在高密度、多林层林分中发挥更高优势。  相似文献   

4.
为提高森林单木材积估测精度和效率,选取贵州省织金县城郊典型马尾松林为研究对象,基于机载激光雷达点云和样地调查数据,以提取的树高、冠幅、树冠投影面积和树冠体积等单木结构参数为变量,构建基于机载激光雷达点云数据的马尾松单木材积估测模型。结果表明:1)基于点云数据提取的马尾松单木树高和冠幅因子与实际调查数据之间存在良好的相关性,决定系数R2在0.7以上,精度相对较高,可用于构建马尾松单木材积模型。2)在经典非线性CAR模型基础上,利用枚举法对树高、冠幅、树冠投影面积、树冠体积等4个变量组合构建的11个模型中,包含树高、冠幅及树冠体积三个林分因子的模型表现最佳,R2为0.774 1。3)树高、冠幅及树冠体积被确定为马尾松单木材积估测的关键因子,其中,树高的贡献最大且与单木材积呈极显著正相关关系(P<0.001)。利用机载激光雷达点云数据提取单木结构参数,并基于非线性CAR模型构建单木材积模型估测马尾松单木材积的方法是可行的,该方法不仅能满足森林资源调查的精度要求,且能有效提高调查效率。  相似文献   

5.
基于UAV遥感的单木冠幅提取及胸径估算模型研究   总被引:1,自引:0,他引:1  
在森林资源调查中冠幅和胸径是重要的测树因子,自动获取冠幅和胸径值可以提高森林资源调查效率。以云南松为研究对象,基于无人机影像自动提取单木冠幅参数,拟合不同密度等级样地的单木冠幅和树冠面积与胸径的关系以估测单株胸径。首先利用标记控制分水岭分割算法对样地冠层高度模型(CHM)中的单株树冠进行分割,获取最大、最小冠幅和树冠面积,并与实测数据进行精度评价,然后将提取冠幅与树冠面积与实测胸径进行拟合,建立不同密度等级样地的一元回归模型和二元回归模型。结果表明:单木树冠分割准确率为86.26%,冠幅相对误差平均值为6.04%,冠幅面积的相对误差平均值为11.23%;在拟合的模型中,冠幅树冠面积-胸径模型的拟合效果最好,决定系数均在0.7以上,该模型验证数据相对误差均不超过5%,符合A类森林资源调查胸径误差值低于5%的要求。提出的基于无人机影像提取冠幅及预测树木胸径的方法较为准确,可推动森林资源调查自动化发展。  相似文献   

6.
本文通过单木分割获取单木坐标及冠幅,并在此基础上对实验区内单木点云进行多特征提取,根据提取到的单木点云特征进行模型构建,从而完成对测区单木胸径的反演。实验结果表明该方法具有较优的拟合精度和较小的相对均方误差,且对不同密度下的点云数据均具有较高的稳定性。  相似文献   

7.
【目的】提出一种基于分层叠加的单木分割算法,以充分利用高密度激光雷达点云信息,提高林分中下层单木分割精度。【方法】区别于传统将冠顶点作为聚类种子点的单木分割算法,基于分层叠加的单木分割算法以点云水平切片后各层的局部最大值为种子点进行分层聚类,并通过分层叠加与迭代优化,减少枝杈等因素导致的过分割现象,在保证上层树单木分割精度的同时提高对中下层单木的提取能力。【结果】基于分层叠加的单木分割算法在不同密度落叶松林分均有较高单木分割精度,提取单木与实测单木总体匹配成功率最高达94%,在中高密度林分匹配成功率最高达92%,相较其他算法,对中下层单木的匹配率可提高20%~40%;在单木树高提取精度方面,单木提取树高与实测树高相关系数为0.8,相对均方根误差为8.45%,提取冠幅与实测冠幅相关系数最高为0.83,相对均方根误差为16.5%。【结论】通过分层聚类、聚类种子点优化选取,充分利用林分各层次点云信息,可提高单木分割精度,为森林经营管理提供高精度数据支持。  相似文献   

