首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In the dry-grind process, corn starch is converted into sugars that are fermented into ethanol. The remaining corn components (protein, fiber, fat, and ash) form a coproduct, distillers dried grains with solubles (DDGS). In a previous study, the combination of sieving and elutriation (air classification), known as the elusieve process, was effective in separating fiber from DDGS. In this study, elusieve fiber was evaluated for ethanol production and results were compared with those reported in other studies for fiber from different corn processing techniques. Fiber samples were pretreated using acid hydrolysis followed by enzymatic treatment. The hydrolyzate was fermented using Escherichia coli FBR5 strain. Efficiency of ethanol production from elusieve fiber was 89–91%, similar to that for pericarp fiber from wet-milling and quick fiber processes (86–90%). Ethanol yields from elusieve fiber were 0.23–0.25 L/kg (0.027–0.030 gal/lb); similar to ethanol yields from wet-milling pericarp fiber and quick fiber. Fermentations were completed within 50 hr. Elusieve fiber conversion could result in 1.2–2.7% increase in ethanol production from dry-grind plants. It could be economically feasible to use elusieve fiber along with other feedstock in a plant producing ethanol from cellulosic feedstocks. Due to the small scale of operation and the stage of technology development for cellulosic conversion to ethanol, implementation of elusieve fiber conversion to ethanol within a dry-grind plant may not be currently economically feasible.  相似文献   

2.
A process was developed to separate fiber from distillers dried grains with solubles (DDGS) in a dry‐grind corn process. Separation of fiber from DDGS would provide two valuable coproducts: 1) DDGS with reduced fiber, increased fat, and increased protein contents; and 2) fiber. The process, called elusieve process, used two separation methods, sieving and elutriation, to separate the fiber. Material carried by air to the top of the elutriation column was called the lighter fraction and material that settled to the bottom of the column was called the heavier fraction. We evaluated the compositions of fractions produced from sieving and elutriation. Two commercial samples of DDGS were obtained from two dry‐grind corn plants. Sieving over four screens (869, 582, 447, and 234 μm openings) created five size categories. The two smallest size categories contained >40% (w/w) of the original DDGS and had reduced fiber and increased protein and fat contents relative to the original DDGS. Elutriation of the remaining three size categories increased protein and fat contents and reduced fiber contents in the heavier fractions. Elutriation at air velocities of 1.59–5.24 m/sec increased the protein content of the heavier fraction by 13–41% and increased the fat content of the heavier fraction by 4–127% compared with the bulk fractions of each size category. This process was effective in separating fiber from both DDGS samples evaluated. Elusieve process does not require changes in the existing dry‐grind process and can be implemented at the end of the dry‐grind process.  相似文献   

3.
Separation of fiber from distillers dried grains with solubles (DDGS) provides two valuable coproducts: 1) enhanced DDGS with reduced fiber, increased fat and increased protein contents and 2) fiber. Recently, the elusieve process, a combination of sieving and elutriation was found to be effective in separating fiber from two commercial samples of DDGS (DDGS‐1 and DDGS‐2). Separation of fiber decreased the quantity of DDGS, but increased the value of DDGS by increasing protein content and produced a new coproduct with higher fiber content. Economic analysis was conducted to determine the payback period, net present value (NPV), and internal rate of return (IRR) of the elusieve process. The dependence of animal foodstuff prices on their protein content was determined. Equipment prices were obtained from industrial manufacturers. Relative to crude protein content of original DDGS, crude protein content of enhanced DDGS was higher by 8.0% for DDGS‐1 and by 6.3% for DDGS‐2. For a dry‐grind plant processing corn at the rate of 2,030 metric tonnes/day (80,000 bushels/day), increase in revenue due to the elusieve process would be $0.4 to 0.7M/year. Total capital investment for the elusieve process would be $1.4M and operating cost would be $0.1M/year. Payback period was estimated to be 2.5–4.6 years, NPV was $1.2–3.4M, and IRR was 20.5–39.5%.  相似文献   

