首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wheat (Triticum aestivum L.) grain hardness is controlled by the Hardness locus on chromosome 5D which consists of the linked genes Puroindoline a and b (Pina and Pinb, respectively). The Ha locus haplotype, Pina‐D1a/Pinb‐D1a, is found in all soft hexaploid wheats. While Pin diversity is low among soft wheats, several novel Ha haplotypes were reported among synthetic hexaploid wheats created using the D genome donor, Aegilops tauschii. One haplotype, Pina‐D1c/Pinb‐D1h, confers a soft phenotype with increased grain hardness over Pina‐D1a/Pinb‐D1a wheats. Here, the Pina‐D1c/Pinb‐D1h haplotype was backcrossed into the soft white spring wheat cultivars ‘Vanna’ and ‘Alpowa’. Then the effect of the two haplotypes on soft wheat milling and baking quality was compared. The effects of the Pina‐D1c/Pinb‐D1h Ha locus haplotype were similar in both the Vanna and Alpowa backgrounds. The Pina‐D1c/Pinb‐D1h lines had significantly more large and fewer small flour particles in both backgrounds and 1.51% higher flour yield in the Alpowa background. The Pina‐D1c/Pinb‐D1h haplotype group was not associated with any consistent differences in solvent retention capacities or sugar snap cookie quality parameters. The results indicate that the Pina‐D1c/Pinb‐D1h haplotype could be used to modify soft wheat milling properties without substantial effects on baking quality.  相似文献   

2.
Wheat (Triticum aestivum L.) grain hardness affects many end‐product quality traits and is controlled primarily by the Hardness (Ha) locus that contains the Puroindoline a and b genes (Pina and Pinb, respectively). All soft hexaploid wheats carry the same Pin alleles, and hard wheats carry a mutation in Pina or Pinb. Here we test the heritability and milling and flour quality effects of increased Pin dosage in soft wheat. Previous experiments have suggested that grain softness can be enhanced by increasing Ha locus dosage through chromosome substitutions. Segregation data from a cross of cultivar Chinese Spring substitution lines with six doses of the Ha locus to the locally adapted soft wheat cultivar Vanna indicate that the substituted B genome Ha locus was not transmitted and that the A genome Ha locus was transmitted normally. Genotypes with the added Pins on the A genome produced seeds that were 7.4 hardness units softer. These softer double Ha genotypes were lower in flour yields, but produced flour with lower ash content, reduced starch damage, and smaller mean particle size. Soft wheats with increased Ha dosage may be useful in improving soft wheat quality through its effects on particle size and starch damage.  相似文献   

3.
Endosperm texture in wheat (Triticum aestivum L.) is determined by the Pina and Pinb genes located within the Hardness (Ha) locus on chromosome 5D. We have previously shown that Pina and Pinb can act alone to produce intermediate-textured grain or act together to produce soft grain. The objective here was to isolate the role of PINA and PINB individually and in combination on milling and bread traits by analyzing F3 recombinant lines created by crosses between PINA and PINB null cultivars with Pina-D1a and Pinb-D1a overexpressing transgenic lines. Homozygous lines that contained either the Pina-D1b/Pinb-D1a (Pina null) or Pina-D1a/Pinb-D1e (Pinb null) Ha locus with or lacking transgenically added Pina or Pinb were analyzed for milling and bread traits. Addition of Pina-D1a to Pina-D1b/Pinb-D1a and addition of Pinb-D1a to Pina-D1a/Pinb-D1e Ha locus genotypes gave soft grain with lower flour yield, flour ash, and a higher proportion of small flour particles. Addition of Pinb-D1a produced greater negative effects on loaf volume than addition of Pina-D1a. Grain hardness, flour protein, flour ash, and mixograph water absorption were positively correlated, which is indicative of the complex phenotype conditioned by PINs. The results demonstrate that PIN overexpression leads to a reduction in grain hardness and reduced flour yield, flour ash, and flour particle size. PIN expression also results in reduced loaf volume and flour water absorption.  相似文献   

