首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The corn tortilla plays an integral role in the Mexican diet and is an ideal vehicle for micronutrient fortification. Approximately 60% of corn tortillas in Mexico are produced from nixtamal, with the remainder prepared from masa flour. A process for continuous fortification of nixtamal tortillas was evaluated in two commercial mills in Mexico. A commercial powder dosifier was used to add micronutrient premix containing iron, zinc, folic acid, niacin, riboflavin, and thiamin to nixtamal (1 g/kg) as it was milled. After training and preliminary sampling, mills produced fortified tortillas unassisted for four weeks. Masa flow rates over a four‐day period were 10–12 kg/min in both plants. Premix flow from the dosifier showed good stability, with an average coefficient of variation of 1.6%. Initial results indicated consistency in the fortification process, with significantly increased variation during the four‐week production period. Fortified tortillas had significantly higher levels of all nutrients tested. Micronutrient losses were <11% in all cases except folic acid, which showed an 80% loss. Despite processing losses, fortification resulted in a nearly fivefold increase in folic acid compared with control tortillas. The new fortification process is technically viable and was well received by millers.  相似文献   

2.
Degradation of added folic acid and native folates in micronutrient‐fortified corn masa and tortillas was evaluated using masa prepared from either nixtamalized corn flour or fresh nixtamal. Variations in masa pH, masa holding time at an elevated temperature, and iron source failed to show significant differences in folate loss in corn flour masa prepared in the laboratory. Masa was subsequently prepared from fresh nixtamal in a commercial mill in Mexico, and fortified with one of two different micronutrient premixes containing iron, zinc, B‐vitamins, and either unencapsulated or lipid‐encapsulated folic acid. Folate loss in commercial masa increased significantly with prebake masa holding time for both premixes. Unencapsulated folic acid showed a 73% loss after 4 hr of holding, compared to 60% loss for encapsulated. The difference was statistically significant, indicating a protective effect from the lipid coating. No significant differences in folate levels were found between prebake masa and baked tortillas. Holding baked tortillas for up to 12 hr also had no effect on folate levels. Native folate showed no significant losses throughout the process. Results from the commercial tortilla mill indicate that most of the loss in added folic acid occurs during prebake holding of masa, possibly from microbial degradation.  相似文献   

3.
《Cereal Chemistry》2017,94(6):917-921
Neural tube defects occur at higher rates in Hispanic populations in the United States. Such populations would benefit from folic acid fortification of corn masa flour (CMF). This study evaluated folate stability in fortified CMFs and tortillas and tortilla chips made therefrom. There was no significant loss of folate during the six‐month shelf life of fortified tortilla CMF and tortilla chip CMF. There was a 13% loss (P < 0.05) of folate during tortilla baking and no loss during tortilla chip frying. Both tortillas and tortilla chips showed significant folate losses over the two‐month shelf life for these products, with a 17% loss in fortified tortillas and a 9% loss in tortilla chips. Folate in fortified CMFs, tortillas, and tortilla chips is relatively stable and comparable to the stability of folate in wheat flour and breads.  相似文献   

4.
Iron deficiency anemia is a widespread occurrence. Consequently, iron is commonly added in cereal fortification programs. However, many iron sources cause undesirable sensory changes, especially color changes, in the food being fortified. This study evaluated the effect of different iron sources on CIE L*a*b* color values and sensory color perception in fortified corn tortillas. Corn masa flour was fortified with micronutrient premix containing vitamins, zinc, and one of eight iron compounds. Iron sources included ferrous fumarate (F), ferrous sulfate (S), ferric orthophosphate (OP), ferrous lactate (L), ferrous gluconate (G), ferric pyrophosphate (PP), sodium iron (III)‐EDTA, and A‐131 electrolytic iron (E), with addition levels adjusted based on bioavailability. Control (Ct) samples were prepared with all micronutrients except iron. All iron‐fortified tortillas had lower L* values and were significantly darker than control tortillas. Based on instrumental color values and Mexican regulatory recommendations, five treatments were selected for further testing. A difference‐from‐control sensory test was conducted comparing PP, E, OP, F, and S with Ct tortillas. Sensory rankings were C t > E = PP > OP > F > S. A‐131 electrolytic iron is recommended for fortification of corn tortillas due to minimal effect on color and significantly lower cost than other iron sources evaluated.  相似文献   

