首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rusts are major biotic constraints of legumes worldwide. Breeding for rust resistance is regarded as the most cost efficient method for rust control. However, in contrast to common bean for which complete monogenic resistance exists and is efficiently used, most of the rust resistance reactions described so far in cool season food legumes are incomplete and of complex inheritance. Incomplete resistance has been described in faba bean, pea, chickpea and lentil and several of their associated QTLs have been mapped. However, the relatively large distance between the QTLs and their associated molecular markers hampers their efficient use for marker assisted selection. Their large genome size drastically hampers the development of genomic resource and limits the saturation of their genetic maps. The use of model plants such as the model legume Medicago truncatula may circumvent this drawback. The important genetic and genomic resources and tools available for this model legume can considerably speed up the discovery and validation of new genes and QTLs in resistance to legume pathogens. Here, the potential of M. truncatula as a model to study rust resistance in legumes, and to transfer rust resistance genes to cool season grain legumes is reviewed.  相似文献   

2.
Summary Lentil is a self-pollinating diploid (2n = 14 chromosomes) annual cool season legume crop that is produced throughout the world and is highly valued as a high protein food. Several abiotic stresses are important to lentil yields world wide and include drought, heat, salt susceptibility and iron deficiency. The biotic stresses are numerous and include: susceptibility to Ascochyta blight, caused by Ascochyta lentis; Anthracnose, caused by Colletotrichum truncatum; Fusarium wilt, caused by Fusarium oxysporum; Sclerotinia white mold, caused by Sclerotinia sclerotiorum; rust, caused by Uromyces fabae; and numerous aphid transmitted viruses. Lentil is also highly susceptible to several species of Orabanche prevalent in the Mediterranean region, for which there does not appear to be much resistance in the germplasm. Plant breeders and geneticists have addressed these stresses by identifying resistant/tolerant germplasm, determining the genetics involved and the genetic map positions of the resistant genes. To this end progress has been made in mapping the lentil genome and several genetic maps are available that eventually will lead to the development of a consensus map for lentil. Marker density has been limited in the published genetic maps and there is a distinct lack of co-dominant markers that would facilitate comparisons of the available genetic maps and efficient identification of markers closely linked to genes of interest. Molecular breeding of lentil for disease resistance genes using marker assisted selection, particularly for resistance to Ascochyta blight and Anthracnose, is underway in Australia and Canada and promising results have been obtained. Comparative genomics and synteny analyses with closely related legumes promises to further advance the knowledge of the lentil genome and provide lentil breeders with additional genes and selectable markers for use in marker assisted selection. Genomic tools such as macro and micro arrays, reverse genetics and genetic transformation are emerging technologies that may eventually be available for use in lentil crop improvement.  相似文献   

3.
Summary Soil-borne fungal diseases are among the most important factors, limiting the yield of grain legumes in many countries worldwide. Root rot, caused by Aphanomyces euteiches, Rhizoctonia solani, Fusarium solani and wilt, caused by several formae speciales of Fusarium oxysporum are the most destructive soil-borne diseases of pea, chickpea, lentil, fababean and lupin. The most effective control of these diseases is achieved through the use of resistant varieties. In this paper, recent advances in conventional and innovative screening methods for disease resistance are presented. Many grain legume accessions, which are maintained in national and international germplasm collections, have been evaluated for disease resistance and numerous resistant varieties have been released following incorporation of identified resistance genes from these sources. Recent identification of molecular markers tightly linked to resistance genes has greatly enhanced breeding programs by making marker assisted selection (MAS) possible and allowing the development of varieties with multiple disease resistance. Progress in the understanding of the biology of soil-borne fungal pathogens of grain legumes is also reviewed with particular reference to the genetic structure of their populations, diagnosis and host–pathogen interaction.  相似文献   