4.
A new low temperature liquefaction and saccharification enzyme STARGEN 001 (Genencor International, Palo Alto, CA) with high granular starch hydrolyzing activity was used in enzymatic dry‐grind corn process to improve recovery of germ and pericarp fiber before fermentation. Enzymatic dry‐grind corn process was compared with conventional dry‐grind corn process using STARGEN 001 with same process parameters of dry solid content, pH, temperature, enzyme and yeast usage, and time. Sugar, ethanol, glycerol and organic acid profiles, fermentation rate, ethanol and coproducts yields were investigated. Final ethanol concentration of enzymatic dry‐grind corn process was 15.5 ± 0.2% (v/v), which was 9.2% higher than conventional process. Fermentation rate was also higher for enzymatic dry‐grind corn process. Ethanol yields of enzymatic and conventional dry‐grind corn processes were 0.395 ± 0.006 and 0.417 ± 0.002 L/kg (2.65 ± 0.04 and 2.80 ± 0.01 gal/bu), respectively. Three additional coproducts, germ 8.0 ± 0.4% (db), pericarp fiber 7.7 ± 0.4% (db), and endosperm fiber 5.2 ± 0.6% (db) were produced in addition to DDGS with enzymatic dry‐grind corn process. DDGS generated from enzymatic dry‐grind corn process was 66% less than conventional process.  相似文献   

5.
Effects of phytase addition, germ, and pericarp fiber recovery were evaluated for the E‐Mill dry grind corn process. In the E‐Mill process, corn was soaked in water followed by incubation with starch hydrolyzing enzymes. For each phytase treatment, an additional phytase incubation step was performed before incubation with starch hydrolyzing enzymes. Germ and pericarp fiber were recovered after incubation with starch hydrolyzing enzymes. Preliminary studies on phytase addition resulted in germ with higher oil (40.9%), protein (20.0%), and lower residual starch (12.2%) contents compared to oil (39.1%), protein (19.2%), and starch (18.1%) in germ from the E‐Mill process without phytase addition. Phytase treatment resulted in lower residual starch contents in pericarp fiber (19.9%) compared to pericarp fiber without phytase addition (27.4%). Results obtained led to further investigation of effects of phytase on final ethanol concentrations, germ, pericarp fiber, and DDGS recovery. Final ethanol concentrations were higher in E‐Mill processing with phytase addition (17.4% v/v) than without addition of phytase (16.6% v/v). Incubation with phytases resulted in germ with 4.3% higher oil and 2.5% lower residual starch content compared to control process. Phytase treatment also resulted in lower residual starch and higher protein contents (6.58 and 36.5%, respectively) in DDGS compared to DDGS without phytase incubations (8.14 and 34.2%, respectively). Phytase incubation in E‐Mill processing may assist in increasing coproduct values as well as lead to increased ethanol concentrations.  相似文献   

6.
Corn kernels contain 9% fiber by weight, which is not digested well by nonruminants such as chicken and swine. Also, fiber is nonreactive in the dry‐grind process for ethanol production and is considered as feedstock for the production of second‐generation bioethanol. Fiber separation can enhance starch concentration in animal feed and increase starch loading in ethanol plants. Electrostatic separation is used to separate particles from granular mixtures under the influence of electrical forces. The Elusieve process, a combination of sieving and air classification, separates fiber by taking advantage of differences in size, shape, and density. Differences in dielectric properties could also be exploited for fiber separation. The aim of this study was to evaluate the effectiveness of electrostatic separation of fiber particles from corn. When the electrostatic method was used in conjunction with Elusieve processing, the fiber product had higher neutral detergent fiber (NDF, 52.9%) compared with Elusieve processing alone (NDF of 40.5%). Also, a higher quantity of enhanced flour (95.0% yield) was produced when the electrostatic method was used in conjunction with Elusieve processing compared with Elusieve processing alone (93.0% yield), without any change in quality of the enhanced flour (NDF of 6.6% in both cases). The electrostatic method improved fiber separation when used in conjunction with Elusieve processing.  相似文献   

7.
A modified dry‐grind corn process has been developed that allows recovery of both pericarp and endosperm fibers as coproducts at the front end of the process before fermentation. The modified process is called enzymatic milling (E‐Mill) dry‐grind process. In a conventional dry‐grind corn process, only the starch component of the corn kernel is converted into ethanol. Additional ethanol can be produced from corn if the fiber component can also be converted into ethanol. In this study, pericarp and endosperm fibers recovered in the E‐Mill dry‐grind process were evaluated as a potential ethanol feedstock. Both fractions were tested for fermentability and potential ethanol yield. Total ethanol yield recovered from corn by fermenting starch, pericarp, and endosperm fibers was also determined. Results show that endosperm fiber produced 20.5% more ethanol than pericarp fiber on a g/100 g of fiber basis. Total ethanol yield obtained by fermenting starch and both fiber fractions was 0.370 L/kg compared with ethanol yield of 0.334 L/kg obtained by fermenting starch alone.  相似文献   

