首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The immediate lethality caused by spinosad has been widely studied on Spodoptera exigua (Hübner). However, long‐term effects can also provide valuable information on insecticide toxic action. Here, the persistence of spinosad on Capsicum annuum L. foliage and the lethal and sublethal effects of greenhouse‐aged foliar residues of this insecticide on third instars of S. exigua are reported. RESULTS: Foliage was collected at 0, 3, 5, 10, 20, 30, 40 and 50 days after application, and spinosad residues were measured. Residues decreased over time according to first‐order kinetics. The average rate constant and half‐life of disappearance were 4.44 × 10?3 and 156 days and 5.80 × 10?3 and 120 days for 60 and 120 mg L?1 respectively. Larval mortality gradually decreased, corresponding to the residues, but was still appreciable (35 and 65% for 60 and 120 mg L?1 respectively) when the larvae were fed with foliage collected 50 days after treatment. Subsequently, pupal development was reduced and varied between 20 and 60% and between 21 and 41% for 60 and 120 mg L?1, respectively, in all ages of leaf residues that were bioassayed. At all time points, the consumption rate by the larvae was reduced between 62 and 84% for both concentrations that were bioassayed. CONCLUSION: It is concluded that, under the present greenhouse conditions, the degradation of spinosad was slower than that reported by other authors in the field, and, because of that, its residues could cause lethal and sublethal effects to S. exigua larvae. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
BACKGROUND: This project assessed the potential hazards of different classical and novel acaricides against an important non‐target and beneficial insect for the pollination of wild flowers and cultivated crops, the bumblebee Bombus terrestris (L). Twenty‐three acaricides used commercially in the control of phytophagous mites (Acari) were tested in greenhouses and/or the open field. Side effects included acute mortality and also sublethal effects on nest reproduction. The different compounds were administered in the laboratory via three different worst‐case field scenario routes of exposure: dermal contact and orally via the drinking of treated sugar water and via treated pollen. The compounds were tested at their respective maximum field recommended concentration (MFRC), and, when strong lethal effects were observed, a dose–response assay with a dilution series of the MFRC was undertaken to calculate LC50 values. RESULTS: From the different acaricide classes, several chemistries caused high levels of acute toxicity in bumblebee workers, especially bifenthrin and abamectin which resulted in 100% mortality by contact. In addition, several acaricides tested were found to have a detrimental effect on drone production. For oral exposures via treated sugar water, the dose–response assay showed the LC50 values for abamectin, bifenazate, bifenthrin and etoxazole to be 1/15 MFRC (1.17 mg AI L?1), 1/10 MFRC (9.6 mg AI L?1), 1/83 MFRC (0.36 mg AI L?1) and 1/13 MFRC (4.4 mg AI L?1) respectively, indicating that their use should be carefully evaluated. CONCLUSION: Overall, the results suggest that most of the acaricides tested are compatible with bumblebees, with the exceptions of abamectin, bifenazate, bifenthrin and etoxazole. However, the risks also depended on the type of treatment. As a result, the sugar water treatment seems to present the worst‐case situation of exposure, indicating that this approach is suitable for determining the hazards of pesticides against bumblebees. Finally, it is suggested that future tier testing under more field‐related conditions is required for a final decision of their risks. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
BACKGROUND: The granary weevil, Sitophilus granarius (L.), is one of the most damaging pests of stored grains, causing severe quantitative and qualitative losses. Sustainable control means, alternative to the commonly used fumigants and broad‐spectrum contact insecticides, are urgently needed owing to legislative limits, the development of resistant insect strains and increasing consumer demand for safe food. Short‐chain aliphatic ketones, known to be emitted by cereal grains and previously identified as repellents to adult granary weevils, were evaluated for their ability to disrupt insect orientation towards wheat grains and as possible natural fumigants. RESULTS: In behavioural bioassays, 2‐pentanone, 2‐hexanone, 2‐heptanone and 2,3‐butanedione significantly reduced insect orientation towards odours of wheat grains, with 2‐hexanone and 2‐heptanone being the most active. In fumigation tests, all compounds were effective in killing weevil adults, but they performed differently according to chemical structure, speed of action and presence of wheat grains. In the presence of grains, the highest fumigant toxicity was shown by 2‐pentanone (LC50 = 8.4 ± 1.0 mg L?1) after 24 h exposure, and by 2‐pentanone (LC50 = 4.5 ± 0.3 mg L?1), 2‐heptanone (LC50 = 7.1 ± 0.3 mg L?1) and 2‐hexanone (LC50 = 8.1 ± 0.6 mg L?1) 1 week after the treatment end. CONCLUSION: Short‐chain aliphatic ketones have potential for applications in IPM programmes for the granary weevil because of their behaviour‐altering activity and fumigant toxicity. Copyright © 2011 Society of Chemical Industry  相似文献   