4.
Legumes are important components of sustainable agricultural production, food, nutrition and income systems of developing countries. In spite of their importance, legume crop production is challenged by a number of biotic (diseases and pests) and abiotic stresses (heat, frost, drought and salinity), edaphic factors (associated with soil nutrient deficits) and policy issues (where less emphasis is put on legumes compared to priority starchy staples). Significant research and development work have been done in the past decade on important grain legumes through collaborative bilateral and multilateral projects as well as the CGIAR Research Program on Grain Legumes (CRP‐GL). Through these initiatives, genomic resources and genomic tools such as draft genome sequence, resequencing data, large‐scale genomewide markers, dense genetic maps, quantitative trait loci (QTLs) and diagnostic markers have been developed for further use in multiple genetic and breeding applications. Also, these mega‐initiatives facilitated release of a number of new varieties and also dissemination of on‐the‐shelf varieties to the farmers. More efforts are needed to enhance genetic gains by reducing the time required in cultivar development through integration of genomics‐assisted breeding approaches and rapid generation advancement.  相似文献   

5.
Summary Several Lathyrus species and in particular Lathyrus sativus (grass pea) have great agronomic potential as grain and forage legume, especially in drought conditions. Grass pea is rightly considered as one of the most promising sources of calories and protein for the vast and expanding populations of drought-prone and marginal areas of Asia and Africa. It is virtually the only species that can yield high protein food and feed under these conditions. It is superior in yield, protein value, nitrogen fixation, and drought, flood and salinity tolerance than other legume crops. Lathyrus species have a considerable potential in crop rotation, improving soil physical conditions; reducing the amount of disease and weed populations, with the overall reduction of production costs. Grass pea was already in use in Neolithic times, and presently is considered as a model crop for sustainable agriculture. As a result of the little breeding effort invested in it compared to other legumes, grass pea cultivation has shown a regressive pattern in many areas in recent decades. This is due to variable yield caused by sensitivity to diseases and stress factors and above all, to the presence of the neurotoxin β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), increasing the danger of genetic erosion. However, both L. sativus and L. cicera are gaining interest as grain legume crops in Mediterranean-type environments and production is increasing in Ethiopia, China, Australia and several European countries. This paper reviews research work on Lathyrus breeding focusing mainly on biotic and abiotic resistance improvement, and lists current developments in biotechnologies to identify challenges for Lathyrus improvement in the future.  相似文献   

6.
Chickpea (Cicer arietinum L.) is cultivated mostly in the arid and semi‐arid regions of the world. Climate change will bring new production scenarios as the entire growing area in Indo–Pak subcontinent, major producing area of chickpea, is expected to undergo ecological change, warranting strategic planning for crop breeding and husbandry. Conventional breeding has produced several high‐yielding chickpea genotypes without exploiting its potential yield owing to a number of constraints. Among these, abiotic stresses include drought, salinity, water logging, high temperature and chilling frequently limit growth and productivity of chickpea. The genetic complexity of these abiotic stresses and lack of proper screening techniques and phenotyping techniques and genotype‐by‐environment interaction have further jeopardized the breeding programme of chickpea. Therefore, considering all dispiriting aspects of abiotic stresses, the scientists have to understand the knowledge gap involving the physiological, biochemical and molecular complex network of abiotic stresses mechanism. Above all emerging ‘omics’ approaches will lead the breeders to mine the ‘treasuring genes’ from wild donors and tailor a genotype harbouring ‘climate resilient’ genes to mitigate the challenges in chickpea production.  相似文献   

7.
Bulb onion (Allium cepa L.) is an ancient crop that is thought to have originated in Central Asia and has been cultivated for over 5000 years. Classical genetic and plant breeding approaches have been used to improve onion yield, quality, and resistance against biotic and abiotic stresses. However, its biennial life cycle, cross‐pollinated nature and high inbreeding depression have proved challenging for the characterization and breeding of improved traits. New technologies, notably next‐generation sequencing, are providing researchers with the genomic resources and approaches to overcome these challenges. Using these genomic technologies, molecular markers are being rapidly developed and utilized for germplasm analysis and mapping in onion. These new tools and knowledge are allowing the integration of molecular and conventional breeding to speed up onion improvement programmes. In this review, we outline recent progress in onion genomics and molecular genetics and prospects for enhancing onion yield and quality in the future.  相似文献   