5.
A high‐amylose, non‐floury corn, a floury corn, and a 1:1 blend were made into masa and then tortillas. The masa flour made with the high‐amylose corn had a greater amount of resistant starch (RS 28.8%) and a greater amount of total dietary fiber (TDF 42.1%) than that with the floury corn (RS 2.9%, TDF 9.6%), producing a high‐fiber tortilla. The masa was evaluated for pasting properties using a Rapid ViscoAnalyser (RVA). The high‐amylose masa slurry gelatinized little at 95°C. The floury masa had the greatest peak viscosity, whereas the 1:1 blend was intermediate in value. Sensory evaluations of the tortillas for the textural attributes showed the floury tortillas to be chewier, more rollable, and grittier than the high‐amylose tortillas, whereas the blend tortillas were intermediate for most attributes. The cutting force of the high‐amylose tortillas, measured on a texture analyzer, was very low; the blend and floury tortillas required more force. Chewiness was correlated to rollability (r = 0.99, P = 0.05). The %RS and %TDF were correlated to rollability (r = –0.99), and cutting force (r = 0.99). The floury and blend tortillas had firm textures expected of desirable tortillas, whereas the high‐amylose tortillas broke under little force, and would not roll. The high‐amylose tortillas had high amounts of RS and TDF but poor texture. The blend tortillas retained most floury tortilla textural properties, making them suitable products for consumer use.  相似文献   

6.
The growth and brain development of laboratory rats fed typical indigenous tortilla‐based diets were determined throughout two generations. The experiment compared three different types of tortilla‐based diets: regular tortillas produced from dry masa flour (RDMF), tortillas obtained from fresh masa (FM), and tortillas produced from dry masa flour fortified with 6% defatted soybean and enriched with vitamins B1, B2, niacin, and folic acid and microminerals iron and zinc (FEDMF). Female rats were mated 58 days postweaning with males belonging to the same treatment with the objective of obtaining second generation pups that were further subjected to regular lactation and 28 day postweaned growth. A comparison between growth of first and second generation rats was determined. In addition, representative animals of each physiological stage were first exsanguineted for hematocrit determination and then slaughtered with the aim of obtaining femur and brain tissues. Cerebral DNA and number of neurons were determined in each of the brains sampled. Growth of rats fed FEDMF was significantly higher (P < 0.05) in both generations than counterparts fed RDMF or FM. The difference among treatments was more evident in second generation rats. Pregnancy rate, number of newborns per litter, litter weight, and pup's survival rate was higher for the control and FEDMF treatments. Femur growth was also higher (P < 0.05) for first‐generation male adult rats fed control and FEDMF. The concentration and total content of cerebral DNA and number of neurons in males and females belonging to the first generation was similar. However, for second generation rats, these values were lower for animals fed regular tortilla diets. This data clearly demonstrates that the negative effects of malnutrition on brain development of pups occurred during gestation and lactation.  相似文献   

7.
Starch digestibility was evaluated in freshly prepared tortillas elaborated from masa obtained from different procedures (laboratory‐made masa, commercial masa, and nixtamalized corn flour) and from laboratory‐made masa with added commercial hydrocolloid, and stored for 24, 48, and 74 hr. Tortillas prepared with commercial masa had the highest available starch (AS) content and the commercial tortillas had the lowest, showing a decrease in AS content when storage time increased. Tortilla of commercial masa showed the lowest resistant starch (RS) content that agrees with the AS measured. However, tortilla of laboratory‐made masa presented the highest AS and RS contents. RS increased with storage time, a pattern that is related to the starch retrogradation phenomenon observed when retrograded resistant starch (RRS) was quantified. Commercial tortillas showed predicted glycemic index (pGI) values of 62–75% using a chewing/dialysis procedure (semi in vitro method). Index values were lower than those determined in vitro. The pGI of tortillas decreased, and the values were different depending on the method used to prepare the masa and tortilla. Commercial tortilla and tortilla of NCF had the lowest pGI. Therefore, the procedure to obtain masa and thereafter obtain tortillas influenced the starch digestibility of the product.  相似文献   