4.
Grain hardness is one of the most important characters that determine the end‐use quality of bread wheat (Triticum aestivum L.). Mutations in genes encoding either puroindoline a (Pina) or b (Pinb) have been associated with hard grain texture, i.e., Pina null at Pina‐D1 or seven mutations at Pinb‐D1. In this study, the diversity of puroindoline alleles in 251 Chinese winter wheat cultivars and advanced lines from four major autumn‐planted wheat regions were investigated. Among the examined cultivars, 79 were classified as soft, while 53 were mixed in hardness, and 119 were uniformly hard. Of these hard winter wheats, three of the seven reported mutation types were observed, with Pina‐D1a/Pinb‐D1b being the dominant type for hard texture; 91 genotypes carried this allele. Sixteen genotypes had the Pina‐D1b allele, and two genotypes had the Pinb‐D1d allele. A new mutation, designated as Pinb‐D1p, was detected in 10 hard genotypes, with a single nucleotide (A) deletion corresponding to position 42 in the amino acid sequence of puroindoline b, involving a lysine (K) to asparagine (N) change, and leading to a shift in the open reading frame (ORF). This deletion disrupts the last part of the tryptophanrich domain, changing it from KWWK to NGGR, which is considered essential for the lipid‐binding activity of this protein, and results in a stop codon corresponding to position Pro‐60 in the amino acid sequence. The characterization of different hardness alleles provides useful information in understanding the mechanism underlying the formation of endosperm hardness while providing breeders the means of manipulating this important trait.  相似文献   

5.
Wheat (Triticum aestivum) end‐product quality is impacted by grain hardness, which is determined by the Hardness locus consisting of the Puroindoline a and Puroindoline b genes, Pina and Pinb, respectively. Hard wheats commonly contain just one of two Pin mutations. We previously demonstrated the creation and preliminary hardness testing of 46 Pin missense alleles. In this study we examine the degree that individual Pin missense alleles confer unique milling and bread quality traits. Three Pina (PINA‐R103K, ‐G47S, and ‐P35S) and four Pinb (PINB‐D34N, ‐T38I, ‐G46D, and ‐E51K) missense alleles were chosen because they impart variable grain hardness levels, with one allele conferring soft seed texture, three conferring intermediate hardness (single‐kernel characterization system [SKCS] hardness approximately 50), and three conferring hard grain texture (SKCS hardness greater than 60). All but two of the alleles (PINA‐R103K and PINA‐G47S) resulted in higher total flour yield when compared with wild‐type controls. All hard and intermediate hardness alleles had decreased break flour yield, but intermediate hardness allele PINA‐P35S had higher break flour yield than common hard allele Pinb‐D1b. Intermediate and hard alleles resulted in increased abundance of larger and reduced levels of smaller flour particles. None of the missense alleles differed from their controls for loaf volume. The seven selected Pin alleles imparted defined levels of grain hardness and milling properties not previously available that may prove useful in wheat improvement.  相似文献   

6.
The level of grain hardness of wheat (Triticum aestivum) cultivars profoundly affects milling properties and end-use. We examined grain hardness among a genetically defined set of 83 chromosome 5D homozygous recombinant substitution lines derived from soft wheat cv. Chinese Spring and hard wheat cv. Cheyenne and compared four common methods of measuring wheat grain hardness. Measures of grain hardness included a modified particle size index, Brabender Quadrumat flour milling, near-infrared reflectance (NIR) spectroscopy, and the single-kernel characterization system (SKCS). Duncan's multiple range test was used to group recombinant lines according to parental classes. Quadrumat milling fractions, percent bran and middlings, were well correlated to NIR and SKCS grain hardness, whereas break flour, a traditional measure of grain hardness, was poorly correlated to other hardness measures. NIR and SKCS grain hardness measures provided the greatest and similar mean separations. Both methods identified recombinant lines as being significantly outside either parental class and significantly different from and in between the two parental classes. Between two divergent environments, correlations (r) for Quadrumat bran and middlings percents and NIR and SKCS hardness ranged from 0.83 to 0.94. Analysis of variance indicated that lines differed substantially for hardness, and hardness was highly influenced by environment, albeit consistently, as indicated by low line-location model interaction terms. The results confirmed the presence of major allelic differences assignable to chromosome 5D and suggested the action of minor gene(s). Break flour, in particular, showed strong indications of transgressive segregation independent of the Hardness (Ha) locus. The Perten 4100 SKCS provided the best (most discriminating) measure of the material properties of the wheat endosperm manifested by the action of the Ha locus.  相似文献   

