首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
淡水池塘4种生态沟渠净化效果研究   总被引:1,自引:0,他引:1  
针对淡水养殖池塘的养殖废水排放沟渠,通过运用2种生物操纵(水生植物和鲢鱼、鳙鱼)技术,以及生物浮床技术、生物填料技术等4种技术模式,以沟渠自净能力作为参照对比,研究出一种修复效果全面的池塘排水沟渠生态构建模式,为解决池塘排放水污染和调控池塘养殖水质提供技术支持。结果表明,(1)池塘排水沟渠具有一定的自净能力,在35 d内养殖废水中的总磷、总氮、氨氮、亚硝态氮、叶绿色a等的含量及COD_(Cr)的平均去除率分别为2.73%、11.85%、17.98%、12.95%、4.52%、43.35%;(2)生物浮床技术对养殖废水的综合净化效果最理想,在35 d内对养殖废水中的总磷、总氮、氨氮、亚硝态氮、叶绿色a等的含量及COD_(Cr)的平均去除率分别为26.91%、58.97%、75.92%、42.83%、32.73%、85.62%;(3)生物填料技术对养殖废水的综合净化效果较理想,在35 d内对养殖废水中的总磷、总氮、氨氮、亚硝态氮、叶绿色a等的含量及COD_(Cr)的平均去除率分别为11.64%、14.89%、58.59%、75.66%、47.92%、67.36%;(4)水生植物操纵技术对养殖废水的综合净化效果一般,在35 d内对养殖废水中的总磷、总氮、氨氮、亚硝态氮、叶绿色a等的含量及COD_(Cr)的平均去除率分别为35.81%、23.40%、66.61%、33.07%、34.18%、41.21%;(5)鲢鱼、鳙鱼生物操纵技术对养殖废水的综合净化效果相对较弱,在35 d内对养殖废水中的总磷、总氮、氨氮、亚硝态氮、叶绿色a等的含量及COD_(Cr)的平均去除率分别为14.19%、23.71%、32.75%、43.15%、21.70%、68.72%。  相似文献   

2.
[目的]研究光滑河蓝蛤(Potamocorbula laevis)对大棚对虾养殖尾水的净化效果,确定净化废水时蓝蛤的养殖密度。[方法]设4个光滑河蓝蛤养殖密度处理,分别为0.5、1.0、2.0、3.0 ind/L,1个空白对照(CK),每组设置3次重复,养殖4 d,整个试验期间不换水,不投放饵料,测定不同处理对养殖废水中硝酸盐、氨氮(NH+4-N)、总磷(TP)、总氮(TN)的去除效果。[结果]光滑河蓝蛤4个养殖密度对NH+4-N、TP、硝酸盐均有显著的去除效果(P0.05),其中,1.0 ind/L处理净化效果最佳,对废水中硝酸盐的去除效率为62%±15.06%,NH+4-N的去除效率为48%±9.41%,TP去除率为99%±17.78%,TN的去除率为60%±3.74%。CK的净化效果最低,对废水中硝酸盐、NH+4-N、TP、TN的去除率分别为15%±3.36%、16%±0.58%、38%±6.86%、33±1.58%。[结论]光滑河蓝蛤的最佳养殖密度为1.0 ind/L。  相似文献   