8.
Three different modified dry‐grind corn processes, quick germ (QG), quick germ and quick fiber (QGQF), and enzymatic milling (E‐Mill) were compared with the conventional dry‐grind corn process for fermentation characteristics and distillers dried grains with solubles (DDGS) composition. Significant effects were observed on fermentation characteristics and DDGS composition with these modified dry‐grind processes. The QG, QGQF, and E‐Mill processes increased ethanol concentration by 8–27% relative to the conventional dry‐grind process. These process modifications reduced the fiber content of DDGS from 11 to 2% and increased the protein content of DDGS from 28 to 58%.  相似文献   

9.
Different corn types were used to compare ethanol production from the conventional dry‐grind process to wet or dry fractionation processes. High oil, dent corn with high starch extractability, dent corn with low starch extractability and waxy corn were selected. In the conventional process, corn was ground using a hammer mill; water was added to produce slurry which was fermented. In the wet fractionation process, corn was soaked in water; germ and pericarp fiber were removed before fermentation. In the dry fractionation process, corn was tempered, degerminated, and passed through a roller mill. Germ and pericarp fiber were separated from the endosperm. Due to removal of germ and pericarp fiber in the fractionation methods, more corn was used in the wet (10%) and dry (15%) fractionation processes than in the conventional process. Water was added to endosperm and the resulting slurry was fermented. Oil, protein, and residual starch in germ were analyzed. Pericarp fiber was analyzed for residual starch and neutral detergent fiber (NDF) content. Analysis of variance and Fisher's least significant difference test were used to compare means of final ethanol concentrations as well as germ and pericarp fiber yields. The wet fractionation process had the highest final ethanol concentrations (15.7% v/v) compared with dry fractionation (15.0% v/v) and conventional process (14.1% v/v). Higher ethanol concentrations were observed in fractionation processes compared to the conventional process due to higher fermentable substrate per batch available as a result of germ and pericarp fiber removal. Germ and pericarp yields were 7.47 and 6.03% for the wet fractionation process and 7.19 and 6.22% for the dry fractionation process, respectively. Germ obtained from the wet fractionation process had higher oil content (34% db) compared with the dry fractionation method (11% db). Residual starch content in the germ fraction was 16% for wet fractionation and 44% for dry fractionation. Residual starch in the pericarp fiber fraction was lower for the wet fractionation process (19.9%) compared with dry fractionation (23.7%).  相似文献   

10.
In the dry‐grind ethanol process, distillers dried grains with solubles (DDGS) is the main coproduct, which is primarily used as an ingredient in ruminant animal diets. Increasing the value of DDGS will improve the profitability of the dry‐grind ethanol process. One way to increase DDGS value is to use pigmented maize as the feedstock for ethanol production. Pigmented maize is rich in anthocyanin content, and the anthocyanin imparts red, blue, and purple color to the grain. It is reported that anthocyanin would be absorbed by yeast cell walls during the fermentation process. The effects of anthocyanin on fermentation characteristics in the dry‐grind process are not known. In this study, the effects of anthocyanin in conventional (conventional starch hydrolyzing enzymes) and modified (granular starch hydrolyzing enzymes [GSHE]) dry‐grind processes were evaluated. The modified process using GSHE replaced high‐temperature liquefaction. The ethanol conversion efficiencies of pigmented maize were comparable to that of yellow dent corn in both conventional (78.4 ± 0.5% for blue maize, 74.3 ± 0.4% for red maize, 81.2 ± 1.0% for purple maize, and 75.1 ± 0.2% for yellow dent corn) and modified dry‐grind processes using GSHE (83.8 ± 0.8% for blue maize, 81.1 ± 0.3% for red maize, 93.5 ± 0.8% for purple maize, and 85.6 ± 0.1% for yellow dent corn). Total anthocyanin content in DDGS from the modified process was 1.4, 1.9, and 2.4 times of that from the conventional process for purple, red, and blue maize samples, respectively. These results indicated that pigmented maize rich in anthocyanin did not negatively affect the fermentation characteristics of the dry‐grind process and that there was a potential to use pigmented maize in the dry‐grind process, especially when using GSHE.  相似文献   