8.
利用目前流行的高分辨率可见光无人机遥感影像生成树木冠层高度模型,采用分水岭分割算法提取单木树高的研究具有重要理论和实践意义。以位于云南省富民县的天然云南松纯林为研究对象,通过大疆Phantom 4 Pro无人机获取低空可见光遥感影像,利用Pix4D Mapper对无人机影像进行预处理及三维重建,生成三维点云,利用LiDAR360处理三维点云,构建DSM,DEM并生成CHM;采用分水岭分割算法对不同郁闭度条件下获得的CHM进行单木分割及树高提取,对提取结果进行精度评价。结果表明:分水岭分割算法能够准确分割CHM,利用无人机可见光遥感影像进行单木树高提取是可行的;将基于无人机可见光影像提取的树高值与野外实地调查得到的树高值进行对比,R2为0.893,RMSE为1.23m,估测精度为87.58%;同时,林分郁闭度会对单木树高估测产生影响,根据不同郁闭度条件下提取的3组样木树高与实地测量树高的决定系数(R2)分别是0.857,0.939和0.921,RMSE分别为1.450,1.097,0.896m,在低郁闭度林分内树高估测的精度显著高于高郁闭度林分。  相似文献   

9.
机载激光雷达和航空数码影像单木树高提取   总被引:6,自引:0,他引:6  
用激光雷达(LiDAR)数据和航空数码影像相结合进行单木水平树高反演.对研究区的LiDAR点云数据进行滤波和分类,根据地形特点、地表植被状况以及其他地类的分布,采用Tin Filter滤波算法提取地面回波点和植被回波点.用面向对象的方法对高空间分辨率(25 cm)的航空数码影像进行单株木检测.通过多尺度、树冠模式的分割创建影像对象和类层次,用最邻近距离和成员函数法进行影像对象的分类,并基于分类结果进行再分割.对分割后的树冠多边形进行边缘优化,以准确识别单株木.将植被回波点和影像分割后得到的树冠多边形进行叠加,计算多边形内的LiDAR数据最大高程差值,与实测树高进行相关分析,建立单木树高估测回归方程,平均估测精度为74.89%.  相似文献   

10.
针对无人机在森林资源监测中的便携性特点,利用无人机RGB三波段影像进行森林计测参数(株数、树高及蓄积量)的提取及精度验证。以华山松人工林为研究对象,以无人机RGB影像为主要信息源,在前期进行5块0.08hm~2华山松人工林标准地单木定位的基础上,采用冠层高度模型(CHM)最大值法和点云分割方法,提取华山松人工林计测参数,建立无人机RGB影像的华山松人工林单木二元材积模型。研究结果表明:1)采用CHM最大值分割法较点云分割方法精度高,单木株数分割精度分别为87.17%和80.79%;提取得到的树高与其地面实测所得树高的R~2相比较,使用CHM方法,R~2为0.71;而使用点云算法,R~2为0.69。2)基于CHM最大值法提取的单株冠幅和树高所建立的二元材积模型,其决定系数(R~2)为0.94,均方根误差(RMSE)为0.033 8m~3;与基于云南省华山松人工林二元材积表的标准地实测蓄积量调查结果相比,基于无人机RGB数据的5块标准地蓄积量监测精度分别为79.72%,81.64%,83.57%,82.49%,80.28%,平均精度达81.54%。基于无人机RGB影像的华山松人工林在森林计测参数提取中,CHM最大值分割法优于点云分割,所建立的树高和冠幅二元材积模型,可为华山松单层人工林无人机遥感监测提供参考。  相似文献   

11.
[目的]探索不同树种在样地和单木尺度上无人机激光雷达点云数据的单木分割效果,选取哈尔滨城市林业示范基地阔叶林(水曲柳)和针叶林(樟子松)两块样地为研究对象,对样地内树木点云进行单木分割并评价其分割效果,为后续单木结构参数的提取提供数据支持,同时丰富森林资源信息的调查手段.[方法]通过无人机激光雷达获得样地树木点云数据,...  相似文献   

