首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vedaprofen is a chiral nonsteroidal anti-inflammatory drug that has been developed as a gel formulation for oral administration to dogs and horses. The pharmacokinetics of vedaprofen and its enantiomers were studied in beagle dogs after single (intravenous solution and oral gel) and multiple (oral gel) dosing at a dosage of 0.5 mg/kg body weight. Plasma concentrations of vedaprofen and its enantiomers were analysed by HPLC. The plasma protein binding of vedaprofen was studied by ultrafiltration. The absorption of vedaprofen was rapid (tmax 0.63 +/- 0.14 h) and almost complete after oral administration (bioavailability 86 +/- 7%). The terminal half-lives after intravenous and oral administration, 16.8 +/- 2.2 and 12.7 +/- 1.7 h respectively, were of the same order of magnitude. Enantioselective analysis showed that the R(-) enantiomer predominated in plasma. The change in the plasma time course of the plasma R(-)/S(+) enantiomer concentration ratio over time was similar after single intravenous and oral dosing, with R(-)/S(+) ratios in the AUC of 1.7 +/- 0.5 and 1.9 +/- 0.2 respectively. Plasma protein binding of vedaprofen and its enantiomers was high (> 99.5%). Vedaprofen is absorbed rapidly from the gastrointestinal tract, has a high bioavailability and does not accumulate in plasma in dogs following repeated oral administration.  相似文献   

2.
OBJECTIVE: To evaluate the pharmacokinetics of pentoxifylline (PTX) and its 5-hydroxyhexyl-metabolite, metabolite 1 (M1), in dogs after IV administration of a single dose and oral administration of multiple doses. ANIMALS: 7 sexually intact, female, mixed-breed dogs. PROCEDURE: A crossover study design was used so that each of the dogs received all treatments in random order. A drug-free period of 5 days was allowed between treatments. Treatments included IV administration of a single dose of PTX (15 mg/kg of body weight), oral administration of PTX with food at a dosage of 15 mg/kg (q 8 h) for 5 days, and oral administration of PTX without food at a dosage of 15 mg/kg (q 8 h) for 5 days. Blood samples were taken at 0.25, 0.5, 1, 1.5, 2, 2.5, and 3 hours after the first and last dose of PTX was administered PO, and at 5, 10, 20, 40, 80, and 160 minutes after PTX was administered IV. RESULTS: PTX was rapidly absorbed and eliminated after oral administration. Mean bioavailability after oral administration ranged from 15 to 32% among treatment groups and was not affected by the presence of food. Higher plasma PTX concentrations and apparent bioavailability were observed after oral administration of the first dose, compared with the last dose during the 5-day treatment regimens. CONCLUSIONS AND CLINICAL RELEVANCE: In dogs, oral administration of 15 mg of PTX/kg results in plasma concentrations similar to those produced by therapeutic doses in humans, and a three-times-a-day dosing regimen is the most appropriate.  相似文献   

3.
The pharmacokinetics of lithium were determined in eight adult dogs. The data were fitted to a two-compartment model. Single intravenous doses of lithium chloride, and single oral doses of lithium carbonate were used. The mean plasma lithium half-life (t1/2) following the single intravenous dose was 21.6 h, and the mean apparent specific volume of distribution of the central compartment (V'c) was 0.189 l/kg. Mean bioavailability was 78.8% following oral administration.  相似文献   

4.
Pharmacokinetics of tinidazole in dogs and cats   总被引:1,自引:0,他引:1  
Pharmacokinetics of tinidazole in dogs and cats after single intravenous (15 mg/kg) and oral doses (15 mg/kg or 30 mg/kg) were studied in a randomized crossover study. Tinidazole was completely absorbed at both oral dose levels in cats and dogs. Peak tinidazole concentration in plasma was 17.8 micrograms/ml in dogs and 22.5 micrograms/ml in cats after 15 mg/kg p.o. The oral dose of 30 mg/kg resulted in peak levels of 37.9 micrograms/ml in dogs and 33.6 micrograms/ml in cats. The apparent total plasma clearance of the drug was about twofold higher in dogs than in cats, resulting in an elimination half-life that was twice as long in cats (8.4 h) as in dogs (4.4 h). The apparent volume of distribution was 663 ml/kg in dogs and 536 ml/kg in cats. Therapeutic plasma drug concentrations higher than the MIC values of most tinidazole-sensitive bacteria were achieved for 24 h in cats and for 12 h in dogs after a single oral dose of 15 mg/kg. From the pharmacokinetic standpoint tinidazole seems to be well-suited to clinical use in small animal practice.  相似文献   

