首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Sulphate sorption by variable charge soils   总被引:2,自引:0,他引:2  
The sorption of sulphate (SO2?4) by three variable charge soils from the Canary Islands (Spain) was studied. Sulphate sorption decreased with increasing pH. Only negligible amounts of SO2?4 were sorbed above pH 6.5. When the soils were washed with an indifferent electrolyte (0.01 M KCl), more SO2?4 was recovered than had been sorbed. This indicated a release of native SO2?4 Sulphate replaced hydroxyl ions (OH) and co-ordinated H2O molecules, as well as very small amounts of silicate (Si). No measurable amount of phosphate (P) was released. On average hydroxyl release accounted for 50% of SO2?4 sorbed, the rest being accounted for by the increase in negative charge as measured by K+ adsorption. The results presented here are consistent with the sorption of SO2?4 through a ligand exchange mechanism, but in a different plane of sorption to that of phosphate.  相似文献   

2.
Abstract

The influence of soil organic matter on selenite sorption was investigated in the selenite adsorption capacity and the surface particle charge change by ligand exchange reaction using the hydrogen peroxide (H2O2) treatment and the ignition treatment of two Andosols. The removal of organic carbon (C) in soils accelerated selenite sorption, implying that organic matter of soils had negative influence on the selenite adsorption on the soils. Positive charge decrease on soil particles, concomitant proton consumption, and release of silicon (Si), sulfate (SO4 2‐), and organic C were observed in selenite sorption by the soils. The development of surface particle negative charge with selenite sorption was smaller in the H2O2‐treated soil than in the original soils and was scarcely observed in the ignition‐treated soil. It can be assumed that the increase of negative charge by selenite sorption was attributed to new negative sites borne by released insoluble organic matter and negative charge development directly by selenite sorption was small.  相似文献   

3.
Infrared absorption spectra of phosphate sorbed on alumina gel were obtained by subtracting the diffuse reflectance infrared (DRIR) spectra of alumina gel from those of phosphated alumina gel. The positions of the absorption bands due to P·O stretching vibration were little affected by the change in pH and the amount of phosphate sorbed. These absorption bands were similar to those for aluminium phosphate gel. The sorption product of phosphate on alumina gel was amorphous by X-ray diffraction. Na+ and Cl? adsorption properties of alumina gel tended towards those of aluminium phosphate gel with phosphate sorption. It was concluded that the state of phosphate sorbed on alumina gel is similar to that of aluminium phosphate gel.  相似文献   

4.
Abstract

The material balance of all the chemical species associated with the phosphate sorption reaction by two amorphous clays, silica-alumina gel and synthetic goethite was investigated adjusting the initial pH to 4.0, 5.0, 6.0, and 7.0. Phosphate sorption was found to decrease with increasing initial pH. During phosphate sorption, the equilibrium pH rose, adsorption of Cl- decreased to a state of negative adsorption, adsorption of Na+ increased markedly, silicate was released, and Al in the solution was precipitated. With increasing initial pH, the amount of apparent released OH- increased, the amount of Na+ adsorption increased, and the amount of released silicate decreased. The overall relationship of the material balance is explained in terms of the charge balance associated with phosphate sorption.  相似文献   

5.
Allophanic soils are known to accumulate organic matter, but the underlying mechanism is not well understood. Here we have investigated the sorption of humic acid (HA) by an allophanic clay in the presence of varied concentrations of either CaCl2 or NaCl as background electrolytes. Both the HA and the clay were separated from New Zealand soils. Much more HA was sorbed in CaCl2 than in NaCl of the same ionic strength. Apparently Ca2+ ions were more effective than Na+ ions in screening the negative charge on HA. In CaCl2 the HA molecule might also assume a more compact configuration than in NaCl. In the presence of CaCl2 sorption increased, reached a maximum, and then declined as the concentration of HA in solution was increased. This behaviour was not observed in NaCl where sorption showed a gradual and steady increase with HA concentration. We propose that ligand exchange occurs between the surface hydroxyl groups of allophane and the carboxylate groups of HA. As a result, the allophane–HA complex acquires negative charges, requiring the co‐sorption of extraneous cations (Ca2+ or Na+) for charge balance. The Ca2+ co‐sorbed can attract more HA to the complex possibly by a cation‐bridging mechanism, giving rise to a maximum in sorption. The decline in sorption beyond the maximum may be ascribed to a decrease in the concentration of free Ca2+ ions through binding to HA molecules in solution. The increase in supernatant pH may be attributed to a ligand exchange reaction between the surface hydroxyls of allophane and the carboxylate groups of HA, and proton binding to the allophane–HA complex.  相似文献   