3.
采用人工湿地处理养殖废水具有良好的去除效果和资源化利用优势,但畜禽养殖废水浓度较高,直接排入人工湿地易导致湿地植物死亡,采取措施适度降低废水污染物浓度是生态治理的重要前提。因此,本研究选取稻草和芦苇两种秸秆材料,设置稻草、芦苇和对照三个处理,利用三级生物基质消纳系统,开展为期6个月的野外控制试验,对比分析稻草和芦苇对养殖废水主要污染物的去除效果及其自身的降解特征,探讨生物基质系统对养殖废水中主要污染物的去除效果。结果表明,稻草和芦苇对主要污染物指标化学需氧量(COD)、氨氮(NH_4~+-N)、总氮(TN)和总磷(TP)均有良好的去除效果,其中稻草对NH_4~+-N、TN和TP的去除率相对较高,分别为44.9%、39.2%和39.6%,去除负荷分别为17.38、19.84和3.02 g/(m~3·d);芦苇对COD的去除率相对较高,为50.6%,去除负荷为87.28 g/(m~3·d)。NH_4~+-N和TN的去除效果与Eh呈显著正相关(P0.05),而与pH值呈显著负相关(P0.05);TP的去除则受环境因素的影响较小。稻草的降解速率显著快于芦苇,半年内的月平均降解率分别为8.0%和3.6%。稻草总体去除效果好于芦苇的原因可能与其主要成分纤维素、半纤维素和木质素的降解速率相对较快有关,但是芦苇作用的持续时间则相对较长。  相似文献   

4.
光合细菌固定化及其处理含油废水的研究   总被引:4,自引:0,他引:4  
采用固定化光合细菌PSBRS(Rhodobacter sphaeroides)处理含油废水.比较了3种不同包埋材料固定化光合细菌处理含油废水的效果,对固定化光合细菌去除废水中油的工艺条件进行了优化,并分析了油降解后的脂肪酸成分.通过几种固定化工艺的比较,确定了2%沸石+2%海藻酸钠(CA)的凝胶剂组合作为共固定材料.结果表明,该同定化颗粒降解1 000mL含油废水的最佳使用条件为:好氧避光条件下,粒径4 mm,包埋比1:2,颗粒投加量10 g.6 d后含油废水中油、NH+4-N、PO3-4的去除率分别为80.1%、87.4%、96.3%.通过固定化光合细菌与游离态光合细菌对油去除率的比较,固定化光合细菌去油率达到74.95%,与游离态PSBRS(去油率为35.31%)相比,提高约50%以上.此外,分析了油降解后的脂肪酸成分,固定化光合细菌对脂肪酸的去除效果显著,为今后开展高效处理含油废水的微生物筛选和固定化技术研究奠定了基础.  相似文献   

5.
广东对虾养殖环境污染及防控对策   总被引:3,自引:0,他引:3  
分析了对虾养殖生产的外源污染、内源污染及养殖废水(废物)污染等环境污染状况,从及时降解转化养殖代谢产物、减少饲料投喂污染、妥善使用安全的养殖投入品、养殖废水(废物)无害化处理等方面提出了防控养殖环境污染的对策,为对虾的健康、安全养殖和可持续发展提供借鉴。  相似文献   

6.
为比较分析对虾工厂化养殖与池塘养殖环境的差异及探讨简易水处理系统的处理效果.试验借助常规的水质检测方法,对比两系统水质因子,分析处理系统废水处理前后各水质因子的变化.工厂化养殖排放废水DO含量的变化范围为7.1~12.6mg/L;池塘养殖排放废水DO含量的变化范围为2.9~4.8mg/L,远低于工厂化养殖.池塘养殖废水TSS含量的变化范围为100.4~140.0mg/L:工厂化养殖废水TSS含量的变化范围为172.6~220.4mg/L.方差分析表明,工厂化养殖废水的TSS含量显著高于池塘养殖(P<0.01);工厂化养殖排放废水的总氮(TN)和总磷(TP)含量显著高于池塘养殖(P<0.05).经沉淀池处理后,TSS含量降低了66.9%;经栽培有裙带菜的养殖槽,废水中TAN、NO2-N、NO3-N和PO4-P分别降低了58.1.0%、43.0%、55.9%和29.1%.来自工厂化养殖的废水含有较多的污染物质,直接排放可能对环境的危害更大;该实验设计的简易水处理系统具有较好的处理效果.  相似文献   