5.
Long-term oral treatment with cimetidine is recommended to reduce vomiting in dogs with chronic gastritis. Despite this, few studies have specifically examined the plasma disposition and pharmacokinetics of cimetidine in dogs, particularly following repeated oral administration. The pharmacokinetics of cimetidine following oral administration as tablets was investigated in healthy dogs. Cimetidine was absorbed rapidly post-treatment ( t max = 0.5 h). A mean absolute bioavailability of 75% was calculated following a single oral administration of 5 mg cimetidine/kg body weight. After intravenous administration, a plasma half-life of 1.6 h was calculated. Repeated oral administration at the recommended dose rate and regime (5 mg/kg body weight three times daily) for 30 consecutive days did not lead to any accumulation of cimetidine in plasma. Food intake concomitant with oral administration of cimetidine delayed ( t max = 2.25 h) and decreased the rate and extent of absorption ( AUC ) by about 40%. Cimetidine was well absorbed in fasted dogs. Administration of food decreased the bioavailability of cimetidine by 40%. Cimetidine does not accumulate over time in plasma when administered long term to dogs.  相似文献   

6.
The pharmacokinetics of theophylline were investigated in dogs following intravenous, single oral, and multiple oral doses of aminophylline. Mean half-life ( t 1/2) of theophylline following single intravenous administration was 5.7 h and the apparent specific volume of distribution ( V'd area) was 0.82 litre/kg. The bioavailability of theophylline was high (91%) following oral administration of aminophylline tablets and the absorption half-life ( t 1/2 ab) was 0.4 h.
Theophylline plasma concentrations observed following repeated oral administration of aminophylline tablets were somewhat greater than predicted. This suggests that theophylline plasma concentrations should be monitored and the dosage regimen individually adjusted in critically ill animals.  相似文献   

7.
The pharmacokinetic disposition of 2-mercaptopropionylglycine (2-MPG) given as a single intravenous injection and/or as a single oral dose was studied in 9 normal and 13 cystinuric dogs. After intravenous injection of approximately 10 or 20 mg/kg body weight the pharmacokinetics were best described by a three-exponential function. The first phase involved a distribution process apparently including establishment of drug-plasma protein and drug-tissue binding. The second phase involved rapid renal elimination and 60% of the drug was excreted within 3 h of administration. There was also a slow terminal third phase with a long half-life after both intravenous (t1/2 = 23 h) and oral (t1/2 = 22 h) administration. No dose dependency was observed. A deep pool of reversibly tissue-bound 2-MPG was indicated by a Vss of 3.3 +/- 0.9 l/kg body weight and the long terminal elimination phase. Total clearance was estimated as 4.1 +/- 0.9 ml/min/kg body weight. 2-MPG was eliminated mainly by renal excretion, but there was a difference in recovery of dose between normal and cystinuric dogs. During the first 24 h after intravenous and oral administration, 69% and 54%, respectively, of the drug was recovered in the urine of normal dogs. The corresponding figures in cystinuric dogs were 44% and 29%, respectively. The absolute bioavailability (FAUC) was 88 +/- 20% in normal dogs.  相似文献   

8.
Using scintillation counting and autoradiographical techniques, the whole-body distribution in week-old uninfected chickens of the anticoccidial agent sulphaquinoxaline (SQ) labelled with 35S was established at various time intervals after a single oral dose either alone or following continuous in-feed medication with unlabelled SQ, and after a single intravenous dose. The distribution was also established in chickens infected with the coccidia Eimeria acervulina or E. tenella , after a single oral dose of radiolabelled SQ administered either alone or following continuous in-feed medication with unlabelled SQ, as for uninfected chicks. In all uninfected chicks, SQ was rapidly absorbed from the gut and was distributed to all tissues. It appeared at high concentrations in the bile and kidneys 0.5 h after dosing. In chickens that had previously received unlabelled SQ in the diet, a radiolabelled dose maintained steadier tissue concentrations than the sharp rise and fall detected after a single oral dose. Intravenous dosing of uninfected chicks showed that SQ was secreted by the crop, gizzard and caecal epithelia into their lumina. Infection with E. acervulina or E. tenella coincided with an overall 3.5-fold sustained increase of SQ concentration in chick tissues. An updated hypothesis including these new observations for the anticoccidial mode of action of SQ in chickens is expounded.  相似文献   