12.
基于两期无人机影像的针叶林伐区蓄积量估算   总被引:1,自引:0,他引:1  
【目的】提出一种基于两期无人机影像的针叶林伐区蓄积量估算方法,为促进无人机数据在多类型林业样地资源调查中的深度应用提供依据。【方法】以福建省三明市将乐县金森林业股份有限公司伐区森林小班为试验区,首先,利用无人机遥感获取分辨率优于10 cm的两期影像,经Pix4D软件处理得到点云数据,在此基础上将小班区域未采伐前的林冠点云匹配到采伐后的小班地形点云上;然后,通过布料模拟滤波算法(CSF)分离匹配后的林冠点云和地形点云,采用自然领域插值法分别将林冠点云数据插值生成数字表面模型(DSM)、地形点云数据插值生成数字高程模型(DEM),二者相减获得冠层高度模型(CHM);接着,基于改进的局域最大值法搜索冠层高度模型中的林冠顶点,提取树高;最后,根据野外采集的400株马尾松和杉木树高、胸径数据,建立5个适用于福建省马尾松和杉木的胸径-树高模型,选择相关系数最高的模型推算胸径,并利用福建省单木材积公式估算小班区域蓄积量。【结果】1)两期无人机数据的点云匹配能较好消除陡峭地形对树高提取的影响;2)改进的局域最大值法可有效减少固定窗口搜索林冠顶点时出现的多提和漏提错误;3)小班区域估算株数为339株,实测株数为366株,估算的平均树高为18 m,实测平均树高为19 m,估算蓄积量为182 m~3,实测蓄积为199 m~3,株数、树高和蓄积量的估算精度均较高。【结论】借助无人机遥感技术,可实现森林蓄积量自动化估算,降低传统野外调查成本,推动森林资源的快速调查和更新。  相似文献   

13.
基于背包式激光雷达的天山云杉林单木因子估测   总被引:1,自引:0,他引:1  
单木因子高精度无损快速估测对森林资源监测和评估至关重要,背包式激光雷达在获取森林三维结构参数方面具有良好的应用潜力。以天山云杉林为研究对象,利用背包式激光雷达扫描样地获取点云数据进行单木分割识别和单木胸径、树高及冠幅面积等因子估测,以地面实测结合目视解译数据作为参照,进行精度评价及相关性检验。结果表明:利用背包式激光雷达数据进行单木分割的单木分割精度F值均大于0.9,精确率和召回率均值分别为0.96和0.90,识别率平均值为86.61%;单木胸径和树高估测结果决定系数R~2均大于0.90,胸径均方根误差RMSE均值为1.11,树高的为1.05;单木冠幅面积估测结果决定系数R~2均大于0.80,均方根误差RMSE均值为3.21。可见,使用背包式激光雷达能够实现对单木胸径、树高参数的高精度提取。  相似文献   

14.
根据秃杉人工林标准地调查数据,分析因变量与自变量的相关性,筛选最优因子,分别采用异速生长方程、多元线性回归方程构建秃杉树冠轮廓模型和冠幅模型。研究结果表明,最大冠幅深度与胸径、树高、枝下高、冠幅、冠长均显著相关。通过多元线性逐步回归,以胸径、树高拟合的最大冠幅深度模型较优。树冠轮廓模型以三参数幂函数的异速生长方程拟合效果较好。冠幅呈正态分布,以胸径、树高、优势树高、单位面积胸高断面积为模型最佳变量组合,模型残差上下分布比较均匀,不存在明显偏差,且材积随着冠幅的增大而增大,以二次方程模拟效果最佳。经检验,所构建的模型拟合效果较好,精度较高。  相似文献   