7.
为了实现集约化养殖废水的资源化利用,降低农田应用的环境风险,通过样品收集和室内分析相结合的方法,研究了河北省集约化养殖废水中氮磷和重金属含量的分布特征。结果表明:养殖废水的总氮、氨氮和总磷含量分别为59.10~1 882.90、8.85~1 789.88和20.63~38.10 mg/L,平均含量分别为162.98、73.10和22.00 mg/L,依据集约化畜禽养殖业水污染物排放标准(GB 18596—2001),有44.44%的样品氨氮含量超标,所有样品总磷含量均超标,其中猪场养殖废水的总氮和氨氮含量均高于牛场,总磷含量与牛场基本相当。养殖废水的Cu、Zn含量分别为0.08~1.90、0.00~4.10 mg/L,平均含量分别为0.15、0.33 mg/L,依据国家综合污水排放标准(GB 8978—1996)时,Cu、Zn的样本超标率分别为5.97%和1.49%,其他重金属元素均不超标;依据农业部沼肥限量标准(NY/T 2596—2014)时,所有养殖废水的重金属含量均不超标。可以将集约化养殖废水通过氧化塘或沼气工程进行适当处理后,当作沼液肥进行田间施用。  相似文献   

8.
模拟生态沟渠中盘培牧草降解养猪场废水效应研究   总被引:1,自引:0,他引:1  
在营养液膜技术基础上构建了以盘培多花黑麦草为主要内容的模拟生态沟渠系统,来降解杭嘉湖区域某一养猪场废水。观测了废水中各污染物指标在经模拟生态沟渠运行后的降解效果。结果表明:该模拟生态沟渠对养猪场废水具有明显的降解效果。养猪场废水进入模拟生态沟渠系统,运行36d后,COD降解幅度达92.4%,TN降解幅度达60.6%,NH4-N降解幅度达88.9%,TP降解幅度为73.7%,SS降解幅度达88.9%。并且在开始18d内降解速度较快,后18d降解速度相对较慢。  相似文献   

9.
狐尾藻对养殖废水的减控去污效果   总被引:1,自引:0,他引:1       下载免费PDF全文
[目的]研究狐尾藻对不同浓度养殖废水的净化效果,为推广新型水生植物品种在处理养殖废弃物中的应用提供参考依据.[方法]将狐尾藻投放于分别经过养殖场1、2、3、4和5级处理的废水中培养,在试验期间测量各级废水氨氮(NH4+-N)、总氮(TN)、总磷(TP)、固体悬浮物(SS)及化学需氧量(COD)的浓度,绘制其变化曲线,计算污染物的去除率.[结果]经1~5级处理后的养殖废水中NH4+-N、TN、TP、SS及COD浓度均呈试验前期快速下降、后期缓慢降低的变化趋势.至试验结束时,各级废水中NH4+-N的总平均去除率最高,达94.5%;TP的平均去除率相对较低,为74.6%;TN、SS和COD的总平均去除率分别为84.5%、81.3%和79.1%.[结论]狐尾藻能有效去除养殖废水中NH4+-N、TN、TP、SS及COD等污染物,改善水质环境,在治理和修复污染水体方面具有良好的应用前景.  相似文献   

10.
从胶南、红岛、仰口不同的对虾养殖区域,采集凡纳滨对虾养殖水体中的水样、底泥以及对虾肠道和粪便样品,从中分离筛选芽胞杆菌菌群,获得8株不同的芽胞杆菌菌株.通过形态学特征、生理生化特性结果分析和16S rDNA分析鉴定,确定其中的JNSY1菌株为蜡样芽孢杆菌(Bacillus cereus).安全性测试发现该蜡样芽孢杆菌JNSY1菌株对养殖的凡纳滨对虾(Penaeus vannamei)无毒害作用.水质净化实验结果表明,10 d后该JNSY1菌株对养殖水体中氨氮的降解率达到65.5%,对亚硝酸盐的降解率达到68.3%,表明该菌株对养殖水体有明显的净化作用,可以研发作为微生态制剂.  相似文献   

11.
采用PCR检测技术分别对上海、江苏、海南部分养殖地区凡纳滨对虾携带重要病毒性病原--白斑综合征病毒(WSSV)的情况进行了调查分析.结果显示40%~58%的受检测对虾携带WSSV,表明近年在养殖SPF(无特定病原)甚至SPR(抗特定病原)亲虾子代的情况下,凡纳滨对虾的WSSV感染率仍然很高.为探讨现行集约化、高密度养殖...  相似文献   