4.
BACKGROUND: Recent studies have indicated that spinosad, a mixture of two tetracyclic macrolide compounds produced during the fermentation of a soil actinomycete, may be suitable for controlling a number of medically important mosquito species, including the dengue vector, Aedes aegypti L. The authors determined the effects of a 1 h exposure to a 50% lethal concentration (LC50) of spinosad in the larval stage on the wing length, longevity and reproductive capacity of the adult survivors. RESULTS: The LC50 of spinosad for a wild‐caught population of Ae. aegypti from Chiapas, southern Mexico, was estimated to be 0.06 mg AI L?1 in late third instars. Paradoxically, the female survivors of exposure to this concentration were significantly larger (as determined by wing length) laid more eggs, but were slightly less fertile than control females. This was probably due to elimination of the smaller and more susceptible fraction of mosquito larvae from the experimental population following spinosad treatment. Male survivors, in contrast, were significantly smaller than controls. No significant differences were detected in the adult longevity of treated and control insects of either sex. CONCLUSIONS: The increase in reproductive capacity of spinosad‐treated females did not compensate for mortality in the larval stage and would be unlikely to result in population increase in this mosquito under the conditions that were employed. Sustained‐release formulations would likely assist in minimizing the occurrence of sublethal concentrations of this naturally derived product in mosquito breeding sites. Copyright © 2008 Society of Chemical Industry  相似文献   

5.
BACKGROUND: Chlorantraniliprole, a novel anthranilic diamide insecticide, was recently introduced into the United States where rice–crayfish crop rotations are practiced to control rice water weevil (Lissorhoptrus oryzophilus Kuschel) infestations. Chlorantraniliprole has high margins of mammalian safety and excellent insecticidal efficacy, but its toxicity to non‐target crayfish is uncertain. In this study, the acute toxicity of chlorantraniliprole to the red swamp crayfish Procambarus clarkii Girard was determined using aquatic and feeding assays. RESULTS: The aquatic 96 h median lethal toxicity (LC50) data indicate that technical‐grade chlorantraniliprole is highly toxic (US EPA category) to crayfish with an LC50 of 951 µg L?1 (95% CL = 741–1118 µg L?1). A no observed effect concentration (NOEC) of 480 µg L?1 was recorded. Neither the 36 day chronic feeding study, where crayfish fed on chlorantraniliprole‐treated rice seed in aquaria, nor the 144 h acute feeding test, where crayfish fed on rice seeds treated with chlorantraniliprole, produced mortality or abnormal behavior. CONCLUSION: Chlorantraniliprole is three orders of magnitude less acutely toxic to P. clarkii than lambda‐cyhalothrin and etofenprox, two pyrethroid insecticides also used in rice, and is less likely to cause acute crayfish toxicity in rice pond ecosystems. Based on acute toxicity data, the use of chlorantraniliprole should be more compatible with rice–crayfish crop rotations than pyrethroids. Copyright © 2010 Society of Chemical Industry  相似文献   