6.
Selenite was adsorbed on a positively charged hydrous alumina at a solution pH of 5.0, and the OH ? released and changes in the surface charge were measured. The adsorption isotherm levelled off at high concentrations suggesting a definite adsorption maximum. The OH? released yielded a curvilinear relationship of increasing slope with the selenite adsorbed. The positive charge on the alumina surface was neutralized by the adsorbed selenite and the net charge became close to zero as the adsorption of selenite was near maximum. The molar ratio of the ligands (OH?+ OH2) displaced over selenite adsorbed was more than one at surface saturations of <0.5, but it was approaching one with increasing adsorption of selenite. The results are explained in terms of preferential adsorption of divalent (SeO23?) and monovalent (HSeO?3 selenite on a highly positively and less positively charged surface respectively, in agreement with the VSC? VSP model of Bowden et al. (1973; 1977). The supply of SeO23? for adsorption is considered to be favoured by an expected lower H activity in solution adjacent to the positively charged surface than that in the bulk solution. A general discussion is given on the ligand exchange adsorption of selenite, phosphate and sulphate on hydrous alumina.  相似文献   

7.
Cadmium sorption was measured in 10 agricultural soils with pH ranging from 4.5 to 7.9, and total Cd content from 0.27 to 1.04 μg g?1 dry soil. With initial Cd concentrations of 0.5 to 100.0 μM, sorption from 0.002 M CaCl2 was described by the Freundlich adsorption equation but the gradients of the isotherms increased when the initial concentrations were below 0.5 μm. This indicates that there are specific sites of differing sorption energy; differences between soils in the gradients of the isotherms at low initial concentration could largely be accounted for by their contents of ‘free’ Fe2O3. When initial concentrations were below 0.5 μm there was a linear relationship between the quantity of Cd sorbed and the final concentration in solution. This relationship held with all soils except that of lowest pH from which there was a net loss of Cd to the solutions. Desorption was measured from three soils with contrasting pH. With the soil of lowest pH, over 80 per cent of sorbed Cd was desorbed to 0.002 m CaCl2 and up to 30 per cent to 100 or 500 μm solutions of heavy metal chlorides. In contrast, only very small proportions (<1.25 per cent) were desorbed from the other soils with pH 6.7 and 7.8. The results indicate that Cd is strongly sorbed by soils of pH of above 6.0 when added in amounts comparable to additions in sewage sludges or phosphatic fertilizers, and illustrate the importance of liming as a means of reducing the mobility of this metal in soils.  相似文献   

8.
Phosphate (P) sorption and the concomitant release of sulphate (SO,), silicate (Si) and hydroxyl ion (OH) were determined on three allophanic soils from Spain, at different P concentrations. P effectively replaced SO4, Si and OH. However, at every stage of P sorption, the molar ratios of the total amounts of anions released (SO4+ Si + OH) to that of the sorbed P were low. The amount of added P affected the relative proportions of SO4, Si and OH exchanged. At low concentrations of P, phosphate sorption was accompanied mostly by release of the adsorbed SO4 with some Si. As more P was sorbed an increasing displacement of OH was also observed.  相似文献   

9.
对 3种可变电荷土壤和 4种恒电荷土壤在不同 pH、不同浓度、不同相伴阴阳离子下混合体系中Cl-和NO3-的吸附进行了测定。结果表明 ,在Cl-和NO3- 共存体系中 ,Cl-比例增大使可变电荷土壤Na+吸附量及OH-释放量增加 ,而对恒电荷土壤影响不大。Cl-和NO3-吸附量随平衡Cl-和NO3-浓度增加而增大 ,随pH升高而减少。但恒电荷土壤在上述各种条件下对Cl-和NO3-吸附均相同 ,而可变电荷土壤对Cl-吸附量大于NO3-的吸附量 ;NO3-、Cl-的选择系数为 0.51~0.78,Cl-和NO3-的相对吸附量分别为56.9%和 43.1%。在不同相伴阳离子下 ,可变电荷土壤平衡溶液Cl-/NO3-比值均小于 1,且为Na+K+Ca2+Mg2+Fe3+;而恒电荷土壤Cl-/NO3-比值为 1左右 ,且不受阳离子类型的影响。由此认为 ,Cl-和NO3-在两类土壤中均以电性吸附为主 ,恒电荷土壤对Cl-和NO3-的亲合力及吸附机理相同 ;而可变电荷土壤对Cl-的亲合力 NO3- ,Cl-存在着专性吸附  相似文献   