12.
[目的]筛选对养殖废水具有脱氮除磷效果的微藻藻种。[方法]选取小球藻JY-1(Chlorella sp.JY-1)、小球藻SY-4 (Chlorella sp.SY-4)以及链带藻SH-1(Desmodesmus sp.SH-1)等3株微藻为研究对象,研究其对水产养殖废水脱氮除磷的效果。[结果]培养5d,JY-1、SY-4和SH-1在7‰±1‰盐度养殖废水中的细胞含量分别为1.56×10~7、1.47×10~7、6.62×10~6个·mL~(-1);JY-1、SY-4和SH-1对养殖废水中总氮的去除率分别为50.36%、41.51%和49.74%;氨态氮(NH_4~+-N)的去除率分别为96.29%、84.92%和96.65%;硝态氮(NO_3~--N)的去除率分别为15.84%、3.69%和12.56%;总磷(PO_4~(3-)-P)的去除率分别为93.51%、82.38%和94.25%;对亚硝态氮的去除效果不明显;3株藻在5‰、10‰、20‰和30‰盐度的培养基中均可以正常生长。JY-1在养殖废水中的生长能力和对水体净化能力均优于小球藻SY-4和链带藻SH-1。[结论]小球藻JY-1对水产养殖废水具有较好的脱氮除磷效果。本研究为应用微藻进行养殖废水脱氮除磷处理提供了参考数据。  相似文献   

13.
对虾高位池循环水养殖系统对水质调控效果研究   总被引:2,自引:1,他引:2  
为了改善高位池对虾养殖水质,降低养殖环境污染,提高产品质量安全,对自主研发的高位池循环水养殖系统调控对虾养殖水质的效果进行研究,设计了3个不同循环量(20 m3·h-1,T1)、(40 m3·h-1,T2)、(60 m3·h-1,T3)水处理系统进行高位池试验.结果表明,不同处理量的循环水系统均能有效地降低水体中NH+4和NO-2,T1、T2、T3对NH+4的相对消除率分别为46%、56%、57%;对NO-2的相对消除率分别为38%、34%、54%;各处理组对NO-3均没有明显的消除作用.T1、T2对PO3-4无消除效果,T3对PO3-4的相对消除率为36%.T1对COD无消除效果,T2、T3对COD的相对消除率为9%、15%.综合比较可知,60 m3·h-1循环水处理系统对改善水质效果最好,40 m3·h-1次之,20 m3·h-1最差.  相似文献   

14.
模拟生态沟渠中盘培牧草降解农业面源污染效应的研究   总被引:3,自引:0,他引:3  
在营养液膜技术基础上构建以盘培多花黑麦草为主要内容的模拟生态沟渠系统,来降解杭嘉湖区域一水稻田沟渠中的农业面源污染物。观测了废水中各污染物在经模拟生态沟渠运行后的降解效果。结果表明:以盘培多花黑麦草为主要内容的模拟生态沟渠对农业面源污染物具有明显的降解效果。农田面源污染物进入模拟生态沟渠系统,经运行36 d后,TN降解幅度为70%,NH4+-N降解幅度达72.1%,NO3--N降解幅度为75%,TP降解幅度达71.6%。并且在开始18 d内降解速度较快,后18 d降解速度相对较慢。  相似文献   