6.
In a greenhouse metabolism study, sunflowers were seed‐treated with radiolabelled imidacloprid in a 700 g kg?1 WS formulation (Gaucho® WS 70) at 0.7 mg AI per seed, and the nature of the resulting residues in nectar and pollen was determined. Only the parent compound and no metabolites were detected in nectar and pollen of these seed‐treated sunflower plants (limit of detection <0.001 mg kg?1). In standard LD50 laboratory tests, imidacloprid showed high oral toxicity to honeybees (Apis mellifera), with LD50 values between 3.7 and 40.9 ng per bee, corresponding to a lethal food concentration between 0.14 and 1.57 mg kg?1. The residue level of imidacloprid in nectar and pollen of seed‐treated sunflower plants in the field was negligible. Under field‐growing conditions no residues were detected (limit of detection: 0.0015 mg kg?1) in either nectar or pollen. There were also no detectable residues in nectar and pollen of sunflowers planted as a succeeding crop in soils which previously had been cropped with imidacloprid seed‐treated plants. Chronic feeding experiments with sunflower honey fortified with 0.002, 0.005, 0.010 and 0.020 mg kg?1 imidacloprid were conducted to assess potential long‐term adverse effects on honeybee colonies. Testing end‐points in this 39‐day feeding study were mortality, feeding activity, wax/comb production, breeding performance and colony vitality. Even at the highest test concentration, imidacloprid showed no adverse effects on the development of the exposed bee colonies. This no‐adverse‐effect concentration of 0.020 mg kg?1 compares with a field residue level of less than 0.0015 mg kg?1 ( = limit of detection in the field residue studies) which clearly shows that a sunflower seed dressing with imidacloprid poses no risk to honeybees. This conclusion is confirmed by observations made in more than 10 field studies and several tunnel tests. © 2001 Society of Chemical Industry  相似文献   

7.
Laboratory studies were conducted to determine the effect of the naturally derived compound spinosad on Ceratitis capitata Wied. (Diptera, Tephritidae). The organophosphate fenthion was used as a standard. Direct dose-dependent mortality and reduced fecundity were observed in oral treatment of adults with spinosad. The LC90 values 14 h and seven days after treatment were 19·50 and 0·49 mg litre−1 respectively. Fenthion was less active (the LC50 eight days after treatment was 1·17 mg litre−1) and did not affect the fecundity of the fly. Adults were also very susceptible to spinosad and fenthion via residual contact. For spinosad, 100% mortality was recorded 48 h after treatment for a dose of 10 mg litre−1. Spinosad was more effective than fenthion in suppressing larval development when neonate larvae were reared on treated diet supplemented with a range of concentrations from 0·02 to 0·83 mg kg−1 diet. Last-instar larvae were much less susceptible to spinosad or fenthion when exposed via dipping or when they pupated in treated medium and both products had similar performance. A lack of ovicidal activity was observed in direct egg-treatments with spinosad but significant reductions from 1 mg litre−1 onwards were recorded for fenthion.  相似文献   

8.
BACKGROUND: Chlorantraniliprole formulated as a 350 g kg?1 WG (Altacor 35WG) for management of apple maggot Rhagoletis pomonella (Walsh), blueberry maggot R. mendax Curran and cherry fruit fly R. cingulata (Loew) (Diptera: Tephritidae) was evaluated in laboratory assays and field trials. RESULTS: A tarsal contact toxicity bioassay showed that a surface residue of 500 mg L?1 of chlorantraniliprole caused significantly higher mortality of male and female flies of all species compared with a control. Male apple maggot and blueberry maggot mortality was significantly higher than that for females, but there was similar mortality of male and female cherry fruit flies. An ingestion toxicity bioassay showed that 500 mg L?1 of chlorantraniliprole in diet caused significantly higher mortality of male and female flies of all species than the control, but there were no significant differences among the sexes. Delayed egglaying by females that had ingested chlorantraniliprole was found, but there were no significant sublethal effects on either the number of eggs laid or the egg hatch. Field trials with apple maggot and cherry fruit fly showed that protection of fruit by chlorantraniliprole was comparable with that of standard broad‐spectrum insecticides. CONCLUSIONS: The present data indicate that chlorantraniliprole has suppressant activity against Rhagoletis fruit flies, preventing fruit infestation primarily through direct lethal effects. Copyright © 2008 Society of Chemical Industry  相似文献   