9.
The concentration of serum phenytoin was determined in normal dogs following the administration of phenytoin by either the intravenous or oral route. An intravenous dose of 11 and 33 mg/kg of body weight was given to six dogs and a further dose of 44 mg/kg was given to two dogs. Serial blood samples were taken following the three doses for determination of pharmacokinetic parameters. The mean half-life was 3.35, 3.84 and 4.57 h as the dose was increased. Signs of toxicity occurred immediately following the infusion of phenytoin (emesis, ataxia and seizures). In the first oral studies, serial blood samples were taken for 2 consecutive days following a dose of 11 and 88 mg/kg, t.i.d. The time—concentration profiles of phenytoin varied significantly from one day to the next in the same dog. In the second oral study, blood samples were taken at 3 and 7 h following a dose of 11, 22, 44, 66 and 88 mg/kg, t.i.d. There was a poor correlation between the size of the oral dose and the concentration of serum phenytoin. Due to the short half-life and poor absorption of phenytoin in dogs, it was concluded that the oral administration of phenytoin in dogs produces sub-therapeutic and erratic serum concentrations of phenytoin which makes its efficacy as an anti-convulsant questionable.  相似文献   

10.
Plasma disposition of sulphadimidine (SDM) and its metabolites was studied in laying hens after 100 mg SDM kg-1 doses were administered as a single intravenous dose, a single oral dose and multiple oral doses once daily for five consecutive days. SDM was extensively metabolised by acetylation and hydroxylation. In plasma, the metabolite observed with the highest concentration was N4-acetylsulphadimidine (N4-SDM) followed by hydroxymethylsulphadimidine (CH2OH) and 5-hydroxysulphadimidine. Following intravenous administration a biphasic elimination (as seen for a capacity limited reaction) pattern for SDM and its metabolites was observed. Multiple (5x) SDM dosing revealed plasma SDM concentrations ranging between 7 and 108 micrograms ml-1; within 96 hours of termination of the multiple SDM dosing, the plasma SDM concentration was below 0.01 micrograms ml-1. The renal clearances of N4-SDM and the hydroxy metabolites were approximately 10 times greater than that of SDM. The SDM mass balance (faecal/urinary recovery) showed a loss of 56 per cent after intravenous dosage and of 67 per cent after a single oral dosage; the hydroxy metabolites accounted for the highest percentage in faeces/urine. Thus additional metabolic pathways must exist in laying hens.  相似文献   

11.
A slurry of activated carbon (activated charcoal) in electrolyte replacement solution given by stomach tube and antiarrhythmic drugs given parenterally cured 9 of 11 calves dosed 7 to 24 h previously with a lethal amount (20g/kg) of Bryophyllum tubiflorum flower heads. Two of another 4 calves treated 26 to 36 h after dosing with flowers survived. B. tubiflorum toxins are bufadienolides (cardiac glycosides). Activated carbon was effective at a single dose of 5 g/kg. Calves were rehydrated with oral electrolyte replacement solution at 150 ml/kg in divided doses over 24 h. Tachycardia was treated with intravenous lignocaine (200 mg doses) or propranolol (5 mg doses) and atrioventricular block with atropine (0.5 mg/kg).  相似文献   

12.
Oral l -thyroxine ( l -T4) supplementation is used to replace thyroid hormone concentrations in dogs with hypothyroidism. The pharmacokinetics of l -T4 following administration of a solution (Leventa®) was investigated in healthy dogs. l -T4 was absorbed fairly rapidly ( t max 3 h). A mean bioavailability of 22% was calculated following a single oral administration of 40 μg l -T4/kg body weight. Repeated oral administration at the same dose for 14 consecutive days did not lead to any accumulation of T4 in serum. After intravenous administration of l -T4, a serum half-life of 11.6 h was calculated. Food intake concomitant with l -T4 oral administration delayed l -T4 absorption and decreased its rate and extent by about 45%. The relative bioavailability of l -T4 following administration of a tablet formulation was about 50% of that of the l -T4 solution. The pharmacokinetic properties of liquid l -T4 after oral administration support the use of a dose rate of 20 μg/kg once daily, as a starting dose for replacement therapy in dogs with hypothyroidism.  相似文献   