7.
The use of corn (Zea mays L.) hybrids with high grain yield and starch extractability has steadily increased in the processing industry. In light of widespread corn seed industry participation in the Germplasm Enhancement of Maize Project (GEM), which seeks to enhance exotic germplasm, future hybrids may contain more exotic sources in genetic backgrounds. It is necessary to establish and monitor physical, compositional, and milling characteristics of the new exotic breeding materials to determine the processing value. The present study was conducted to determine the wet‐milling characteristics of a set of GEM lines compared with typical Corn Belt lines. Ten GEM lines introgressed with exotic materials from Argentina, Chile, Cuba, Florida, and Uruguay and previously identified as having different starch yields, three commercial inbred lines, and two public inbred lines (B73 and Mo17) were analyzed using both near‐infrared transmittance (NIT) and a 100‐g wet‐milling procedure. There were statistical differences (P < 0.05) in the yield of wet‐milled fractions (starch, fiber, gluten, and germ). The GEM lines AR16035:S19‐227‐1‐B and CUBA117:S1520‐562‐1‐B had similar or better starch yield and starch recovery than B73 and the other adapted inbred lines, indicating that they may be useful in improving the proportion of extractable starch present in kernels of hybrids. Residual protein levels in the starch and gluten fractions were 0.26–0.32% and 38–45%, respectively. The starch yield of GEM lines from wet milling correlated positively with starch content from NIT and was negatively correlated with protein content of the corn kernels. Oil content in the germ varied from 50 to 60%. Our results indicate that incorporating GEM lines in a breeding program can maintain or even improve wet‐milling characteristics of Corn Belt materials if lines with appropriate traits are used.  相似文献   

8.
Mutation of the gene coding for the granule bound starch synthase (waxy protein) leads to reduced amylose content in cereal endosperm. Durum wheat (Triticum turgidum L. var. durum) has one waxy locus in each of its two genomes. Full waxy durum wheat is produced when both genomes carry the waxy null alleles. When only one locus is mutated, partial waxy durum wheat is obtained. Partial and full waxy near‐isogenic lines of durum wheat developed by a breeding program were analyzed as to their quality characteristics. Amylose was largely eliminated in full waxy lines; however, no reduction in amylose content was detected in partial waxy lines. The waxy mutation did not affect grain yield, kernel size, or kernel hardness. Full waxy durum lines had higher kernel ash content, α‐amylase activity, and a unique nonvitreous kernel appearance. Protein quality, as evaluated by SDS microsedimentation value, gluten index, and wet gluten was slightly lower in the full waxy lines than in the other genotypes. However, comparisons with current cultivars indicated that protein quality of all derived lines remained in the range of strong gluten cultivars. Semolina yield was lowered by the waxy mutations due to lower friability that resulted in less complete separation of the endosperm from the bran. Waxy semolina was more sensitive to mechanical damage during milling, but modified tempering and milling conditions may limit the damage. Overall, quality characteristics of waxy durum grain were satisfactory and suitable for application testing.  相似文献   

9.
Differences in milling behavior among hard‐type common wheat (Triticum aestivum) cultivars are well known to millers. Among them, the French cultivar Soissons, which contains the Pinb‐D1d allelic form of the puroindoline b gene, is particularly distinguished for its high milling value. Near‐isogenic lines (NILs) differing by the allelic forms of the puroindoline b gene, Pinb‐D1d or Pinb‐D1b (one of the most frequent alleles found in the European wheat population), were constructed. Grain characteristics obtained after wheat cultivation in distinct environmental conditions were compared between NILs and the cultivar Soissons, as was their fractionation behavior. Results showed that NILs containing the Pinb‐D1d allele displayed lower values of grain hardness and vitreousness than did the corresponding lines containing the Pinb‐D1b allelic form under the same cultivation conditions. Both genetic background and environmental conditions appeared to affect grain texture. Measured single‐kernel characterization system hardness index values of the samples under study were found to be correlated with the vitreousness values. Studies of the milling behavior helped to point out that grain vitreousness is an important factor acting on endosperm breakage ability, whatever the genetic background of the wheat. Our results also demonstrated that, at similar levels of vitreousness, the endosperm of Soissons could more easily be reduced than that of other wheat lines.  相似文献   

