首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The origin and transmission routes of atypical bovine spongiform encephalopathy (BSE) remain unclear. To assess whether the biological and biochemical characteristics of atypical L-type BSE detected in Japanese cattle (BSE/JP24) are conserved during serial passages within a single host, 3 calves were inoculated intracerebrally with a brain homogenate prepared from first-passaged BSE/JP24-affected cattle. Detailed immunohistochemical and neuropathologic analysis of the brains of second-passaged animals, which had developed the disease and survived for an average of 16 months after inoculation, revealed distribution of spongiform changes and disease-associated prion protein (PrP(Sc)) throughout the brain. Although immunolabeled PrP(Sc) obtained from brain tissue was characterized by the presence of PrP plaques and diffuse synaptic granular accumulations, no stellate-type deposits were detected. Western blot analysis suggested no obvious differences in PrP(Sc) molecular mass or glycoform pattern in the brains of first- and second-passaged cattle. These findings suggest failures to identify differences in mean incubation period and biochemical and neuropathologic properties of the BSE/JP24 prion between the first and second passages in cattle.  相似文献   

2.
Bovine spongiform encephalopathy (BSE) is transmitted by the oral route. However, the impacts of anaerobic fermentation processes in cattle on the stability of BSE-associated prion protein (PrP(Sc)) are still unresolved. In this study, experiments were designed to assess the ability of complex ruminal and colonic contents of bovines to degrade BSE-derived PrP(Sc). No significant decrease in PrP(Sc) levels in BSE brain homogenates was detected by Western blotting after up to 66 h of co-incubation with intestinal fluids. These results indicate that BSE-associated PrP(Sc) survive gastrointestinal digestion processes in cattle and might be excreted via faeces.  相似文献   

3.
To characterize the biological and biochemical properties of H-type bovine spongiform encephalopathy (BSE), a transmission study with a Canadian H-type isolate was performed with bovinized transgenic mice (TgBoPrP), which were inoculated intracerebrally with brain homogenate from cattle with H-type BSE. All mice exhibited characteristic neurologic signs, and the subsequent passage showed a shortened incubation period. The distribution of disease-associated prion protein (PrP(Sc)) was determined by immunohistochemistry, Western blot, and paraffin-embedded tissue (PET) blot. Biochemical properties and higher molecular weight of the glycoform pattern were well conserved within mice. Immunolabeled granular PrP(Sc), aggregates, and/or plaque-like deposits were mainly detected in the following brain locations: septal nuclei, subcallosal regions, hypothalamus, paraventricular nucleus of the thalamus, interstitial nucleus of the stria terminalis, and the reticular formation of the midbrain. Weak reactivity was detected by immunohistochemistry and PET blot in the cerebral cortex, most thalamic nuclei, the hippocampus, medulla oblongata, and cerebellum. These findings indicate that the H-type BSE prion has biological and biochemical properties distinct from those of C-type and L-type BSE in TgBoPrP mice, which suggests that TgBoPrP mice constitute a useful animal model to distinguish isolates from BSE-infected cattle.  相似文献   

4.
To compare clinicopathologic findings of transmissible mink encephalopathy (TME) with other transmissible spongiform encephalopathies (TSE, prion diseases) that have been shown to be experimentally transmissible to cattle (sheep scrapie and chronic wasting disease [CWD]), two groups of calves (n = 4 each) were intracerebrally inoculated with TME agents from two different sources (mink with TME and a steer with TME). Two uninoculated calves served as controls. Within 15.3 months postinoculation, all animals from both inoculated groups developed clinical signs of central nervous system (CNS) abnormality; their CNS tissues had microscopic spongiform encephalopathy (SE); and abnormal prion protein (PrP(res)) as detected in their CNS tissues by immunohistochemistry (IHC) and Western blot (WB) techniques. These findings demonstrate that intracerebrally inoculated cattle not only amplify TME PrP(res) but also develop clinical CNS signs and extensive lesions of SE. The latter has not been shown with other TSE agents (scrapie and CWD) similarly inoculated into cattle. The findings also suggest that the diagnostic techniques currently used for confirmation of bovine spongiform encephalopathy (BSE) would detect TME in cattle should it occur naturally. However, it would be a diagnostic challenge to differentiate TME in cattle from BSE by clinical signs, neuropathology, or the presence of PrP(res) by IHC and WB.  相似文献   