8.
Cowpea, Vigna unguiculata (L.), is an important grain legume grown in the tropics where it constitutes a valuable source of protein in the diets of millions of people. Some abiotic and biotic stresses adversely affect its productivity. A review of the genetics, genomics and breeding of cowpea is presented in this article. Cowpea breeding programmes have studied intensively qualitative and quantitative genetics of the crop to better enhance its improvement. A number of initiatives including Tropical Legumes projects have contributed to the development of cowpea genomic resources. Recent progress in the development of consensus genetic map containing 37,372 SNPs mapped to 3,280 bins will strengthen cowpea trait discovery pipeline. Several informative markers associated with quantitative trait loci (QTL) related to desirable attributes of cowpea were generated. Cowpea genetic improvement activities aim at the development of drought tolerant, phosphorus use efficient, bacterial blight and virus resistant lines through exploiting available genetic resources as well as deployment of modern breeding tools that will enhance genetic gain when grown by sub‐Saharan Africa farmers.  相似文献   

9.
Summary Necrotrophic pathogens of the cool season food legumes (pea, lentil, chickpea, faba bean and lupin) cause wide spread disease and severe crop losses throughout the world. Environmental conditions play an important role in the development and spread of these diseases. Form of inoculum, inoculum concentration and physiological plant growth stage all affect the degree of infection and the amount of crop loss. Measures to control these diseases have relied on identification of resistant germplasm and development of resistant varieties through screening in the field and in controlled environments. Procedures for screening and scoring germplasm and breeding lines for resistance have lacked uniformity among the various programs worldwide. However, this review highlights the most consistent screening and scoring procedures that are simple to use and provide reliable results. Sources of resistance to the major necrotrophic fungi are summarized for each of the cool season food legumes. Marker-assisted selection is underway for Ascochyta blight of pea, lentil and chickpea, and Phomopsis blight of lupin. Other measures such as fungicidal control and cultural control are also reviewed. The emerging genomic information on the model legume, Medicago truncatula, which has various degrees of genetic synteny with the cool season food legumes, has promise for identification of closely linked markers for resistance genes and possibly for eventual map-based cloning of resistance genes. Durable resistance to the necrotrophic pathogens is a common goal of cool season food legume breeders.  相似文献   

10.
Common bean (Phaseolus vulgaris L.) is an important legume crop worldwide. The International Centre for Tropical Agriculture (CIAT) and its national partners in Africa aim to overcome production constraints of common bean and address the food, nutrition needs and market demands through development of multitrait bean varieties. Breeding is guided by principles of market‐driven approaches to develop client‐demanded varieties. Germplasm accessions from especially two sister species, P. coccineus and P. acutifolius, have been utilized as sources of resistance to major production constraints and interspecific lines deployed. Elucidation of plant mechanisms governing pest and disease resistance, abiotic stress tolerance and grain nutritional quality guides the selection methods used by the breeders. Molecular markers are used to select for resistance to key diseases and insect pests. Efforts have been made to utilize modern genomic tools to increase scale, efficiency, accuracy and speed of breeding. Through gender‐responsive participatory variety selection, market‐demanded varieties have been released in several African countries. These new bean varieties are a key component of sustainable food systems in the tropics.  相似文献   

11.
A large global land area is affected by saline, alkali (sodic), and acid soil conditions. Cool season food legumes are important crops in many countries with such adverse soils. Tolerant genotypes have been identified in many crops, including legumes. However, very little has been published on selection of tolerant cool season food legume crops. The inadequate knowledge and understanding of the responses of cool season food legume crops to these abiotic stresses, necessitates action by a collaborative network of interdisciplinary teams to make rapid progress in identifying tolerant germplasm and developing cultivars better adapted to unfavorable soil conditions.  相似文献   