9.
The tomato borer, Tuta absoluta (Meyrick), was first recorded in Turkey in August 2009 and rapidly became a serious pest in the Mediterranean and Aegean coastal regions in field and greenhouse grown tomatoes. Currently, insecticides are considered one of the major tools for the management of T. absoluta in Turkey. This study, investigated the efficacy of 7 different insecticides, against T. absoluta in laboratory bioassays. To determine the lethal concentration (LC) values and feeding activity of the larvae, tomato leaf parts mined by 1–3 day old L1 larvae were dipped into different insecticide concentrations. Mortality was recorded 5 days after insecticide treatments. Spinosad, chlorantraniliprole + abamectin or indoxacarb treatment resulted in 100% mortality with minimal or no feeding in all populations at their recommended doses of 120, 50.4 and 60 mg a.s. L?1, respectively. In general, the LC99 values of populations for these insecticides were similar and also lower than that of the recommended field doses. The effect of pyridalyl was low, resulting in low mortality with serious feeding damage at the dose of 125 mg a.s. L?1. The efficacies of abamectin, metaflumizone and azadirachtin were found to be moderate to low at the recommended doses (4.5, 240 and 50 mg a.s. L?1, respectively). However, these insecticides may affect pupation and adult emergence rates hence further studies are recommended to investigate these insecticides.  相似文献   

10.
BACKGROUND: Methyl bromide is being phased out for use on stored commodities, as it is listed as an ozone‐depleting substance, and phosphine is the fumigant widely used on grains. However, phosphine resistance occurs worldwide, and phosphine fumigation requires a long exposure period and temperatures of > 15 °C. There is an urgent requirement for the development of a fumigant that kills insects quickly and for phosphine resistance management. This paper reports on a new fumigant formulation of 95% ethyl formate plus 5% methyl isothiocyanate as an alternative fumigant for stored grains. RESULTS: The formulation is stable for at least 4 months of storage at 45 °C. A laboratory bioassay with the formulation showed that it controlled all stages of Sitophilus oryzae (L.), Sitophilus granarius (L.), Tribolium castaneum (Herbst), Rhyzopertha dominica (F.), Trogoderma variabile Ballion and Callosobruchus maculatus (Fabricius) in infested wheat, barley, oats and peas at 80 mg L?1 for 5 days, and in canola at both 40 mg L?1 for 5 days and 80 mg L?1 for 2 days at 25 ± 2 °C. After an 8–14 day holding period, residues of ethyl formate and methyl isothiocyanate in wheat, barley, peas and canola were below the experimental permit levels of 1.0 and 0.1 mg kg?1. However, fumigated oats needed an 18 day holding period. CONCLUSIONS: The findings suggest that the ethyl formate plus methyl isothiocyanate formulation has potential as a fumigant for the control of stored‐grain insect pests in various commodities. Copyright © 2011 Society of Chemical Industry  相似文献   

11.
The toxicity of the naturally derived insecticide spinosad was tested against the gypsy moth, Lymantria dispar. Bioassays using red oak leaf disks, treated with spinosad in a Potter spray tower, yielded an LC50 value of 0.0015 µg AI cm−2 (3‐day exposure; 13‐day evaluation; 2nd instar larvae). Applied to foliage to run‐off in the laboratory (potted red oak seedlings) and the field (4 m‐tall birch trees), spinosad effectively controlled 2nd instar larvae at concentrations ranging from 3 to 50 mg litre−1. Toxicity in the laboratory, and efficacy and persistence in the field, were comparable to those achieved with the insecticide permethrin. Laboratory studies supported field observations that control was achieved in part by knockdown due to paralysis. In addition, laboratory results demonstrated that crawling contact activity may play an important role in field efficacy; 50% of treated larvae were paralyzed 16 h after a 2‐min crawling exposure to glass coated with a 4 mg litre−1 spinosad solution. © 2000 Society of Chemical Industry  相似文献   