10.
Cadmium (Cd) sorption and desorption characteristics by Alfisols from different land uses were examined, and the relationships between soil and sorption/desorption characteristics were investigated. Adsorption studies were done using Cd concentrations (0–100 mg Cd kg?1) in 0.01 M CaCl2. The Cd sorbed by the soils was then subjected to two desorption runs. The soils' adsorption conformed to Freundlich and Langmuir equations. The amount of Cd sorbed by the soils varied. Two desorption runs detached more than 95% of sorbed Cd, but the first accounted for more than 80% of the total. Desorption of Cd in degraded soils was more than in soils from other land uses. The amount of Cd desorbed correlated with amount applied (r = 0.90??), solution concentration (r = 0.83??), and amount sorbed (r = 0.70??). A positive relationship exists between the adsorption maxima of the soils and soil organic matter (r = 0.13, p = 0.87). The relationship between amount of Cd desorbed and sorbed is quadratic for all the soil.  相似文献   

11.
Abstract

The adsorption of selenium (Se) in the selenate form and its desorption by phosphate in four soils with different physiochemical properties were studied in the laboratory. To determine adsorption isotherms for selenate 25 mL of solutions containing 1 to 100 ppm of Se were added to 2.5 g of soil. Desorption isotherms were determined by resuspending the samples in phosphate solution. The selenate sorption process was adequately described by the Freundlich equation. In pine forest and woodland soils, characterized by the highest organic matter content and cation exchange capacity (CEC) values, the isotherms were classified as L type, since the amount of Se sorbed appeared to move towards saturation. The organic matter content played the most important part in the adsorption of Se, while pH appeared to have a small effect on the ability of the soil to adsorb Se. The high CaCO3 content of the pine forest soil may have contributed in increasing the Se adsorption notwithstanding the high pH value. The cultivated and arable soils showed a reduced sorption capacity. The sorption could be described by an S type curve. At low concentrations of Se the affinity of the solid phase was less than that of the liquid phase. By increasing the concentration of Se in solution, the affinity of the solid phase increased and the sorption was favored. Selenate desorption by water was negligible, whereas the amount of Se desorbed by phosphate varied among the different soils. The desorption experiments indicated that a significant portion of the sorbed Se was irreversibly retained. This suggests the existence of linkages which allow the release of Se in the soil solution only after physico‐chemical variation such as exchange with phosphate ions.  相似文献   

12.
The amounts of inorganic phosphate (P) sorbed by four contrasting unfertilized soils during 40 h were influenced by the ionic strength and cation species of the contacting solution (support medium) used, as indicated by isotherms over the final P concentration range of 0 to 1 μg P/ml and 0 to 10 μg P/ml. An increase in ionic strength enhanced P sorption during 40 h but the species of cation also influenced the amount of P sorbed, as shown by the isotherms obtained in 10?2M Ca and 3 × 10?2M Na systems. Although pH affected the amounts of P sorbed, pH effects alone could not adequately explain the differences in P sorption. Kinetic studies indicated that within the range of P addition used for each soil, the equilibrium P concentration, at infinite time, was independent of ionic strength and cation species. Consequently, the composition of the solution affected only the rate at which equilibrium was attained. The results are attributed to the effects of ionic strength on the surface charge of retaining components and the thickness of the diffuse double layer, and the effects of specilic sorption of a divalent cation on surface charge, as they relate to the rate of P sorption.  相似文献   

13.
Andisols can absorb large amounts of phosphorus rapidly, and then release it slowly, yet the mechanisms by which they retain P and release it for plant growth are poorly understood. Ligand exchange of organic compounds from Al–humic complexes by P and/or Si release – due to breakdown of allophanic microstructure to provide sorption sites – might account for the retention of P, but its extent is not known. We applied a soil column flow-through technique to quantify the release of anions and organic carbon (C) associated with P sorption by two andic soils, and we related the anion release to possible mechanisms for the retention of P. Phosphate (H2PO4, HPO42–) sorption and concurrent anion desorption were obtained by passing a 1-g P 1–1 (32 mmol KH2PO4 in 1 mm CaCl2) solution through the soil columns (25 cm3). Total dissolved P, Fe, Al, S, Ca, Mg, K, Mn, organic C and pH were determined in the eluent. Changes in eluent pH and the patterns of the retention of P and corresponding concentrations of Al, Si and organic C in the eluent were similar for the two Andisols. The general pattern and changes in pH of the eluent coincided with changes in the patterns of release of organic C and Si and the rate of P retention. Release of silica accounted for < 6% of the P sorbed and had only a minor role in P retention in these two Andisols. Release of organic C, however, accounted on a molar basis for 40% and 83%, respectively, of the P sorbed. Direct measurements of the pH of the eluent and release of anions and organic C concurrent to P retention contribute to rapid assessment of the controlling mechanisms of P retention. The results indirectly confirm the hypothesis of ligand exchange of solution P with organic complexes held on allophanic surfaces. The organic C release, however, is not specifically related to either the fast or the slow P retention phase. The shift in the controlling P retention reaction associated with a change from the fast to the slow P retention phase is clearly indicated by an abrupt change of the pH of the eluent. This shift, in previous studies identified graphically by a change in slope of the P sorption isotherm, can be identified directly by measuring the pH of the matrix.  相似文献   