5.
To detect prion protein, brains from 5 cattle naturally affected with bovine spongiform encephalopathy (BSE) and 3 sheep naturally affected with scrapie were examined and compared with brains of normal cattle and sheep using a histoblot technique. The technique enabled the in situ distinctive detection of the cellular (PrP(C)) and abnormal (PrP(Sc)) isoforms of the prion protein. In BSE- or scrapie-affected brains, the Prp(C) signal decreased, especially in those areas where the PrP(Sc) signal was detected.  相似文献   

6.
This study evaluated the distribution and signal intensity of a prion protein resistant to proteolysis (PrP(res)) in the brainstem and cerebellum of cattle affected with classical and atypical forms of bovine spongiform encephalopathy (BSE) using a Western immunoblotting technique. In both classical and atypical cases of BSE, a stronger signal was detected in the more rostral brainstem regions relative to the obex. In classical and H-type cases a significant decrease in the PrP(res) signal was found in the cerebellum when compared to that in the obex, whereas L-type BSE cases were characterised by signals of similar intensity in these regions. The uniform distribution of PrP(res) in the region rostral to the obex suggests that when autolysed samples are being tested for BSE, both classical and atypical forms are detectable, even when this target site is missing or cannot be clearly identified. The findings indicate that both the obex and rostral brainstem can be used for BSE diagnosis whereas use of the more caudal brainstem regions and cerebellum is not recommended.  相似文献   

7.
8.
Transmissible spongiform encephalopathies (TSEs) or prion diseases are unique disorders that are not caused by infectious micro-organisms (bacteria or fungi), viruses or parasites, but rather seem to be the result of an infectious protein. TSEs are comprised of fatal neurodegenerative disorders affecting both human and animals. Prion diseases cause sponge-like degeneration of neuronal tissue and include (among others) Creutzfeldt-Jacob disease in humans, bovine spongiform encephalopathy (BSE) in cattle and scrapie in sheep. TSEs are characterized by the formation and accumulation of transmissible (infectious) disease-associated protease-resistant prion protein (PrP(Sc)), mainly in tissues of the central nervous system. The exact molecular processes behind the conversion of PrP(C) into PrP(Sc) are not clearly understood. Correlations between prion protein polymorphisms and disease have been found, however in what way these polymorphisms influence the conversion processes remains an enigma; is stabilization or destabilization of the prion protein the basis for a higher conversion propensity? Apart from the disease-associated polymorphisms of the prion protein, the molecular processes underlying conversion are not understood. There are some notions as to which regions of the prion protein are involved in refolding of PrP(C) into PrP(Sc) and where the most drastic structural changes take place. Direct interactions between PrP(C) molecules and/or PrP(Sc) are likely at the basis of conversion, however which specific amino acid domains are involved and to what extent these domains contribute to conversion resistance/sensitivity of the prion protein or the species barrier is still unknown.  相似文献   

9.
Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disorder of cattle characterized by accumulation of the disease-associated prion protein (PrP(Sc)) in the central nervous system (CNS). The immunohistochemical patterns and distribution of PrP(Sc) were investigated in the CNS, brains, and spinal cords of 7 naturally occurring BSE cases confirmed by the fallen stock surveillance program in Japan. No animals showed characteristic clinical signs of the disease. Coronal slices of 14 different brain areas in each case were immunohistochemically analyzed using an anti-prion protein antibody. Immunolabeled PrP(Sc) deposition was widely observed throughout each brain and spinal cord. Intense PrP(Sc) deposition was greater in the thalamus, brainstem, and spinal cord of the gray matter than in the neocortices. The topographical distribution pattern and severity of PrP(Sc) accumulation were mapped and plotted as immunohistochemical profiles of the different brain areas along the caudal-rostral axis of the brain. The distribution pattern and severity of the immunolabeled PrP(Sc) in the CNS were almost the same among the 7 cases analyzed, suggesting that the naturally occurring cases in this study were at the preclinical stage of the disease. Immunohistochemical mapping of the PrP(Sc) deposits will be used to clarify the different stages of BSE in cattle.  相似文献   