15.
无人机摄影获取单木三维信息方法研究   总被引:1,自引:0,他引:1  
随着无人机航空摄影测量技术的成熟和发展,改变了传统森林调查的手段,加快了森林调查的数字化、智能化发展。为提高单木因子的采集效率和精度,降低外业的工作强度,基于倾斜摄影测量技术,以多旋翼无人机为数据采集平台,实现了孤立单木的三维点云模型重建。在此基础上,建立了单木三维信息量测算法,提出切割法和投影法两种提取树冠投影面积的方法,并提取树高、树干任意处直径、树冠投影面积、冠幅、树冠表面积、树冠体积6项测树因子参数。结果表明:1)树木的总高度和第一枝下高的提取精度分别为96.28%和95.61%,胸径和上部直径的提取精度分别为96.24%和93.78%;2)利用切割法和投影法提取树冠投影面积的精度分别为96.28%和98.24%,提取冠幅的精度分别为89.65%和91.50%,提取树冠表面积的精度分别为96.78%和97.58%,提取树冠体积的精度分别为94.29%和96.14%;3)实践证明,该技术可很好地应用到古树名木的保护工作中,并可对森林调查的方式提供新的技术参考,具有较高的现实意义和实际应用价值。  相似文献   

16.
【目的】无人机机载激光雷达能够准确地测定单木、林分乃至大尺度森林结构参数(树高和树冠因子)。为应用无人机激光雷达技术准确估测森林蓄积量、生物量和碳储量提供计量依据和技术支撑。【方法】以150株实测马尾松生物量样本数据为研究对象,采用非线性回归估计方法和度量误差联立方程组方法,分析立木材积和地上生物量与树高、树冠因子的相关性,并在此基础上研究建立基于树高和树冠因子的立木材积与地上生物量相容模型。【结果】单株材积和地上生物量与树高因子的相关性最为紧密,其次才是树冠因子;基于树高和冠幅因子的二元材积和地上生物量模型预估精度较高,达到92%以上,再考虑冠长因子的三元模型预估精度改进不大;基于树高和冠幅因子的二元立木材积与地上生物量相容模型估计效果更好,相对于一元相容模型系统而言,二元相容模型拟合效果有较大幅度提高,预估精度达到92%以上。【结论】采用度量误差联立方程组方法可以有效解决基于树高和树冠因子的立木材积与地上生物量相容问题,并且预估精度达到92%以上,所建二元立木材积与地上生物量相容模型可为应用激光雷达技术反演森林蓄积量和生物量提供计量依据。  相似文献   

17.
使用无人机和智能手机分别从空中和地面拍摄的样地林分影像构建三维点云模型,并从三维点云模型中获取样地内单木树高和胸径参数。本研究以池杉人工林为研究对象,利用PhotoScan Agisoft软件对无人机倾斜摄影和智能手机近景摄影的样地影像进行三维重建,通过对齐照片、控制点刺点、对齐优化、建立密集点云等步骤,构建出与样地实景相符的三维点云模型;通过LiDAR 360软件从样地三维点云模型中获取单木的树高和胸径参数,将其与实地测量获取的单木树高和胸径参数进行对比分析。利用无人机和智能手机影像构建的三维模型可以满足《数字航空摄影测量测图规范》的精度要求。通过实测数据和点云数据获取的树高和胸径的平均差值分别为-0.9 m和-0.8 cm,平均相对误差分别为5.4%和7.1%。以实测数据作为自变量x,以点云数据作为因变量y,树高和胸径回归模型的R2分别为0.809 5和0.918 4。将倾斜摄影和近景摄影的点云模型统一在同一空间参考基准下可构建出与样地实景相匹配的三维点云模型,从样地三维点云模型中获取的单木树高和胸径与实地测量结果具有较好的线性相关性,本研究所使用的方法可以代...  相似文献   