10.
Grain hardness (kernel texture) is of central importance in the quality and utilization of wheat (Triticum aestivum L.) grain. Two major classes, soft and hard, are delineated in commerce and in the Official U.S. Standards for Grain. However, measures of grain hardness are empirical and require reference materials for instrument standardization. For AACC Approved Methods employing near‐infrared reflectance (NIR) and the Single Kernel Characterization System (39‐70A and 55‐31, respectively), such reference materials were prepared by the U.S. Dept. of Agriculture Federal Grain Inspection Service. The material was comprised of genetically pure commercial grain lots of five soft and five hard wheat cultivars and was made available through the National Institute of Standards and Technology (SRM 8441, Wheat Hardness). However, since their establishment, the molecular‐genetic basis of wheat grain hardness has been shown to result from puroindoline a and b. Consequently, we sought to define the puroindoline genotype of these 10 wheat cultivars and more fully characterize their kernel texture through Particle Size Index (PSI, Method 55‐30) and Quadrumat flour milling. NIR, SKCS, and Quadrumat break flour yield grouped the hard and soft cultivars into discrete texture classes; PSI did not separate completely the two classes. Although all four of these methods of texture measurement were highly intercorrelated, each was variably influenced by some minor, secondary factors. Among the hard wheats, the two hard red spring wheat cultivars that possess the Pina‐D1b (a‐null) hardness allele were harder than the hard red winter wheat cultivars that possess the Pinb‐D1b allele based on NIR, PSI, and break flour yield. Among the soft wheat samples, SKCS grouped the Eastern soft red winter cultivars separate from the Western soft white. A more complete understanding of texture‐related properties of these and future wheat samples is vital to the use and calibration of kernel texture‐measuring instruments.  相似文献   

11.
《Cereal Chemistry》2017,94(5):805-810
Wheat (Triticum aestivum L.) grain hardness is controlled by the Ha locus, which is composed of two closely linked genes, Puroindoline a (Pina ) and Puroindoline b (Pinb ). Hard grain results from mutations in either of the Pin genes. Previous results have shown that the Pina‐D1b (Pina null) allele has harder grain than other naturally occurring Pin alleles. Our goal was to create, identify, and characterize a double null Pin genotype by identifying a Pinb null mutation in a variety carrying the Pina‐D1l null allele. Seeds of Fortuna, which has a premature stop codon in Pina , were treated with ethyl methanesulfonate. Two premature stop codon mutations were identified in Pinb using direct sequencing. The double null Pin haplotype was characterized after backcrossing to the parent variety Fortuna to create Pina null populations segregating for the presence of Pinb . The double null group was 6 units harder than the single null with no difference in other kernel characteristics. The milling characteristics differed between the two classes; the double null class had less break flour with a greater fraction of large and a smaller fraction of small flour particles compared with the single null class. Neither water absorption nor loaf volume was impacted by the change in grain hardness; however, Na2CO3 tests indicated greater starch damage in the double nulls. The double null Pin genotype may find a niche in hard wheat products for which flours with larger particle size are desired.  相似文献   

12.
The objectives of this study were to investigate the relationship between milling yield and grain hardness. A preliminary study was carried out with 20 samples (both hard and soft wheats) using the Brabender hardness tester (BHT) with two grind settings: one‐step grind (0‐10) and two‐step grind (2‐12: coarse; 0‐8: fine). The two‐step grind was correlated with particle size index, single‐kernel characterization system (SKCS) hardness, break yield, and reduction yield (P < 0.05), whereas there was no correlation with the one‐step grind method. An additional 64 samples were ground with the two‐step grind setting to further validate this method. In terms of the BHT crush profile, no discernible differences were observed between varieties for the coarse grind, whereas for the fine grind, hard wheat gave a higher BHT maximum peak height and shorter grinding time compared with soft wheat. The break and reduction yields were significantly correlated with both BHT and SKCS hardness (P < 0.05). The findings indicated that the BHT method could be used to differentiate for milling yield among the different varieties. Based on the results, two milling yield models were developed, and both gave highly significant correlations between the predicted and Buhler mill break (R2 = 0.791, P < 0.05) and reduction yield (R2 = 0.896, P < 0.05).  相似文献   