11.
Efficiently utilizing the nongrain portion of the corn plant as ruminant food and the grain for ethanol will allow the optimization of both food and fuel production. Corn and corn stover could be more effectively used if they were harvested earlier before dry down. Corn harvested at different moisture contents (MCs) may exhibit different processing characteristics for the ethanol industry, because of differences in physical and chemical properties. Therefore, the objective of this study was to investigate the effect of corn harvest MC on dry‐grind fermentation characteristics and dried distillers grains with solubles (DDGS) composition. Pioneer hybrid 32D78 was harvested at seven different dates from August 21 to November 23, 2009, with harvest MCs ranging from 73 to 21% (wb). The corn samples with different harvest MCs were evaluated by a conventional dry‐grind process. Final ethanol concentration from the corn with harvest MC of 54% (kernel dent stage) was 17.9% (v/v), which was significantly higher (0.5–1.2 percentage points) than the mature corn with lower harvest MCs (P < 0.05). Ethanol conversion efficiencies for the corn with harvest MCs of 73 and 54% (wb) were 98.5 and 93.2%, respectively, whereas ethanol conversion efficiencies for the corn with lower harvest MCs were significantly lower (P < 0.05), ranging between 83.2 and 88.3%. For DDGS composition, with corn harvest MC decreasing from 73 to 21% (wb), the residual starch concentration increased from 7.7 to 15.2%, the crude protein concentration decreased from 29.4 to 24.9%, and the neutral detergent fiber concentration decreased from 26.6 to 20.6%.  相似文献   

12.
New corn fractionation technologies that produce higher value coproducts from dry‐grind processing have been developed. Wet fractionation technologies involve a short soaking of corn followed by milling to recover germ and pericarp fiber in an aqueous medium before fermentation of degermed defibered slurry. In dry fractionation technologies, a dry degerm defiber (3D) process (similar to conventional corn dry‐milling) is used to separate germ and pericarp fiber before fermentation of the endosperm fraction. The effect of dry and wet fractionation technologies on the fermentation rates and ethanol yields were studied and compared with the conventional dry‐grind process. The wet process had the highest fermentation rate. The endosperm fraction obtained from 3D process had lowest fermentation rate and highest residual sugars at the end of fermentation. Strategies to improve the fermentation characteristics of endosperm fraction from 3D process were evaluated using two saccharification and fermentation processes. The endosperm fraction obtained from 3D process was liquefied by enzymatic hydrolysis and fermented using either separate saccharification (SS) and fermentation or simultaneous saccharification and fermentation (SSF). Corn germ soak water and B‐vitamins were added during fermentation to study the effect of micronutrient addition. Ethanol and sugar profiles were measured using HPLC. The endosperm fraction fermented using SSF produced higher ethanol yields than SS. Addition of B‐vitamins and germ soak water during SSF improved fermentation of 3D process and resulted in 2.6 and 2.3% (v/v) higher ethanol concentrations and fermentation rates compared with 3D process treatment with no addition of micronutrients.  相似文献   

13.
An amylase corn has been developed that produces an α‐amylase enzyme that is activated in the presence of water at elevated temperatures (>70°C). Amylase corn in the dry‐grind process was evaluated and compared with the performance of exogenous amylases used in dry‐grind processing. Amylase corn (1–10% by weight) was added to dent corn (of the same genetic background as the amylase corn) as treatments and resulting samples were evaluated for dry‐grind ethanol fermentation using 150‐g and 3‐kg laboratory procedures. Ethanol concentrations during fermentation were compared with the control treatment (0% amylase corn addition or 100% dent corn) which was processed with a conventional amount of exogenous α‐amylase enzymes used in the dry‐grind corn process. The 1% amylase corn treatment (adding 1% amylase corn to dent corn) was sufficient to liquefy starch into dextrins. Following fermentation, ethanol concentrations from the 1% amylase corn treatment were similar to that of the control. Peak and breakdown viscosities of liquefied slurries for all amylase corn treatments were significantly higher than the control treatment. In contrast, final viscosities of liquefied slurries for all amylase corn treatments were lower than those of the control. Protein, fat, ash, and crude fiber contents of DDGS samples from the 3% amylase corn treatment and control were similar.  相似文献   