13.
Clomipramine is a tricyclic antidepressant that has been recommended for the treatment of canine compulsive disorder. The pharmacokinetics of clomipramine in dogs have not been reported. This study describes the pharmacokinetics of clomipramine and its active metabolite, desmethylclomipramine, in six male dogs. Serial blood samples were collected following both a single oral dose of clomipramine (3 mg/kg) and 28 consecutive daily oral doses (3 mg/kg q 24 h). In addition, 'peak' and 'trough' samples were taken throughout the 28-day dosing period. Plasma was assayed for total (free and protein-bound) clomipramine and desmethylclomipramine, using gas-chromatography with mass spectrometric detection. Various pharmacokinetic parameters were then determined. Following a single dose of clomipramine, time of maximum plasma concentration ( t max) of clomipramine was 0.75–3.1 h, maximum plasma concentration ( C max) was 16–310 ng/mL and elimination half-life ( t 1/2el) was 1.2–16 h; t max of desmethylclomipramine was 1.4–8.8 h, C max was 21–134 ng/mL and t 1/2el was 1.2–2.3 h. Following multiple dosing, there was a numeric increase in these parameters; t max of clomipramine was 3–8 h, C max was 43–222 ng/mL and t 1/2el was 1.2–16 h; t max of desmethylclomipramine was 1.4–8.8 h, C max was 21–134 ng/mL and t 1/2el was 1.2–2.3 h. Clinically significant differences between dogs and humans in the pharmacokinetics of oral clomipramine are discussed.  相似文献   

14.
Pimobendan is an inodilator used in the treatment of canine congestive heart failure (CHF). The aim of this study was to investigate the pharmacokinetics and cardiovascular effects of a nonaqueous oral solution of pimobendan using a single‐dose, operator‐blinded, parallel‐dose study design. Eight healthy dogs were divided into two treatment groups consisting of water (negative control) and pimobendan solution. Plasma samples and noninvasive measures of cardiovascular function were obtained over a 24‐h period following dosing. Pimobendan and its active metabolite were quantified using an ultra‐high‐performance liquid chromatography–mass spectrometer (UHPLC‐MS) assay. The oral pimobendan solution was rapidly absorbed [time taken to reach maximum concentration (Tmax) 1.1 h] and readily converted to the active metabolite (metabolite Tmax 1.3 h). The elimination half‐life was short for both pimobendan and its active metabolite (0.9 and 1.6 h, respectively). Maximal cardiovascular effects occurred at 2–4 h after a single oral dose, with measurable effects occurring primarily in echocardiographic indices of systolic function. Significant effects persisted for <8 h. The pimobendan nonaqueous oral solution was well tolerated by study dogs.  相似文献   

15.
Six dogs were used to determine single and multiple oral dose pharmacokinetics of ABT‐116. Blood was collected for subsequent analysis prior to and at 15, 30 min and 1, 2, 4, 6, 12, 18, and 24 h after administration of a single 30 mg/kg dose of ABT‐116. Results showed a half‐life of 6.9 h, kel of 0.1/h, AUC of 56.5 μg·h/mL, Tmax of 3.7 h, and Cmax of 3.8 μg/mL. Based on data from this initial phase, a dose of 10 mg/kg of ABT‐116 (no placebo control) was selected and administered to the same six dogs once daily for five consecutive days. Behavioral observations, heart rate, respiratory rate, temperature, thermal and mechanical (proximal and distal limb) nociceptive thresholds, and blood collection were performed prior to and 4, 8, and 16 h after drug administration each day. The majority of plasma concentrations were above the efficacious concentration (0.23 μg/mL previously determined for rodents) for analgesia during the 24‐h sampling period. Thermal and distal limb mechanical thresholds were increased at 4 and 8 h, and at 4, 8, and 16 h respectively, postdosing. Body temperature increased on the first day of dosing. Results suggest adequate exposure and antinociceptive effects of 10 mg/kg ABT‐116 following oral delivery in dogs.  相似文献   

16.
Oral bioavailability and pharmacokinetic behaviour of clindamycin in dogs was investigated following intravenous (IV) and oral (capsules) administration of clindamycin hydrochloride, at the dose of 11 mg/kg BW. The absorption after oral administration was fast, with a mean absorption time (MAT) of 0.87+/-0.40 h, and bioavailability was 72.55+/-9.86%. Total clearance (CL) of clindamycin was low, after both IV and oral administration (0.503+/-0.095 vs. 0.458+/-0.087 L/h/kg). Volume of distribution at steady-state (IV) was 2.48+/-0.48 L/kg, indicating a wide distribution of clindamycin in body fluids and tissues. Elimination half-lives were similar for both routes of administration (4.37+/-1.20 h for IV, vs. 4.37+/-0.73 h for oral). Serum clindamycin concentrations following administration of capsules remained above the MICs of very susceptible microorganisms (0.04-0.5 microg/mL) for 12 or 10 h, respectively. Time above the mean inhibitory concentration (MIC) is considered as the index predicting the efficacy of clindamycin (T(>MIC) must be at least 40-50% of the dosing interval), so a once-daily oral administration of 11 mg/kg BW of clindamycin can be considered therapeutically effective. For less susceptible bacteria (with MICs of 0.5-2 microg/mL) the same dose should be given but twice daily.  相似文献   