12.
Summary Breeding for resistance to biotic and abiotic stresses of global importance in common bean is reviewed with emphasis on development and application of marker-assisted selection (MAS). The implementation and adoption of MAS in breeding for disease resistance is advanced compared to the implementation of MAS for insect and abiotic stress resistance. Highlighted examples of breeding in common bean using molecular markers reveal the role and success of MAS in gene pyramiding, rapidly deploying resistance genes via marker-assisted backcrossing, enabling simpler detection and selection of resistance genes in absence of the pathogen, and contributing to simplified breeding of complex traits by detection and indirect selection of quantitative trait loci (QTL) with major effects. The current status of MAS in breeding for resistance to angular leaf spot, anthracnose, Bean common mosaic and Bean common mosaic necrosis viruses, Beet curly top virus, Bean golden yellow mosaic virus, common bacterial blight, halo bacterial blight, rust, root rots, and white mold is reviewed in detail. Cumulative mapping of disease resistance traits has revealed new resistance gene clusters while adding to others, and reinforces the co-location of QTL conditioning resistance with specific resistance genes and defense-related genes. Breeding for resistance to insect pests is updated for bean pod weevil (Apion), bruchid seed weevils, leafhopper, thrips, bean fly, and whitefly, including the use of arcelin proteins as selectable markers for resistance to bruchid seed weevils. Breeding for resistance to abiotic stresses concentrates on drought, low soil phosphorus, and improved symbiotic nitrogen fixation. The combination of root growth and morphology traits, phosphorus uptake mechanisms, root acid exudation, and other traits in alleviating phosphorus deficiency, and identification of numerous QTL of relatively minor effect associated with each trait, reveals the complexity to be addressed in breeding for abiotic stress resistance in common bean.  相似文献   

13.
笔者从食用豆抗性种质资源的筛选与鉴定、抗性机制、抗性遗传规律研究及基因标记3个方面对食用豆抗性育种研究进行了综述,回顾并总结了前人在食用豆抗性育种方面所取得的成果,重点阐述了抗性相关基因(Br)的研究动态,指出今后的研究方向主要集中在抗性相关基因(Br)的定位及功能验证方面,并就目前所遇到的困难进行了讨论与分析,探讨了抗豆象育种的重要性,并对今后的研究方向进行了规划。以期对促进国内食用豆抗性育种研究有所裨益。  相似文献   

14.
Wild species which are crossable to cultivated pea, lentil, and chickpea have been collected and are maintained in major germplasm collections throughout the world. Wild species of Vicia crossable to the cultivated faba bean have not been found. The primary, secondary, and tertiary gene pools of the cool season food legumes represent potential genetic diversity that may eventually be exploited in cultivated types to overcome biotic and abiotic stresses. Technical difficulties in obtaining hybrids beyond those within the primary gene pool is a major obstacle. Reproductive isolation, embryo breakdown, hybrid sterility, and limited genetic recombination are major barriers to greater use of wild germplasm. Conventional crossing has been successful in producing interspecific hybrids in Lens, Cicer and Pisum and those hybrids are being evaluated for desired recombinants. In vitro culture of hybrid embryos has been successful in overcoming barriers to wider crosses in Lens. The successful transfer of genes from wide sources to cultivated types can be assisted by repeated backcrossing and selection designed to leave behind undesired traits while transferring genes of interest. Molecular marker assisted selection may become a valuable tool in the future use of wild species. In general, too little is known about the possible genetic variation available in wild species that could be valuable in developing resistance to biotic and abiotic stresses. Current efforts on the use of wide hybridization in the cool season food legumes are reviewed and discussed.  相似文献   

15.
Chickpea (Cicer arietinum L.) production has remained static for the past two decades. One major limiting factor has been susceptibility of cultivars to several biotic and abiotic stresses that adversely affect yield. In recent years, cultivars resistant to Ascochyta blight (Ascochyta rabiei [Pass.] Lab.), Fusarium wilt (Fusarium oxysporum f. sp. ciceris), and cold have been bred and released in many countries. Some progress has been made in breeding for resistance to drought, insects, and cyst nematode, but not for viruses, heat, and salinity. Two or more stresses are of equal importance in most chickpea growing areas. Therefore, future efforts should be directed toward the development of cultivars with multiple-stress resistance. Proper understanding of important stresses in different countries and the genetics of resistance should lead to more systematic approaches to resistance breeding. Wild Cicer species hold promise and deserve attention in resistance breeding.  相似文献   