13.
Jet milling is a fluid energy impact‐milling technique generally used for the ultrafine reduction of higher value materials. The efficiency of jet milling combined with air classification appears very efficient to separate starch from other wheat flour aggregate components and to produce wheat starch with very low residual protein content. Indeed, residual protein content of the starch‐rich fraction can be reduced to <2% db with a series of successive grinding and air classification operations. Lipid and pentosan contents were also reduced in the starch‐rich fraction. Nevertheless, jet milling cannot eliminate grinding differences observed between different types of wheat. Wheat hardness continues to have an effect on milling and classification yields and on the composition of air classification fractions. To obtain starch‐rich fraction with only 2% protein content, hard wheat flour required a series of at least five grinding steps, whereas only three steps are necessary for soft wheat flour. Under these conditions, hard wheat flours give 24% mass yield with 12% starch damage compared with 39% yield and a low starch damage content (6.4%) for soft wheat flour. These results highlight new prospects for the development of cereal flours, especially soft wheat flours.  相似文献   

14.
Milling and breadbaking quality of hard‐textured wheat may be influenced by alternative alleles at the Wx loci controlling percent amylose in the endosperm, and the puroindoline (pin) loci controlling grain hardness. For this experiment, we developed recombinant inbred lines (RIL) from a cross between Choteau spring wheat cultivar and experimental line MTHW9904. Choteau has the PinB‐D1b mutation conferring grain hardness and the Wx‐B1a allele at the Wx‐B1 locus conferring wild‐type amylose content. MTHW9904 has the PinA‐D1b allele conferring grain hardness and the Wx‐B1b allele conferring lower amylose content, causing a partial waxy phenotype. RIL with the PinB‐D1b mutation (n = 49) had significantly softer kernels, higher break flour yield, and higher loaf volume than lines with the PinA‐D1b mutation (n = 38). Lines with partial waxy phenotype due to Wx‐B1b (n = 43) had significantly lower kernel weight, lower amylose content, and higher flour swelling power than lines with wild‐type starch due to Wx‐B1a (n = 51). These results provide additional evidence for the positive effect of PinB‐D1b on bread quality in hard wheats, while genotype at Wx‐B1 was generally neutral for bread quality in this population. Interactions between the Pin and Wx loci were minimal.  相似文献   

15.
The objectives of this research were to study the effects of slurry specific gravity, starch table slope, slurry pumping rate, and their interactions on starch recovery and purity; and to propose a small‐scale laboratory wet‐milling procedure for wheat. First‐order and second‐order response surface regression models were developed to study the effects and interactions of slurry specific gravity, starch table slope, and slurry pumping rate on starch and gluten separation for a 100‐g wheat wet‐milling procedure. The starch and starch protein content data fit the first‐order models (R2 = 0.99 and 0.96) better than the second‐order models (R2 = 0.98 and 0.93). Regression results from the first‐order models indicated that specific gravity, table slope, pumping rate, and their interactions all had a significant effect on starch yield and purity. However, these effects could be simplified as the effect of the resident time of starch and gluten slurry on the starch table and the specific gravity. Starch yield increased as resident time increased and specific gravity decreased. Protein content in starch decreased as the resident time decreased and the specific gravity increased. The separation condition with specific gravity of 3 Bé, table slope of 1.04 cm/m, and pumping rate of 50 mL/min was recommended. Under this condition, starch recovery was 85.6% and protein content of starch was 0.42%, which was similar to the 1.5‐kg laboratory methods in starch recovery. Total solids recovery was 98.1%, which is similar to that from 1.5‐kg laboratory methods. These results indicated that precision of the 100‐g wheat wet‐milling procedure was similar to that of the 1.5‐kg laboratory methods.  相似文献   

16.
The effects of maturity on grain quality and wet‐milling properties were investigated for two hybrids of corn. Significant differences for hybrid and maturity were observed for all grain quality parameters. Test weight, absolute density, and thousand‐grain weight all increased as the corn matured. Kernel hardness increased and breakage susceptibility varied with increased maturity. Water uptake parameters decreased with maturity of the grain. The starch yield results from wet milling showed that the starch yield increased significantly within each cultivar in the early stages of grain maturity, but there were no significant differences between hybrids. Mathematical models using selected grain quality parameters accurately predicted trends in starch yield for the immature and mature corn samples in this study.  相似文献   