10.
Fourteen, 3-month-old calves were intracerebrally inoculated with the agent of chronic wasting disease (CWD) from white-tailed deer (CWDwtd) to compare the clinical signs and neuropathologic findings with those of certain other transmissible spongiform encephalopathies (TSE, prion diseases) that have been shown to be experimentally transmissible to cattle (sheep scrapie, CWD of mule deer [CWDmd], bovine spongiform encephalopathy [BSE], and transmissible mink encephalopathy). Two uninoculated calves served as controls. Within 26 months postinoculation (MPI), 12 inoculated calves had lost considerable weight and eventually became recumbent. Of the 12 inoculated calves, 11 (92%) developed clinical signs. Although spongiform encephalopathy (SE) was not observed, abnormal prion protein (PrPd) was detected by immunohistochemistry (IHC) and Western blot (WB) in central nervous system tissues. The absence of SE with presence of PrPd has also been observed when other TSE agents (scrapie and CWDmd) were similarly inoculated into cattle. The IHC and WB findings suggest that the diagnostic techniques currently used to confirm BSE would detect CWDwtd in cattle, should it occur naturally. Also, the absence of SE and a distinctive IHC pattern of CWDwtd and CWDmd in cattle suggests that it should be possible to distinguish these conditions from other TSEs that have been experimentally transmitted to cattle.  相似文献   

11.
A food-borne origin of the transmission of bovine spongiform encephalopathy (BSE) to cattle is commonly assumed. However, the fate of infectious prion protein during polygastric digestion remains unclear. It is unknown at present, whether infectious prion proteins, considered to be very stable, are degraded or inactivated by microbial processes in the gastrointestinal tract of cattle. In this study, rumen and colon contents from healthy cattle, taken immediately after slaughter, were used to assess the ability of these microbial consortia to degrade PrP(Sc). Therefore, the consortia were incubated with brain homogenates of scrapie (strain 263K) infected hamsters under physiological anaerobic conditions at 37 degrees C. Within 20 h, PrP(Sc) was digested both with ruminal and colonic microbiota up to immunochemically undetectable levels. Especially polymyxin resistant (mainly gram-positive) bacteria expressed PrP(Sc) degrading activity. These data demonstrate the ability of bovine gastrointestinal microbiota to degrade PrP(Sc) during digestion.  相似文献   

12.
In 2005, a prion disease identified in a goat from France was reported to be consistent with disease from the bovine spongiform encephalopathy (BSE) agent. Subsequent retrospective examination of UK goat scrapie cases led to the identification of one potentially similar, but as yet unconfirmed, case from Scotland. These findings strengthened concerns that small ruminant populations exposed to the BSE agent have become infected. The lack of data relating specifically to scrapie in goats has been contributory to past assumptions that, in general, sheep and goats respond similarly to prion infections. In this study, brain material from 22 archived caprine scrapie cases from the UK was reviewed by histopathology and by immunohistochemical examination for accumulations of disease-specific prion protein (PrP(Sc)) to provide additional data on the lesions of caprine scrapie and to identify any BSE-like features. The vacuolar change observed in the goats was characteristic of transmissible spongiform encephalopathies in general. PrP(Sc) immunohistochemical morphologic forms described in scrapie and experimental BSE infections of sheep were demonstrable in the goats, but these were generally more extensive and variable in PrP(Sc) accumulation. None of the cases examined showed a PrP(Sc) immunohistochemical pattern indicative of BSE.  相似文献   

13.
Brain tissue from a case of bovine spongiform encephalopathy (BSE) from Alberta was subjected to a Western immunoblotting technique to ascertain the molecular profile of any disease-specific, abnormal prion protein, that is, prion protein that is protease-resistant (PrP(res)). This technique can discriminate between isolates from BSE, ovine scrapie, and sheep experimentally infected with BSE. Isolates of brain tissue from the BSE case in Alberta, 3 farmed elk with chronic wasting disease (CWD) from different parts of Saskatchewan, and 1 farmed white-tailed deer with CWD from Edmonton, Alberta, were examined alongside isolates of brain tissue from BSE, ovine scrapie, and sheep experimentally infected with BSE from the United Kingdom (UK). The molecular weights of PrP(res) and the cross reactions to 2 specific monoclonal antibodies (mAbs) were determined for each sample. The BSE isolates from Canada and the UK had very similar PrP(res) molecular weights and reacted with only 1 of the 2 mAbs. The PrP(res) isolated from both elk and white-tailed deer with CWD had a higher molecular weight profile than did the corresponding PrP(res) from the scrapie and BSE isolates. The PrP(res) from CWD cases cross reacted with both mAbs, a property shared with PrP(res) in isolates from scrapie but not with PrP(res) isolates from BSE or sheep experimentally infected with BSE. The results from this study seem to confirm that the PrP(res) isolated from the BSE case in Alberta has similar molecular properties to the PrP(res) isolated from a BSE case in the UK, and that it differs in its molecular and immunological characteristics from the CWD and scrapie cases studied.  相似文献   