12.
BACKGROUND: Spiromesifen is a novel insecticidal/acaricidal compound derived from spirocyclic tetronic acids that acts effectively against whiteflies and mites via inhibition of acetyl‐CoA‐carboxylase, a lipid metabolism enzyme. The effects of spiromesifen on the developmental stages of the whitefly Bemisia tabaci (Gennadius) were studied under laboratory conditions to generate baseline action thresholds for field evaluations of the compound. RESULTS: Adult B. tabaci mortality rate after spiromesifen treatment (5 mg L?1) was 40%. Treatment with 0.5 mg L?1 reduced fecundity per female by more than 80%, and fertility was almost nil. LC50 for eggs was 2.6 mg L?1, and for first instar 0.5 mg L?1. Scanning electron microscopy revealed that eggs laid by treated adult females had an abnormally perforated chorion, and females were unable to complete oviposition. Light and fluorescent microscopy showed significantly smaller eggs following treatment, and smaller, abnormally formed and improperly localized bacteriomes in eggs and nymphs. The number of ovarioles counted in females treated with 5 mg L?1 was significantly reduced. Spiromesifen showed no cross‐resistance with other commonly used insecticides from different chemical groups, and resistance monitoring in Israel showed no development of field resistance to this insecticide after 1 year of use. CONCLUSION: The strong effect on juvenile stages of B. tabaci with a unique mode of action and the absence of cross‐resistance with major commonly used insecticides from different chemical groups suggest the use of spiromesifen in pest and resistance management programmes. Copyright © 2008 Society of Chemical Industry  相似文献   

13.
Abstract

Aleuroclava jasmini (Hemiptera: Aleyrodidae) is a major insect pest of paper mulberry (Broussonetia papyrifera) in Iran, negatively affecting its production. Considering the importance of oils in the integrated management programs of such pests, the present study examined the possibility of whitefly control on paper mulberry plant to assess mortality rate (MR), synergistic rate (SR), resistance rate (RR), and lethal concentration for 50% of the population (LC50) of oils and common insecticide in populations from four areas of Tehran, Iran (one susceptible and three non-susceptible). The best chemical treatments against A. jasmini adults and nymphs in paper mulberry plants were neem oil (1?ml L?1) mixed with deltamethrin (0.5?ml L?1) or with buprofezin (1?ml L?1). The neem, akylarylpolyglyglycol ether and volk oils mixed with deltamethrin or buprofezin also had synergistic effects on adults and nymphs of A. jasmini, respectively, in Azadi, Shahrake Gharb, and Vanak areas (non-susceptible populations), but with higher concentrations (> LC50) and lower SR than in Garm Dareh area (susceptible population). We observed that A. jasmini adults showed the greatest resistance to deltamethrin in Vanak area and nymphs of this pest to buprofezin in Shahrake Gharb area.  相似文献   