8.
Five white corn hybrids were processed (nixtamalized) using 10 different processing conditions; tortillas were prepared to establish relationships between corn composition, physical characteristics, and nixtamalization process or product properties. Corn hybrids were characterized by proximate analysis and by measuring Stenvert hardness, Wisconsin breakage, percent floaters, TADD overs, thousand‐kernel weight, and test weight. Corn characteristics were correlated with process and product variables (effluent dry matter loss and pH; nixtamal moisture and color; masa moisture, color, and texture; and tortilla moisture, color, and rollability). Process and product variables such as corn solid loss, nixtamal moisture, masa texture, and tortilla color were influenced not only by processing parameters (cook temperature, cook time, and steep time) but also depended on corn characteristics. Significant regression equations were developed for nixtamalization dry matter loss (P < 0.05, r2 = 0.79), nixtamal moisture (P < 0.05, r2 = 0.78), masa gumminess (P < 0.05, r2 = 0.78), tortilla texture (P < 0.05, r2 = 0.77), tortilla moisture (P < 0.05, r2 = 0.80), tortilla calcium (P < 0.05, r2 = 0.93), and tortilla color a value (P < 0.05, r2 = 0.87).  相似文献   

9.
An objective rollability method that imitates subjective rollability scores of corn tortilla texture was developed. Force and work required to pull an axle that caused a tortilla to roll around a dowel were measured. The sensitivity of the technique to detect changes in corn tortilla texture during storage was evaluated, and other factors affecting objective rollability and tortilla texture were studied. The objective rollability technique was fast, simple, and sensitive to changes in the tortillas, and worked effectively on commercial samples. Data was significantly correlated to subjective rollability and flexibility scores. Textural differences among fresh tortillas during the first 24 hr of storage, and among tortillas with different thicknesses and additives, were detected by the objective rollability method. Thicker tortillas required more force and work to roll than thin tortillas. The objective technique is more sensitive to changes in texture than subjective evaluations, which do not detect differences in tortilla variability during the first 24 hr after baking, and it can be used to evaluate the effect of formulation and processing changes on fresh and stored tortillas.  相似文献   

10.
Nixtamalized corn flour for tortilla preparation had added xanthan gum at different concentrations. Rollability, puncture, and extensibility tests using a texture analyzer machine measured the effect of xanthan gum on the staling of corn tortillas. Rollability, puncture, and extensibility tests were simple, fast, and repeatable. The rollability parameters showed that the addition of gum produced more flexible tortillas with decreased staling. The addition of hydrocolloid decreased the force required to penetrate the tortilla, but this parameter was slightly increased when storage time increased. The parameters determined in the extensibility test showed textural differences because the fresh tortillas had a higher distance of extensibility and this parameter decreased when storage time increased. Untreated stored tortillas presented a higher modulus of deformation, work, and rupture force values. However, the addition of xanthan gum decreased these values. The addition of hydrocolloid to tortilla decreased the hardness and increased the flexibility and rubbery characteristics of tortillas.  相似文献   

11.
《Cereal Chemistry》2017,94(6):1052-1055
To find the best solvent of those reported and to study changes in protein aggregation during corn processing to obtain tortillas, extractability of corn proteins with three alcoholic solutions (70% ethanol, 50% propanol, and 60% tert‐butyl alcohol) was compared in corn, nixtamal, masa, and tortillas. Relative solubility was assessed through size‐exclusion chromatography, SDS‐PAGE, and insoluble polymeric protein determination using the Dumas procedure. Differences in the behavior of solvents in the samples indicate that different protein interactions are promoted during each of the processing steps. All the three alcoholic solutions can be used to study changes in corn proteins, but the best solvent was 50% propanol. Ethanol (70%) extracted the lowest amounts of corn proteins in tortilla process samples.  相似文献   

12.
Many Mexican women are deficient in folic acid. Fortification of the corn tortilla could be an effective way to help increase the folic acid levels among the Mexican population. Previous studies have shown significant folic acid losses in the masa dough as it is held before baking. This loss in folic acid could be owing to utilization by lactic acid bacteria naturally present in the masa. The objective of this study was to determine the effect of bacteria native to corn masa on the folic acid content in masa. Bacteria in dough samples from six mills in Guadalajara, Mexico, were isolated and identified. Bacterial isolates were inoculated into sterile fortified corn masa flour, which was converted to masa and held at 56°C for 0, 3, and 6 h, replicating the conditions of freshly milled masa as held before baking. All samples, including the control, showed losses of folic acid between 66 and 79% w/w in the first 3 h of incubation. Because folic acid degradation in the sterile control sample was not different than the inoculated sample results, the decline in folic acid was not owing to bacteria (mainly Streptococcus spp.) present in the masa flour but appeared to be a chemical degradation related to time and temperature.  相似文献   