14.
Sorption characteristics of Cu(PI) were investigated using six soils coPBected in Korea (JUF9 SUM, and HHM) and in Japan (HNG, TWD, and ISM). The Cu(IH) sorption amount increased with increasing initial Cu(II) concentration. The maximnm sorption amount of @u(PI) increased in the order of KHM< ISK< JUM < JUF < TWD < KNG, and was related to the pH and BZSE of soils. The H+ release curves due to Cu(II) sorption apparently were characterized by a two or three step pattern. The amount of H+ released due do Cu(II) sorption increased with the increase in the Cu(II) sorption amount. The amount of protons released per Cu(II) sorbed onto soils with a larger Gu(II) sorption amount tended to be smaller compared with soils with a smaller Cu(HHQ sorption amount. The W+ sorption amount of the original soils and those with Cu(II) sorption at the PZSE, which was referred to as σP (Sakurai et al. 1988: Soil Sci. Plant Nutr., 34, 171–182; 1996: Jpn. J. Soil Sci. Plant Nutr., 67, 32–39), was determined by the STPT method proposed by Sakurai et al. (4988: Soil Sci. Plant Nutp., 34, 171–182). The active H+ sorption sites of soils were used for Cu(II) sorption and their amount decreased after Cu(II) sorption because they were covered with Cu(II). Soils with a larger amount of active H+ sorption sites exhibited a higher aEamity to Cu(II) khan those with a smaller amount of active H+ sorption sites. The Cu(II) sorption created a positive charge in soils, causing the decrease in the amount of active H+ sorption sites.  相似文献   

15.
Abstract

Selenite adsorption by a variety of oxides consisting of iron (Fe), aluminum (Al), titanium (Ti), manganes (Mn), and silicon (Si), and by two humic acids were investigated in order to grasp selenite behavior and fixation mechanisms in soil. It was found that selenite was apparently adsorbed even by the Mn oxides on which surface negative charge was dominant in normal pH range (pH <4). No selenite adsorption was observed in the silicon dioxide (SiO2) and the two humic acids. A sequential extraction of adsorbed selenite with competitive anions showed the differences of binding force or stability of adsorbed selenite among the minerals. While the goethite fixed selenite strongly, selenite adsorbed on the Mn oxide was easily released to the liquid phase with other anions, such as phosphate. Each mineral had its inherent characteristic in ligand exchange reactions accompanied with selenite sorption. Selenite sorption by the Mn and the Ti oxides resulted in large increase of surface negative charge, while only a little increase in the Fe and Al oxides. Proton consumption with selenite sorption was extremely smaller for the Mn oxide than for the others.  相似文献   

16.
Amounts of inorganic phosphate (P) sorbed by two unfertilized soils, during times less than required to reach equilibrium, were affected by the ionic strength and cation species of the matrix solution. For non-equilibrium conditions the amounts of P sorbed increased with increasing ionic strength and were greater with Ca2+ than Na+. For higher P additions, resulting in equilibrium solution P concentrations greater than 30 to 40μrnole 1?1, the effects of the matrix solution on P sorption were maintained at equilibrium, whereas at lower P additions the dependence of sorption on matrix solution composition was eliminated at equilibrium. Equilibrium sorption isotherms for each soil and matrix solution were described by three Langmuir equations, which corresponded to distinct concentration ranges or regions (I, II, and III) on the overall isotherm. The free energies of sorption (ΔG) for each region, were essentially independent of the soil matrix solution. The sorption maxima for regions I and II of the isotherm for a particular soil were also virtually independent of the matrix solution used. The sorption maximum for region III, however, was markedly dependent on the matrix solution, implying a potential-determining (p.d.) sorption mechanism.  相似文献   