15.
海水对虾池塘养殖污染物环境负荷量的研究   总被引:15,自引:5,他引:15  
通过分析广东海水对虾养殖饵料、养殖品种的组成成分、养殖效率和养殖池塘进排水污染物增量的变化,利用质量守恒法和增量估算法,评估了对虾池塘养殖主要污染物的环境负荷量和排放量。结果显示,对虾池塘养殖氮、磷环境负荷量分别为45.8和10.1kg·t-1,其中随养殖废水排放入海的环境排放量分别为1.39和0.65kg·t-1同时,排放废水中COD和悬浮物的环境排放量分别为49.65和179.7kg·t-1。以广东省2001年对虾池塘养殖状况为例,评估了池塘对虾养殖污染物的环境负荷量。结果显示,2001年全省对虾池塘养殖对环境产生的氮、磷负荷量分别为4508.5和994.2t,其中通过养殖废水排入临近海域水环境的COD、无机氮、无机磷和悬浮物排放量分别为4887.5,136.8,64.0和17689.5t;氮磷环境负荷量及污染物的排放量均以粤西最高,粤东次之,珠三角一带最低。与陆源废水排放中氮、磷排放量比较,海水对虾池塘养殖废水排放氮、磷总量分别约为陆源排放量的0.15%和0.41%。  相似文献   

16.
[目的]掌握广东沿海对虾主养区虾肝肠胞虫(EHP)、急性肝胰腺坏死病致病性副溶血弧菌(VPAHPND)和虾血细胞虹彩病毒(SHIV)3种病原的流行趋势及特点,为广东省对虾养殖业的病害防控提供参考依据.[方法]建立针对EHP、VPAHPND和SHIV的PCR检测方法,在广东茂名和汕尾两地区采集凡纳滨对虾样品检测EHP、VPAHPND和SHIV 3种病原,并针对生长缓慢或个体规格差异明显的部分养殖凡纳滨对虾进行病原感染情况调查.[结果]广东茂名地区凡纳滨对虾幼虾的EHP、VPAHPND和SHIV携带率分别为20.24%、2.38%和9.52%,汕尾地区凡纳滨对虾幼虾的EHP、VPAHPND和SHIV携带率分别为26.98%、4.76%和42.86%.根据养殖模式划分,土塘养殖凡纳滨对虾幼虾以携带EHP为主,携带率高达40.48%;高位池养殖凡纳滨对虾幼虾主要感染SHIV,携带率为29.27%;工厂化池塘中,凡纳滨对虾幼虾的EHP和SHIV携带率较高,分别为21.88%和23.44%.池塘水、水源水、虾苗及丰年虫等养殖要素均能检出病原,其中池塘水和水源水中EHP和SHIV的检出率较高.对个体规格差异明显的患病凡纳滨对虾群体进行检测,结果发现大、小规格样品的EHP感染率分别为30.00%和80.00%;在表现生长缓慢的患病凡纳滨对虾群体中,大、小规格幼虾样品的EHP携带率分别为95.00%和100.00%.[结论]广东沿海地区养殖凡纳滨对虾的EHP和SHIV携带率较高、流行趋势明显,而VPAHPND检出率较低、流行趋势不明显.养殖水体是EHP、VPAHPND和SHIV的重要传播媒介,生物饵料也是养殖过程中病原传播的源头.因此,在实际生产中应根据养殖凡纳滨对虾的病原流行特点,尤其针对EHP和SHIV高携带率的现象,从病原、宿主和环境三方面同时着手进行防控,采取综合防控措施减少病害发生.  相似文献   

17.
对虾在不同的环境条件和养殖模式下具有不同的生长特性,这是进行对虾高效养殖管理的重要依据之一。为探明半集约化土池养殖模式下凡纳滨对虾(Litopenaeus vannamei)的生长特性,2009年5~8月,在广东省电白县的滩涂土池半集约化养殖区,对两个半集约化养殖土池(P1、P2)的凡纳滨对虾的生长参数(全长、体长和体重)进行了养殖全过程的采样测量和数据分析。结果表明:(1)两个土池养殖的凡纳滨对虾的体长(L)与体重(W)均呈显著的幂函数关系,分别为(P1)W=0.016 L2.8935(R2=0.989,P<0.01)、(P2)W=0.0127 L3.0292(R2=0.9911,P<0.01);其生长拐点分别出现在第124 d和128 d;(2)对虾全长(QL)和体长呈明显的线性关系,分别为(P1)QL=0.8319 L+0.2577(R2=0.9997)、(P2)QL=0.8679 L-0.0434(R2=0.9977);(3)体长、体重的von Bertallanffy生长方程分别为(P1)Lt=17.6955(1-e-0.0095(t-12.2421))、Wt=65.2846(1-e-0.0095(t-12.2421))2.8935,(P2)Lt=16.8567(1-e-0.0104(t-21.1781))、Wt=66.0607(1-e-0.0104(t-21.1781))3.0292。  相似文献   