16.
V. Kumar  M. R. Davey 《Euphytica》1991,55(2):157-169
Summary The merits and limitations of somatic cell techniques involving Agrobacterium-mediated transformation, direct gene transfer and protoplast fusion, are discussed in relation to the genetic improvement of forage and grain legumes. Whilst progress with legumes is limited compared to that with plants of other families such as the Solanaceae, the fact that many legumes are readily amenable to tissue culture now permits somatic cell techniques to be targetted to these species. Future development of the subject will necessitate close collaboration between molecular biologists and plant breeders to enable novel plants generated by in vitro technologies to be incorporated into conventional breeding programmes.  相似文献   

17.
The Indian gene centre possesses a rich legume biodiversity––1,152 species comprising cultivated, underutilized edible and forage legumes. Majority of the underutilized food legumes are widely distributed as wild species in various agro-ecological regions of peninsular India. Indian legume species (62%) contribute to the food and health security of ethnic communities. A total of 66,546 accessions of legume gene resources including underutilized species are conserved in the National Gene Bank. Collection, characterization and conservation efforts regarding the diversity of these beans are described. The importance of genetic variation in legumes and their wild relatives as a source of desirable resistance to pests and diseases in a changing climate scenario is discussed. Information on legumes used in Indian and modern systems of medicine and ethno-botany as well as the scope for bio-prospecting are presented. Advanced biotechnological applications in legume research for sustainable utilization of these resources are highlighted. An integrated gene resource management strategy to combat malnutrition, identify gene resources for legume improvement and enhance their value as traditional food and medicine is described.  相似文献   

18.
Faba bean is an important legume crop because of its high‐yield potential and nutrition‐dense grains. There have been significant achievements in faba bean improvement in the last four decades, which led to the doubling of the global yield average. This study reviews the genetic diversity, the breeding methodologies, major achievement on biotic and abiotic traits, and the recent molecular approaches. The high genetic diversity among faba bean accessions has been useful for increasing yield potential of the crop. Substantial increase in yield potential can be gained through the development of cultivars in open pollinated conditions. In the past, many faba bean varieties that are tolerant to abiotic and biotic stresses were released worldwide. The average yield gains varied from 1.65% per year in Syria to 4.17% per year in Ethiopia. The recent advances in molecular technologies will be used to develop more coherent genetic maps, which would also facilitate assembling and ordering genomic scaffolds in a future genome‐sequencing effort and molecular‐breeding approach.  相似文献   

19.
Illinois bundleflower, Desmanthus illinoensis (Michaux) MacMillan, is an herbaceous perennial legume native to the central and southeastern USA. It has been identified as a potential perennial grain legume. To describe variation among natural populations for agriculturally desirable characteristics, 141 accessions of D. illinoensis and one of D. leptolobus were evaluated in common garden plantings established in 1988 and 1990. Characteristics showing diversity among populations included seed yield, plant height, growth habit, days to maturity, 100 seed weight, and shatter resistance. Eight characteristics were analyzed by principal components and cluster analysis. The resulting four clusters accounted for 56% of the variation among accessions. One cluster was distinctive in having plants with vigorous, prostrate first year growth, poor winter hardiness, and large seed. Three accessions also had indehiscent legumes useful for breeding shatter resistance. There appears to be sufficient variation to support genetic improvement of agricultural characteristics of Illinois bundleflower. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Tepary bean (Phaseolus acutifolius A. Gray) is a relatively higher drought-tolerant crop than common bean (P. vulgaris), serving as genetic resource for food and genetic enhancement of related legumes. Tepary bean production is hampered by cultivation of low yielding and abiotic stress-susceptible cultivars. Targeted selection of agronomic, physiological and biochemical traits that maximizes yield gains using Phaseolus gene pool is useful to develop stress-tolerant and high-performing genotypes. The objective of this review is to provide breeding progress made regarding tepary bean improvement for drought adaptation. Agronomic, physiological and biochemical traits utilized for selection of drought-tolerant genotypes are highlighted. Genetic and genomic resources developed for tepary bean or closely related species such as common bean useful for genetic analysis and breeding are discussed. Opportunities and challenges to facilitate breeding of tepary bean genotypes with improved abiotic stress adaptation are highlighted. This will enable development of drought-tolerant tepary bean genotypes targeting selection of agronomic, physiological and biochemical traits. Use of genetically related and complementary Phaseolus species and marker-assisted selection method is key to developing drought-tolerant genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号