13.
Antistaling properties of a bacterial maltogenic amylase, sodium carboxymethylcellulose (CMC), and vital wheat gluten on quality of corn tortillas were evaluated during 14 days of storage. Amylopectin recrystallization was the driving force behind the staling of corn tortillas. Increasing levels of recrystallized amylopectin measured by differential scanning calorimetry (DSC) correlated significantly with increased tortilla stiffness (r = 0.43) and reduction in tortilla pliability (r = ‐0.42) during storage. Maltogenic amylase (275–1,650 activity units) made tortillas less stiff but did not preserve pliability and extensibility as effectively as CMC (0.25–0.5%). The combination of 825 MANU of maltogenic amylase (to interfere with intragranular amylopectin recrystallization) and 0.25% CMC (to create a more flexible intergranular matrix than retrograded amylose and amylopectin) produced less stiff, equally flexible, and less chewy tortillas than did 0.5% CMC. Vital wheat gluten was not as effective as CMC in preserving tortilla flexibility or as good as the maltogenic amylase in reducing stiffness. Further research is required to optimize the addition of maltogenic amylases in continuous processing lines that use fresh masa instead of nixtamalized corn flour (NCF) and to determine how these amylases interfere with amylopectin recrystallization.  相似文献   

14.
Nixtamal, masa, and tortilla samples were stored for 24–96 hr and their chemical composition, retrogradation, and in vitro starch digestibility features were evaluated. Ash and fat contents in the three products were smaller than in the original corn sample, but protein levels were higher, all in accordance with previous studies. In general, a minor decrease in available starch (AS) content was observed with storage time. Masa showed the greatest AS values, followed by tortilla and nixtamal. Tortilla presented slightly higher retrograded resistant starch (RS3) values (1.1–1.8%, dmb) than masa (0.7–0.9%) and nixtamal (0.7–0.8%) and only minor increases were observed after 24 hr of storage, suggesting that retrogradation phenomenon in these samples takes place very rapidly and is more pronounced in the final product (tortilla). The development of RS3 explains the observed decrease in AS. Higher total resistant starch values were found in all samples at a range of 2.1–2.6% for nixtamal and masa, and a range of 3.1–3.9% in tortilla. This indicates that, apart from retrograded resistant starch, some ungelatinized fractions appear to contibute to the indigestible content of these products. The α‐amylolysis rate of the three materials decreased with storage. Tortilla showed the greatest hydrolysis indices. Differential scanning calorimetry (DSC) analysis showed that the nixtamal, masa, and tortilla did not show differences in amylopectin crystal melting temperature with storage time, but tortilla exhibited higher enthalpy values after 72 hr of storage, in accordance with the greater total RS contents recorded after prolonged storage.  相似文献   

15.
BACKGROUND: A national survey found that micronutrient deficiencies are prevalent in South African children, particularly calcium, iron, zinc, riboflavin, niacin, vitamin B6, folate, vitamin A, E and C. Mandatory fortification of maize meal and wheat flour were introduced in 2003 to combat some of the deficiencies found in children. To date however, there has not been a national survey on dietary intake in adults. OBJECTIVES: The main objectives of this study were to evaluate the micronutrient intake of the diet consumed by the average adult South African by means of secondary data analyses and secondly to evaluate the effects of fortification on selected nutrient intakes. STUDY DESIGN: Secondary data analysis was carried out with numerous dietary surveys on adults to create a database that included sampling (and weighting) according to ethnic/urban-rural residence in line with the population census, of which 79% were black Africans and the majority resided in rural areas. The effect of fortification was evaluated by substituting fortified foods in the diet for the unfortified products. SUBJECTS: The combined database used in this study comprised 3229 adults. RESULTS: Mean calcium, iron, folate and vitamin B6 intakes were very low particularly in women. Mean intakes of most micronutrients were lower in rural areas. Fortification of maize meal and wheat flour (bread) raised mean levels of thiamine, riboflavin, niacin, vitamin B6 and folate above the recommended nutrient intakes (RNIs). In women, despite fortification, mean iron intakes remained below the RNIs, as did calcium since it was not in the fortification mix. CONCLUSION: The average dietary intake of adults was of poor nutrient density, particularly in rural areas. Fortification of maize meal and wheat flour (bread) considerably improved mean vitamin B6, thiamine, riboflavin, niacin, folate and iron intakes as well as the overall mean adequacy ratio of the diet.  相似文献   