18.
丝瓜络固定化微生物对土壤多环芳烃吸附-降解作用   总被引:1,自引:1,他引:0  
以假单胞菌(Pseudomonas sp.SDR4,简称S4)、毛霉真菌(Mucormucedo sp.SDR1,简称S1)为研究对象,采用微生物固定化技术,研究了其对土壤多环芳烃的吸附和降解动力学,并探讨了固定化微生物对土壤多环芳烃的吸附机理及吸附降解关系。结果表明:试验60 d,改性丝瓜络(CK)、死体固定化S1(S1-D)、死体固定化S4(S4-D)、死体固定化S1与S4混合菌(S1+S4-D)对菲(Phe)的动态平衡吸附量分别为5.28、6.82、5.73、7.46μg,对芘(Pyr)的动态平衡吸附量分别为4.17、4.72、4.53、5.00μg,死体固定化微生物对Phe与Pyr的吸附过程均服从于准二级动力学;活体真菌S1、细菌S4、混合菌S1+S4对Phe的动态吸附量分别为2.32、2.01、2.76μg,对Pyr的动态吸附量分别为2.79、2.41、3.14μg,活体固定化微生物对土壤中Phe与Pyr的准一级动力学与准二级动力学拟合结果R2相差较小;S1、S4、S1+S4对Phe的降解率分别为54.34%、61.45%、64.23%,对Pyr的降解率分别为38.42%、35.02%、42.43%;经S1、S4、S1+S4处理后,Phe的降解半衰期分别为38.88、29.41、25.63 d,Pyr的降解半衰期分别为64.76、69.02、59.28 d。研究表明,化学作用是控制丝瓜络固定化微生物对多环芳烃吸附速率的主要因素;提高微生物的降解能力能增加对土壤中PAHs迁移的影响;混合菌中真菌与细菌存在协同作用,能提高Phe与Pyr的降解效率。  相似文献   

19.
当今畜禽养殖业废水给生态环境造成了严重的污染,特别是随着我国加速向集约化、规模化转变过程中,对传统的畜禽养殖废水处理技术提出了更高的要求。本文分析了常规厌氧技术处理畜禽养殖废水的局限性,详细介绍了一种处理畜禽养殖废水的新方法(IC+SBBR工艺),并总结了新工艺的优点,其具有广阔的应用前景。  相似文献   

20.
为了研究3种微生态制剂不同的组合方案对凡纳滨对虾(Litopenaeus vannamei)生长性能、酶活力和抗氧化能力的影响,根据正交试验设计,在饲料中添加不同比例的微生态制剂,确定3因素添加量的最优组合:LK(干酪乳杆菌)10~7 CFU/mL、NJ(侧孢芽孢杆菌)10~6 CFU/mL、JXCB-2(地衣芽孢杆菌)10~7 CFU/mL。通过向养殖水体定期泼洒不同组合方案的微生态制剂,确定了3种微生态制剂添加量的最优组合为:LK(干酪乳杆菌)10~7 CFU/mL、NJ(侧孢芽孢杆菌)10~7 CFU/mL、JXCB-2(地衣芽孢杆菌)10~6 CFU/mL。将最优组合微生态制剂全池定期泼洒与普通对虾养殖池的水体水质及对虾养殖情况进行对比,结果表明微生态制剂对养殖水体水质COD平均降解率为8%,氨氮平均降解率24.4%,亚硝酸盐氮平均降解率31.1%,总氮平均降解率30.1%,总磷平均降解率9.8%,养殖收益较对照组提高了18.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号