14.
The dry grind process using granular starch hydrolyzing enzymes (GSHE) saves energy. The amount of GSHE used is an important factor affecting dry grind process economics. Proteases can weaken protein matrix to aid starch release and may reduce GSHE doses. Two specific proteases, an exoprotease and an endoprotease, were evaluated in the dry grind process using GSHE (GSH process). The effect of protease and urea addition on GSH process was also evaluated. Addition of these proteases resulted in higher ethanol concentrations (mean increase of 0.3–1.8 v/v) and lower distillers' dried grains with solubles (DDGS) yields (mean decrease of 1.3–8.0% db) compared with the control (no protease addition). As protease levels and GSHE increased, ethanol concentrations increased and DDGS yields decreased. Protease addition reduced the required GSHE dose. Final mean ethanol concentrations without urea (15.2% v/v) were higher than with urea (15.0% v/v) in GSH process across all protease treatments.  相似文献   

15.
Preliminary calculations showed that recovery of fiber before fermentation in the dry grind ethanol facilities known as the Quick Fiber process increases fermenter capacity and reduces ethanol production cost by as much as 4 ¢/gal. The objective of the current research was to evaluate the effect of mash temperature, dry solids, and residual germ on fiber yield and purity when using the quick fiber process. Fiber was recovered by flotation and skimming, while maintaining a specified temperature, dry solids, and residual germ in the mash. Varying temperature and dry solids in the mash resulted in a statistically significant effect on the fiber yield, neutral detergent fiber (NDF) content, and weight of NDF/100 g of dry corn. Varying residual germ in the mash resulted in statistically significant differences for NDF through dilution and the weight of NDF/100 g of dry corn. The highest fiber yield was 10.9% at 45°C, 23% dry solids, and 15% residual germ; the highest NDF was 50.9% at 30°C, 21% dry solids, and 0% residual germ. The highest weight of NDF/100 g of dry corn was observed at 45°C, 23% dry solids, and 0% residual germ.  相似文献   

16.
In a conventional dry‐grind corn process, starch is converted into dextrins using liquefaction enzymes at high temperatures (90–120°C) during a liquefaction step. Dextrins are hydrolyzed into sugars using saccharification enzymes during a simultaneous saccharification and fermentation (SSF) step. Recently, a raw starch hydrolyzing enzyme (RSH), Stargen 001, was developed that converts starch into dextrins at low temperatures (<48°C) and hydrolyzes dextrins into sugars during SSF. In this study, a dry‐grind corn process using RSH enzyme was compared with two combinations (DG1 and DG2) of commercial liquefaction and saccharification enzymes. Dry‐grind corn processes for all enzyme treatments were performed at the same process conditions except for the liquefaction step. For RSH and DG1 and DG2 treatments, ethanol concentrations at 72 hr of fermentation were 14.1–14.2% (v/v). All three enzyme treatments resulted in comparable ethanol conversion efficiencies, ethanol yields, and DDGS yields. Sugar profiles for the RSH treatment were different from DG1 and DG2 treatments, especially for glucose. During SSF, the highest glucose concentration for RSH treatment was 7% (w/v), whereas for DG1 and DG2 treatments, glucose concentrations had maximum of 19% (w/v). Glycerol concentrations were 0.5% (w/v) for RSH treatment and 0.8% (w/v) for DG1 and DG2 treatments.  相似文献   

17.
The objective of this study was to establish methods for determining the content and components of residual starch in distiller's dried grains with solubles (DDGS), a coproduct from dry‐grind corn ethanol production. Four DDGS prepared in our laboratory and one DDGS obtained from a commercial ethanol manufacturer were used for the study. Quantitative analysis of total residual sugar (TRS) in DDGS was performed by determining d ‐glucose produced by enzymatic hydrolysis of oligosaccharides and residual starch remaining in hexane‐defatted DDGS after being dispersed in 90% DMSO. The TRS consisted of free glucose, oligosaccharides, and residual starch. The commercial manufacturer's DDGS contained more TRS (15.8%, w/w db) than the laboratory‐processed DDGS (2.4–2.9%, w/w db). The content of residual starch remaining in the commercial DDGS (5.5% w/w db) was also larger than the laboratory‐processed DDGS (1.9–2.5% w/w db). Analyses of molecular weight distribution showed that the residual starch in DDGS consisted of short‐chain amylose and amylopectin, respectively, as the major and minor components. The short‐chain amylose molecules constituted 86.5–94.1% of the residual starch. The major population of the short‐chain amyloses had an average degree of polymerization (DP) of 85, closely resembling the length of enzyme‐resistant fragments of amylose‐lipid complexes.  相似文献   