16.
To investigate the effects of mechanically damaged starch and flour particle size on the texture of fresh and stored flour tortillas, two commercial hard red winter wheat flour samples were reground four times using decreasing roll gaps. Tortillas were made with a modified hot‐press procedure. Texture characteristics were measured after tortillas were stored 2 hr (fresh tortilla), 2 days, and 4 days. Damaged starch and particle size significantly affected (P < 0.05) flour water absorption, dough extensibility and resistance, and dough viscosity. As damaged starch increased and particle size decreased, the flour tortillas became less stretchable, the maximum force of Kramer shear decreased, and firmness and rollability increased. The effects of damaged starch and particle size on stretchability and Kramer shear were greater in fresh tortillas than in stored tortillas and became smaller as the storage time increased. However, the effects of damaged starch and particle size on rollability and firmness were smaller in fresh tortillas than in stored tortillas but became greater as the storage time increased.  相似文献   

17.
Nixtamalization involves cooking and steeping corn in a lime solution, washing the corn (nixtamal), and stone grinding nixtamal to form a corn dough or masa. Masa is used to produce nixtamalized products (corn tortillas, tortilla chips, corn chips, taco shells, etc.) by forming and baking or deepfat frying. The degree of corn kernel cook determines the quality and texture of masa. Response surface methodology (RSM) was used as an experimental design to study the impact of process variables (cook temperature, cook time, initial steep temperature, and steep time) on the degree of cook measured using a Rapid Visco Analyser (RVA) and differential scanning calorimetry (DSC). RSM data exhibited significant (P < 0.005), although not predictive, linear models for RVA peak viscosity (r2 = 0.63), setback (r2 = 0.61), final viscosity (r2 = 0.61), and peak time (r2 = 0.57), indicating a dependence of these parameters on nixtamalization conditions. Peak viscosity, setback, and final viscosity increased linearly with steep time. DSC enthalpy (r2 = 0.83) and peak temperature (r2 = 0.89) of freezedried masa also exhibited significant (P < 0.0001) linear regression models with processing variables. DSC enthalpy increased with an increase in steep time, suggesting that starch is annealed during steeping. This study demonstrated that fundamental starch properties were altered on extended steeping during nixtamalization.  相似文献   

18.
Instant masa flour finds extensive use in the food industry for making tortillas, taco shells, tamales, corn chips, and tortilla chips, and as an ingredient in extruded snacks. Due to lack of standard techniques for measuring masa functionality, processors and end‐users use masa flour particle‐size distribution and rheological characteristics in an attempt to predict its end use. In this study, a commercial masa flour sample was characterized by fractionating on the basis of particle size. Physicochemical and functional properties of masa flour fractions were investigated to establish structure‐composition and functionality relationships. It was observed that Rapid Visco Analyser (RVA) pasting profiles of flour fractions and textural properties of dough prepared on rehydration were related to particle size, yet, upon regrinding, RVA profiles did not change as markedly as expected. Differences in RVA measurements of the sized fractions could not be explained on the basis of hydration rate or total starch content. It was concluded that masa dough textural and RVA characteristics may be influenced by the status of starch polymer structures formed during nixtamalization.  相似文献   

19.
An objective bending technique was developed to measure corn tortilla texture. During the test, tortilla strips were bent to a 40° angle. The bending technique detected differences in uniformity, thickness, and puffing. Thick tortillas required more force to bend and had greater moduli of deformation values than thin tortillas. The bending technique detected changes in tortilla texture during storage and textural differences among commercial corn tortillas purchased at supermarkets. Experimental error of the method was low for both commercial and laboratory-prepared tortillas. Parameters measured by the bending technique were significantly correlated with subjective rollability and flexibility test scores. The bending technique was sensitive to sample characteristics, fast, simple, repeatable, and provided information regarding the relationship between force (stress) and distance, which could be used to determine the linear region of viscoelastic materials.  相似文献   

20.
An objective extensibility test was evaluated to measure texture of corn tortillas. A tortilla strip is pulled apart by a tensile force during the test. Force at 1 mm deformation, force required to rupture the tortilla strip, modulus of deformation, and extensibility distance were correlated to subjective rollability and flexibility scores. Hard, firm tortillas required more force to deform and to rupture and had greater moduli of deformation than soft, flexible tortillas. Tortilla texture was affected by manufacturer of commercial tortillas and by aging. The coefficient of variation ranged from 6.0 to 16.7% for force at 1 mm deformation and work required to rupture, respectively. The extensibility technique is sensitive, fast, simple, and repeatable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号