14.
Biological characterization of sulfoxaflor, a novel insecticide   总被引:1,自引:0,他引:1  
BACKGROUND: The commercialization of new insecticides is important for ensuring that multiple effective product choices are available. In particular, new insecticides that exhibit high potency and lack insecticidal cross‐resistance are particularly useful in insecticide resistance management (IRM) programs. Sulfoxaflor possesses these characteristics and is the first compound under development from the novel sulfoxamine class of insecticides. RESULTS: In the laboratory, sulfoxaflor demonstrated high levels of insecticidal potency against a broad range of sap‐feeding insect species. The potency of sulfoxaflor was comparable with that of commercial products, including neonicotinoids, for the control of a wide range of aphids, whiteflies (Homoptera) and true bugs (Heteroptera). Sulfoxaflor performed equally well in the laboratory against both insecticide‐susceptible and insecticide‐resistant populations of sweetpotato whitefly, Bemisia tabaci Gennadius, and brown planthopper, Nilaparvata lugens (Stål), including populations resistant to the neonicotinoid insecticide imidacloprid. These laboratory efficacy trends were confirmed in field trials from multiple geographies and crops, and in populations of insects with histories of repeated exposure to insecticides. In particular, a sulfoxaflor use rate of 25 g ha?1 against cotton aphid (Aphis gossypii Glover) outperformed acetamiprid (25 g ha?1) and dicrotophos (560 g ha?1). Sulfoxaflor (50 g ha?1) provided a control of sweetpotato whitefly equivalent to that of acetamiprid (75 g ha?1) and imidacloprid (50 g ha?1) and better than that of thiamethoxam (50 g ha?1). CONCLUSION: The novel chemistry of sulfoxaflor, its unique biological spectrum of activity and its lack of cross‐resistance highlight the potential of sulfoxaflor as an important new tool for the control of sap‐feeding insect pests. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
BACKGROUND: Field trials were conducted during the wet and dry seasons in periurban and semi‐rural cemeteries in southern Mexico to determine the efficacy of a suspension concentrate formulation of spinosad (Tracer 480SC) on the inhibition of development of Aedes albopictus L. and Ae. aegypti Skuse. For this, oviposition traps were treated with spinosad (1 or 5 mg L?1), Bacillus thuringiensis israelensis (Bti, VectoBac 12AS), a sustained release formulation of temephos and a water control. RESULTS: Ae. albopictus was subordinate to Ae. aegypti during the dry season, but became dominant or codominant during the wet season at both sites. The two species could not be differentiated in field counts on oviposition traps. Mean numbers of larvae + pupae of Aedes spp. in Bti‐treated containers were similar to the control at both sites during both seasons. The duration of complete absence of aquatic stages varied from 5 to 13 weeks for the spinosad treatments and from 6 to 9 weeks for the temephos treatment, depending on site, season and product concentration. Predatory Toxorhynchites theobaldi Dyar and Knab suffered low mortality in control and Bti treatments, but high mortality in spinosad and temephos treatments. Egg counts and percentage of egg hatch of Aedes spp. increased significantly between the dry and wet seasons, but significant treatment differences were not detected. CONCLUSION: Temephos granules and a suspension concentrate formulation of spinosad were both highly effective larvicides against Ae. aegypti and Ae. albopictus. These compounds merit detailed evaluation for inclusion in integrated control programs targeted at Ae. aegypti and Ae. albopictus in regions where they represent important vectors of human diseases. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
防治棉铃虫的高毒农药替代品种研究   总被引:1,自引:0,他引:1  
采用室内浸卵、浸叶和点滴法以及田间小区试验,对19种杀虫剂防治棉铃虫的作用特点和效果进行了系统研究。室内生物测定结果表明:多杀菌素对棉铃虫卵孵化有较好的抑制作用,90.40 mg/L多杀菌素处理后棉铃虫卵的孵化率仅为42.86%;多杀菌素、甲氨基阿维菌素、高效氯氟氰菊酯、辛硫磷、丙溴磷、毒死蜱和高效氯氰菊酯对棉铃虫初孵幼虫的毒杀作用明显,原药稀释1.0×104~2.0×104倍时可使初孵幼虫死亡率达100%;昆虫生长调节剂——氟啶脲、氟铃脲、甲氧虫酰肼原药稀释1 000倍对棉铃虫初孵幼虫的致死率大于70%,且幼虫的生长受到明显抑制;甲氨基阿维菌素、高效氯氟氰菊酯、多杀菌素、毒死蜱、高效氯氰菊酯、丙溴磷、辛硫磷对低、高龄棉铃虫幼虫均具有较好的毒杀效果。田间小区试验结果表明,甲氨基阿维菌素、高效氯氟氰菊酯、丙溴磷、高效氯氰菊酯作用效果快且防治效果好,尤其是4 000倍甲氨基阿维菌素和5 000倍高效氯氟氰菊酯处理后第三天,其对棉铃虫的致死率达100%;多杀菌素和甲氧虫酰肼作用效果稍差。若在棉铃虫卵高峰期适时施药,供试的6种药剂均可作为防治棉铃虫的高毒农药替代品种。  相似文献   