17.
Pharmacokinetic studies of theophylline in cats   总被引:1,自引:0,他引:1  
The pharmacokinetics of theophylline were determined in adult cats and the data were fitted to a two-compartment model. Single intravenous and multiple oral doses of aminophylline were used. The mean plasma theophylline half-life ( t 1/2) following the single intravenous dose was 7.8 h and the mean apparent specific volume of distribution ( V 'd(area)) was 0.46 l/kg. The absorption half-life ( t 1/2 ab ) was 0.5 h and the bioavailability was 96% following oral administration. There was excellent agreement between the predicted and observed plasma theophylline concentrations following multiple oral doses.  相似文献   

18.
Concentrations of enrofloxacin equivalent activity were determined by microbiological assay in the plasma of healthy and E. coli-infected broilers following single intravenous and oral administrations at 10 mg/kg. Tissue distribution and residue-depletion following multiple oral doses (10 mg/kg for 3 successive days) were investigated. Pharmacokinetic variables were determined using compartmental and non-compartmental analytical methods. Plasma enrofloxacin concentrations after intravenous dosing to healthy and infected birds were best described by a two-compartments model. Enrofloxacin concentrations in plasma of infected birds were lower than those of healthy ones. The disposition kinetics of intravenously administered drug in healthy and infected birds were somewhat different. The elimination half-life (t1/2 beta) was 4.75 vs. 3.63 h; mean residence time (MRT) was 6.72 vs 4.90 h; apparent volume of the central compartment (Vc) was 1.11 vs 1.57 l/kg; rate constant for transfer from peripheral to central compartment (k21) was 1.15 vs 1.41 h-1 and total body clearance (ClB) was 0.35 vs 0.53 l/h/kg in healthy and infected birds, respectively. After oral administration, the absorption half-life (t1/2abs) in the infected birds was significantly longer than in healthy birds, while elimination half-life (t1/2el) and MRT were significantly shorter. Bioavailability was higher in infected birds (72.50%) as compared to healthy ones (69.78%). Enrofloxacin was detected in the tissues of healthy and infected birds after daily oral dosing of 10 mg/kg for 3 days. It was more concentrated in liver, kidney, and breast muscle. The minimal inhibitory concentration (MIC) of enrofloxacin against E. coli was 0.064 microgram/ml. On the basis of maintaining enrofloxacin plasma concentrations over the MIC, a dose of 10 mg/kg given intravenously every 20.14 hrs or orally every 20.86 hrs should provide tissue concentrations effective against E. coli infection in chickens.  相似文献   

19.
A study on the bioavailability and pharmacokinetics of florfenicol was conducted in six healthy dogs following a single intravenous (i.v.) or oral (p.o.) dose of 20 mg kg(-1) body weight (b.w.). Florfenicol concentrations in serum were determined by a high-performance liquid chromatography/mass spectrometry. Plasma concentration-time data after p.o. or i.v. administration were analyzed by a non-compartmental analysis. Following i.v. injection, the total body clearance was 1.03 (0.49) L kg(-1)h(-1) and the volume of distribution at steady-state was 1.45 (0.82) L kg(-1). Florfenicol was rapidly distributed and eliminated following i.v. injection with 1.11 (0.94)h of the elimination half-life. After oral administration, the calculated mean C(max) values (6.18 microg ml(-1)) were reached at 0.94 h in dogs. The elimination half-life of florfenicol was 1.24 (0.64) h and the absolute bioavailability (F) was achieved 95.43 (11.60)% after oral administration of florfenicol. Florfenicol amine, the major metabolite of florfenicol, was detected in all dogs after i.v. and p.o. administrations.  相似文献   

20.
Plasma and tissue concentration and pharmacokinetics of chlortetracycline (CTC) was determined in milk-fed and conventionally fed Holstein calves. A two-compartment open model was used after a single intravenous dose (11 mgn CTC/kg body weight). There were no significant differences between dietary treatments. The drug was rapidly distributed from plasma into the peripheral compartment but was slowly eliminated, with detectable concentration of CTC continuing for 72 h after dosing. A single-compartment model was used after a single oral dose (22 mg CTC/kg body weight). All but four of the kinetic parameters were significantly different for the two dietary treatments. Milk-fed calves had a larger area under the plasma level curve, a larger fraction of the dose absorbed, a smaller volume of distribution and a smaller overall body clearance rate. Estimated recovery of CTC in the urine of the milk-fed calves was greater, regardless of route of administration. The concentration of CTC in tissues following an oral dose was greatest in kidney, followed by liver, heart, skeletal muscle, spleen and brain. Tissue depletion of CTC closely paralleled the decline in plasma concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号