17.
Crop production on red soils in China is largely limited by the low availability of phosphorus, which is frequently attributed to the adsorption of phosphate by variable-charge minerals including Fe and Al oxides and kaolinite. Isotopic tracing analysis and soil incubation were carried out to investigate the desorption and microbial transformation of applied specifically sorbed P in two pH-contrasting light-textured soils. A rapid release of P from the added mineral-P surface complex in the two tested soils was observed. Most of the released P was recovered in a 0.5MNaHCO3 extract and in soil microbial biomass. Microbial biomass-32P was detected at early stages of incubation and reached up to 10–30% of the added 32P. Approximately 50–70% of the added complex 32P, varying between minerals and soils, was extractable in the 0.5MNaHCO3 at 75 days after incubation for the acid soil but up to 120 days for the neutral soil. Microbial biomass-P plus 0.5MNaHCO3-extractable 32P accounted for more than 60–80% of total added complex-32P, implying high desorption and transformation of the specifically sorbed P in the two soils. There was more inorganic 32P than organic 32P in the NaHCO3 extract, suggesting that chemical release of specifically sorbed P was dominant. Ligand exchange and chemical desorption due to a change in environmental conditions such as pH and ionic strength are likely the major mechanisms responsible for the chemical release of specifically sorbed 32P in the tested soils. Received: 29 September 1996  相似文献   

18.
ANION ADSORPTION BY GOETHITE AND GIBBSITE   总被引:6,自引:0,他引:6  
The desorption of specifically adsorbed (ligand exchanged) anions, such as phosphate, selenite, and fluoride, from the surface of gibbsite and goethite has been studied by repeatedly washing the adsorption complex with solutions of constant pH and ionic strength but containing no specifically adsorbable anions. The desorption of the anions varies between complete reversibility and almost complete irreversibility. Measurements of surface charge by the uptake of Na+ and Cl- revealed that, on washing the adsorption complex, the surface charge returned to its value at the given pH in the absence of specifically adsorbed anions. Thus when the isotherm was irreversible, OH- was desorbed (or H+ adsorbed) in preference to the desorption of the specifically adsorbed anion, whereas when the isotherm was reversible the specifically adsorbed anion was desorbed. Irreversibility appears to involve the nature of the adsorption complex at the surface. Where only monodentate ligands form, for example fluoride adsorption, the isotherm is reversible, whereas bridging or multidentate ligands and the formation of ring structures at the surface favour irreversibility.  相似文献   

19.
Heats of adsorption and adsorption isotherms of ammonia gas were measured at 300 K (27 °C) on outgassed soil saturated with Na+, K+, NH4+, Ca2+, or Mg2+ ions. The Ca and Mg soils adsorbed apparently one more NH2 molecule per exchangeable ion than the Na and K soils, mostly in the relative pressure range o to 0.005, but not much more than the NH4 soil. The initial heat of adsorption was c. 75 kJ mol-1 on the Ca and Mg soils and c. 60 kJ mol-1 on the other soils. The results suggest that most NH, is sorbed on these soils through reactions not involving exchangeable cations.  相似文献   

20.
Sorption characteristics of phenanthrene were studied in batch equilibrium experiments with 32 Australian soils that varied widely in physicochemical properties. Sorption of phenanthrene varied widely among the soils and was generally nonlinear, with the nonlinearity index (n) of the Freundlich isotherm varying from 0.62 to 1.01. Simple regression analyses revealed that total organic carbon (TOC) accounts for about 68 % of the variation in the partition coefficient (K f ) for sorption among the soils at an equilibrium concentration (C e ) of 0.05 mg/L. The organic carbon normalized distribution coefficient (K OC ), varied considerably between soils with >70 % of the variance of logK OC being accounted for by logTOC, clay and log dissolved organic carbon (DOC). These results show that the phenanthrene C e is influenced by both TOC as well as the DOC in soil suspensions. The effects of ionic strength (IS) and index cation were investigated using four contrasting soils. Results show that with an increase in IS from 0.03 to 0.15 M sorption of phenanthrene generally increased in CaCl2 background solutions, whereas the effect was less significant and variable in NaCl background solutions. Sorption of phenanthrene was slightly higher at low IS (0.03 M) with Na+ as index cation compared with that of Ca2+, whereas an opposite trend was observed at higher IS (0.15 M). For two soils high in TOC, the flocculation of endogenous DOC in the presence of Ca2+ reduced the influence of background electrolyte and resulted in a more linear sorption isotherm as well as higher sorption capacity. This trend was more significant with Ca2+ relative to Na+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号