17.
A waxy spring wheat (Triticum aestivum L.) genotype was fractionated into flour and starch by roller and wet‐milling, respectively. The resultant flour and starch were evaluated for end‐use properties and compared with their counterparts from hard and soft wheats and with commercial waxy and nonwaxy corn (Zea mays L.) starches. The waxy wheat flour had exceptionally high levels of water absorption and peak viscosity compared with hard or soft wheat flour. The flour formed an intermediate‐strength dough that developed rapidly and was relatively susceptible to mixing. Analysis by differential scanning calorimetry and X‐ray diffractometry showed waxy wheat starch had higher gelatinization temperatures, a greater degree of crystallization, and an absence of an amylose‐lipid complex compared with nonwaxy wheat. Waxy wheat and corn starches showed greater refrigeration and freeze‐thaw stabilities than did nonwaxy starches as demonstrated by syneresis tests. They were also similar in pasting properties, but waxy wheat starch required lower temperature and enthalpy to gelatinize. The results show analogies between waxy wheat and waxy corn starches, but waxy wheat flour was distinct from hard or soft wheat flour in pasting and mixing properties.  相似文献   

18.
Hybrids with high grain yield and higher starch, protein, or oil content are available to corn growers; however, they result from crossing adapted Corn Belt inbred lines that rarely include exotic germplasm. This study was conducted to determine whether Corn Belt lines introgressed with exotic materials from Argentina, Chile, Uruguay, Cuba, and Florida have appropriate wet‐milling characteristics in their hybrids. Ten lines from the Germplasm Enhancement of Maize (GEM) project with different starch contents were crossed to three adapted inbred lines used as testers. The B73×Mo17 hybrid was used as a control. The F1 generation of these 30 experimental hybrids was analyzed using both near‐infrared transmittance (NIT) technology and a 100‐g modified wet‐milling procedure, and measuring test and 1,000‐kernel weight. There was great variation among physical, compositional, and wet‐milling characteristics of the experimental hybrids, suggesting that exotic germplasm can be used to improve wet‐milling characteristics of Corn Belt hybrids.  相似文献   

19.
Development of high‐protein digestibility (HPD)/high‐lysine (hl) sorghum mutant germplasm with good grain quality (i.e., hard endosperm texture) has been a major research objective at Purdue University. Progress toward achieving this objective, however, has been slow due to challenges posed by a combination of genetic and environmental factors. In this article, we report on the identification of a sorghum grain phenotype with a unique modified endosperm texture that has near‐normal hardness and possesses superior nutritional quality traits of high digestibility and enhanced lysine content. These modified endosperm lines were identified among F6 families developed from crosses between hard endosperm, normal nutritional quality sorghum lines, and improved HPD/hl sorghum mutant P721Q‐derived lines. A novel vitreous endosperm formation originated in the central portion of the kernel endosperm with opaque portions appearing both centrally and peripherally surrounding the vitreous portion. Kernels exhibiting modification showed a range of vitreous content from a slight interior section to one that filled out to the kernel periphery. Microstructure of the vitreous endosperm fraction was dramatically different from that of vitreous normal kernels in sorghum and in other cereals, in that polygonal starch granules were densely packed but without the typically associated continuous protein matrix. We speculate that, due to the lack of protein matrix, such vitreous endosperm may have more available starch for animal nutrition, and possibly have improved wet‐milling and dry‐grind ethanol processing properties. The new modified endosperm selections produce a range that approaches the density of the vitreous parent, and have lysine content and protein digestibility comparable to the HPD/hl opaque mutant parent.  相似文献   

20.
Molecular markers for the red grain color (R) loci controlling seed color and the polyphenol oxidase (Ppo‐A1) locus controlling polyphenol oxidase (PPO) activity in seed have recently been developed. These markers provided the opportunity to convert the hard red spring wheat cultivars Choteau and Hank to white‐seeded versions with high and low PPO levels, respectively. These sets of near‐isogenic lines provided material to test the effects of seed color and PPO activity on a range of end‐use quality traits. We tested recurrent parents Choteau and Hank, along with near‐isogenic derivatives with white seed, in two replicated trials in Bozeman, Montana, for end‐use quality parameters. The white‐seeded lines consisted of both high‐ and low‐PPO near‐isogenic lines. The primary impact of white seed was the production of whole wheat bread with a perceived sweeter taste relative to the red‐seeded lines. Noodle color was not consistently impacted by the level of PPO variation despite relatively large reductions in PPO level. The alleles for white seed color did not appear to impact agronomic traits. These results suggested that hard white low‐PPO hard spring wheat would be advantageous in terms of conferring brighter color to Asian noodles and a sweeter taste to whole wheat bread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号