18.
[目的 ]为将单木位置匹配至更精确的树干中心处,本研究发展了一种基于地基激光雷达提取胸径中心位置的空间校正方法。[方法 ]对高密度地基激光雷达点云数据,使用霍夫变换的方法提取单木胸径及圆心点,以外业调查的胸径数据作为精度控制基础,再用空间点校正方法将外业测量的样地单木相对空间位置匹配至提取的单木胸径中心点处,最后通过数字冠层高度模型特征分析实现单木位置的地理位置匹配。[结果 ]以黑龙江佳木斯孟家岗林场为研究区,对比分析3种不同株数密度的落叶松样地,提取胸径误差在1 cm之内,高、中、低株数密度样地单木位置在空间点校正时胸径误差2 cm误差范围内位置正确匹配率分别为91%、92.5%、98.6%。全部匹配的外业调查单木相对空间位置误差控制在1 m之内,且与机载激光雷达数字冠层模型影像地理位置匹配误差在0.5 m内。[结论 ]基于地基激光雷达提取胸径匹配单木空间位置的方法,极大地提高了单木空间位置测量精度。此方法的发展,不仅为局部样地单木分割等提供精确位置信息,也为大范围遥感数据提供可靠地面基础位置验证数据,是可靠的单木位置测量和多源数据匹配方法。  相似文献   

19.
【目的】精确估测银杏人工林有效叶面积指数(eLAI),以更好了解银杏人工林的生长和竞争、理解人工林生态系统的功能和生产力。【方法】基于多旋翼无人机激光雷达(LiDAR)系统获取的点云数据,结合45块地面实测样地数据,使用孔隙度模型法(通过计算点云的冠层穿透率,根据Beer-Lambert定律计算有效叶面积指数)和统计模型法(首先通过地面实测的有效叶面积指数和所提取的LiDAR特征变量建模,然后借助拟合的模型估测有效叶面积指数)对我国典型银杏人工林进行样地尺度的有效叶面积指数估测。【结果】1)使用统计模型法估测eLAI时,仅利用LiDAR高度特征变量估测精度为R2=0. 38(rRMSE=54%),引入其他特征变量(冠层密度特征、冠层容积比以及强度特征变量)后精度分别达到R2=0. 64(rRMSE=26%)、R2=0. 61(rRMSE=28%)、R2=0. 74(rRMSE=23%); 2)根据Cover将样地分组建模后发现,分组建模的精度优于不分组建模的精度;3)孔隙度模型法估测有效叶面积指数的精度为R2=0. 71(rRMSE=32. 0%)。【结论】结合多组LiDAR特征变量估测有效叶面积指数能够充分挖掘LiDAR数据包含的冠层结构特性,从而提升估测精度;同时,使用孔隙度模型法可以有效估测银杏人工林有效叶面积指数。无人机LiDAR点云在估测银杏人工林有效叶面积指数上具有较好的潜力。  相似文献   

20.
基于空间结构的杉木树冠生长可视化模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
[目的]定量研究杉木林分中不同空间结构对林木冠形生长变化的影响,实现基于空间结构的杉木树冠生长可视化模拟。[方法]以湖南省攸县黄丰桥国有林场为试验区,在林分中选择并划分空间结构单元,进行冠形和空间结构数据调查,将林木东南西北4个方向的活枝下高、冠高、冠幅作为林木冠形描述因子,将周围木影响距离、相对树高定义为水平空间结构参数Ph和垂直空间结构参数Pv,使用多元逐步回归的分析方法,分析冠形描述因子与年龄、水平、垂直空间结构参数的关系,建立不同空间结构下杉木冠形的生长变化模型。基于B样条曲线模拟杉木冠形,构建不同生长阶段的三维杉木模型,结合三维动态渲染技术,实现杉木树冠生长的可视化模拟。[结果]通过对年龄和水平、垂直空间结构参数的逐步回归分析,结果表明:林木活枝下高、冠高和年龄、垂直空间结构参数呈现显著相关关系,模型决定系数R~2分别为0.754和0.813;林木各向冠幅和年龄、水平空间结构参数呈现极显著相关关系,模型决定系数R~2为0.623。基于杉木树冠生长模型和三维动态渲染技术,实现了树冠在东南西北不同方向的生长可视化。[结论]通过划分空间结构单元的方法选择研究目标并进行数据调查,使用逐步回归的方法,分析杉木冠形数据和年龄与空间结构数据的关系,建立树冠各方向活枝下高、冠高、冠幅的生长模型,结合三维动态渲染技术,使用MOGRE三维渲染引擎作为工具,实现了基于空间结构的杉木树冠生长可视化模拟。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号