17.
Sprangletop (Leptochloa chinensis L. Nees) is a serious grass weed in direct‐seeded rice cropping systems in Thailand. One population of sprangletop, BLC1, was found to be resistant to fenoxaprop‐p‐ethyl at 62‐fold the concentration of a susceptible biotype, SLC1. This study elucidated the inheritance of resistance to fenoxaprop‐p‐ethyl in this sprangletop BLC1 genotype. The reaction to the herbicide at 0.12–2.4 mg ai L?1 was determined in the seedlings of self‐pollinated resistant BLC1, susceptible SLC1 and SLC1 that had been allowed to cross‐pollinate with BLC1. At 0.24 mg ai L?1, all the seedlings of SLC1 were killed, while 99% of BLC1 survived, along with 5% of the cross‐pollinated SLC1 seedlings, which were considered to be putative F1 hybrids. The root and shoot lengths of the F1 hybrids in 0.24 mg ai L?1 of fenoxaprop‐p‐ethyl, relative to those in the absence of the herbicide, were close to or the same as the resistant parent, indicating that the resistance is a nearly complete to complete dominant trait. One‐hundred‐and‐forty‐one of the F2‐derived F3 families were classified by their response to the herbicide at 0.24 and 0.48 mg ai L?1 into 39 homozygous susceptible : 72 segregating : 30 homozygous resistant, fitted with a 1:2:1 ratio at χ2 = 1.21 and P = 0.56, indicating that the resistance to fenoxaprop‐p‐ethyl in the sprangletop BLC1 genotype is controlled by a single gene.  相似文献   

18.
Recently, we reported that monosodium glutamate (MSG) is a feeding stimulant and an enhancer of pesticide toxicity against neonates of the codling moth. Herein, we show that a MSG alternative,trans-1-aminocyclobutane-1,3-dicarboxylic acid (trans-ACBD), alone or in the presence of spinosad (Success®), increases leaf tissue consumption by codling moth neonates. In contrast to MSG,trans-ACBD maintains its feeding stimulatory properties in the field even after 20 mm of simulated rain, and effectively increases spinosad efficacy in both laboratory and field experiments.  相似文献   

19.
BACKGROUND: A biosurfactant, surfactin, produced by a strain of Bacillus subtilis subsp. subtilis (VCRC B471), was effective in killing mosquito larval and pupal stages. As it was lethal to the non‐feeding pupal stage, it was presumed that it could kill the adult mosquitoes also. In this study, the adulticidal effect of the biosurfactant was assessed in the laboratory against a malaria vector, Anopheles stephensi. RESULTS: The biosurfactant surfactin, separated from the culture supernatant of the production strain, showed mosquito adulticidal activity when tested as ultralow‐volume (ULV) spray in a Peet‐Grady chamber. Knockdown activity and mortality were found to increase with increasing surfactin dosage. Knockdown dosage (KD) and lethal dosage (LD) were calculated by statistical analysis. The KD50 and KD90 dosages were 10.73 and 26.39 mg m?3 respectively. The LD50 and LD90 dosages were 16.13 and 39.21 mg m?3. The average droplet size of B. subtilis surfactin was 17.5 ± 1.07 µm. CONCLUSION: The present study indicates that the biosurfactant surfactin, produced by B. subtilis subsp. subtilis (VCRC B471), is a potential bioadulticide for ULV spray against malaria‐transmitting Anopheles stephensi mosquitoes. This is the first report of a mosquito adulticide from a microbial source. Copyright © 2012 Society of Chemical Industry  相似文献   

20.
BACKGROUND: The small number of available nematicides and restrictions on the use of non‐fumigant nematicides owing to high toxicity to human and non‐target organisms hinder effective nematode control. The nematicidal efficacy of MCW‐2, a new nematicide of the fluoroalkenyl group, was evaluated against the root‐knot nematode Meloidogyne javanica (Treub.) Chitwood. RESULTS: MCW‐2 showed irreversible nematicidal activity against second‐stage juveniles of M. javanica in vitro, following exposure for 48 h at concentrations as low as 0.5 mg L?1, in contrast to fenamiphos or cadusafos. When exposed to MCW‐2 for shorter periods, motile juveniles became immobile with time after rinsing in water. MCW‐2 at 8 mg L?1 inhibited nematode hatching, which, however, recovered after rinsing in water. In pot and plot experiments, 0.5 mg MCW‐2 L?1 soil and 2 kg MCW‐2 ha?1, respectively, controlled M. javanica similarly to or better than fenamiphos or cadusafos at the same concentrations or at their recommended doses. In the soil, the nematicidal activity of MCW‐2 was less persistent than that of fenamiphos. CONCLUSION: MCW‐2 has potential to be used as a new non‐fumigant nematicide that probably has a novel mode of action. Copyright © 2009 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号