18.
In dry‐grind corn processing, the whole kernel is fermented to produce ethanol and distillers dried grains with solubles (DDGS); the E‐Mill process was developed to generate coproducts in addition to DDGS. Compositions of thin stillage and wet grains obtained from the E‐Mill process will be different from the dry‐grind process. Knowledge of thin stillage compositions will provide information to improve coproducts from both processes. Laboratory dry‐grind and E‐Mill processes that used granular starch hydrolyzing enzymes (GSHE) were compared and process yields determined. Two methods, centrifugation and screening, were used to produce thin stillage and wet grains from the laboratory processes. Compositions of process streams were determined. In the dry‐grind process using GSHE, solids contents of beer, whole stillage, and wet grains were higher compared to the same fractions from the E‐Mill process using GSHE. Solids contents of mash for both processes were similar. Total solids, soluble solids, and ash contents of thin stillage were similar for the two processes. Fat content of thin stillage from E‐Mill was lower than that from the dry‐grind process; protein content of E‐Mill thin stillage was higher than that from dry‐grind thin stillage. Removal of germ and fiber before fermentation changed composition of thin stillage from the E‐Mill process. The screening method produced higher thin stillage and lower wet grains yields than using a centrifugation method. The screening method was less time consuming but resulted in limited wet grains material for additional analyses or processing. The centrifugation method of thin stillage separation removed more solids from thin stillage than the screening method.  相似文献   

19.
Recently, the Elusieve process, a combination of elutriation (air classification) and sieving (screening) was developed to separate fiber from distillers dried grains with solubles (DDGS) to increase DDGS utilization in nonruminant (poultry and swine) diets. Elusieve process produces three products: 1) Pan DDGS, with 5% higher protein content than conventional DDGS, which would be used at higher inclusion levels in broiler diets because of low fiber content; 2) Big DDGS, with nearly the same protein content as conventional DDGS, which would be used at same inclusion levels as conventional DDGS; and 3) Fiber product. The objective of this study was to determine and compare pellet‐mill throughput, power consumption, and pellet quality for broiler diets incorporating different levels (0, 10, and 20%) of conventional DDGS and DDGS products from Elusieve process. Poultry oil contents were lower (1.5–1.6%) in diets comprising Pan DDGS and diets without DDGS than in the other diets (2.2–3.1%). The feed throughput was not affected by inclusion levels or type of DDGS. Pellet quality (pellet durability index [PDI]) for diets comprising Pan DDGS (both 10 and 20% inclusion levels) was significantly better than PDI for diets comprising conventional DDGS, Big DDGS, and the diet without DDGS. Better pellet quality of diets comprising Pan DDGS could be due to lower quantity of poultry oil used as well as compositional characteristics such as low fiber and high protein. Diets with Big DDGS had similar pelleting characteristics to those with conventional DDGS. Pellet quality deteriorated at higher inclusion levels of conventional DDGS, Big DDGS, and Enhanced DDGS. Considering that Pan DDGS would be included at higher inclusion levels in broiler diets, superior pellet quality of diets comprising Pan DDGS is beneficial.  相似文献   

20.
To improve fractionation efficiency in modified dry grind corn processes, we evaluated the effectiveness of protease treatment in reducing residual starch in endosperm fiber. Three schemes of protease treatment were conducted in three processes: 1) enzymatic milling or E‐Mill, 2) dry fractionation with raw starch fermentation or dry RS, and 3) dry fractionation with conventional fermentation or dry conv. Kinetics of free amino nitrogen production were similar in both dry and wet fractionation (E‐Mill), indicating that proteolysis was effective in all three schemes. At the end of fermentation, endosperm fiber was recovered and its residual starch measured. Using protease treatment, residual starch in the endosperm fiber was reduced by 1.9% w/w (22% relative reduction) in dry conv and 1.7% w/w (8% relative reduction) in dry RS, while no reduction was observed in the E‐Mill process. Protease treatment increased ethanol production rates early in fermentation (≤24 hr) but final ethanol concentrations were unaffected in both dry RS and E‐Mill. In dry conv, the addition of protease resulted in a decline in final ethanol concentration by 0.3% v/v, as well as a higher variability in liquefaction product concentration (higher standard deviations in the glucose and maltose yields). Protease treatment can be used effectively to enhance modified dry grind processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号