14.
Surveillance for bovine spongiform encephalopathy (BSE) in fallen stock in Japan is conducted with a commercial enzyme-linked immunosorbent assay (ELISA) for mass screening, with Western blotting (WB) and immunohistochemistry performed for confirmation of the ELISA. All tests are based on immunological detection of an abnormal isoform of the prion protein (PrP(Sc)) in brain tissues, which have sometimes deteriorated by the time samples from fallen stock reach a diagnostic laboratory. To evaluate BSE surveillance procedures for fallen stock, we examined PrP(Sc) detection from artificially deteriorated BSE-affected bovine brain tissues with a commercial ELISA kit and compared the results with those of WB. The optical density (OD) values of the ELISA decreased with advancing deterioration of the tissues, whereas no reduction in the signal for PrP(Sc) was observed in WB, even when performed after 4 days of incubation at 37 degrees C. The progressive decrease in the OD values in the ELISA appear to be caused by a partial loss of the N-terminal moiety of PrP(Sc) due to digestion by endogeneous and/or contaminated microbial enzymes, and by the presence of ELISA inhibitors that are generated in deteriorated tissues. These results suggest that WB is the most reliable test for fallen stock, especially for cattle brains within decaying carcasses.  相似文献   

15.
Seventeen clinically suspect scrapie sheep, and twelve suspected BSE-affected cattle were confirmed using routine histopathological examination by the detection of characteristic spongiform change in the medulla brain region taken at the level of the obex. Three sheep and four cows acquired as controls showed no spongiform change. Five aliquots of brain tissue from each of four brain regions were taken (cerebellum, medulla, frontal cerebral cortex and occipital cerebral cortex) from each of the 36 animals. One aliquot was frozen at -70 degrees C, the others were subjected to one of four autolysis regimes at 3 or 7 days at 25 degrees C or 37 degrees C. All samples were tested by Western immunoblotting for detection of PrP(Sc) using the Prionics - Check test (Prionics AG, Zurich, Switzerland). Further samples of medulla from 15 suspect scrapie cases, 10 healthy sheep, 13 suspect BSE cows and 5 healthy cows, were taken adjacent to the obex, and subjected to autolysis at 37 degrees C for 6, 12, 24 and 48 hours before being fixed in 10 per cent formal saline and subsequently examined by a routine immunohistochemical technique for detection of PrP(Sc) protein. The abnormal protein could not be detected in any of the control animals by either technique. PrP(Sc) could be detected by Western immunoblotting in at least one brain area from all the positive animals after autolysis for 7 days at 37 degrees C. The protein could be detected by immunohistochemistry in all cases which were positive by histopathological examination using all autolysis conditions. From the results of this study it is concluded that autolysis does not significantly compromise the diagnosis of scrapie or BSE by either of these diagnostic methods.  相似文献   

16.
The influence of a complex microflora residing in the gastrointestinal tract of cattle on the prion protein plays a crucial role with respect to early pathogenesis and the potential infectivity of faeces resulting in contamination of the environment. It is unknown whether infectious prion proteins, considered to be very stable, are inactivated by microbial processes in the gastrointestinal tract of animals during digestion. In our previous study it was shown that the scrapie-associated prion protein was degraded by ruminal and colonic microbiota of cattle, as indicated by a loss of anti-prion antibody 3F4 immunoreactivity in Western blot. Subsequently, in this study hamster bioassays with the pre-treated samples were performed. Although the PrP(Sc) signal was reduced up to immunochemically undetectable levels within 40 h of pre-treatment, significant residual prion infectivity was retained after degradation of infected hamster brain through the gastrointestinal microflora of cattle. The data presented here show that the loss of anti-prion antibody 3F4 immunoreactivity is obviously not correlated with a biological inactivation of PrP(Sc). These results highlight the deficiency of using Western blot in transmissible spongiform encephalopathies inactivation assessment studies and, additionally, point to the possibility of environmental contamination with faeces containing PrP(Sc) following an oral ingestion of prions.  相似文献   

17.
Scrapie is a naturally occurring fatal neurodegenerative disease of adult sheep and goats, one of a group of mammalian diseases known as transmissible spongiform encephalopathies (TSE) or prion diseases. Immunoassays that identify disease-associated prion protein (PrP Sc) are integral to the diagnosis of scrapie and other prion diseases. Results obtained by either immunohistochemistry (IHC) or Western blot (WB) assay are generally adequate for the definitive diagnosis. Approved or accepted methods for WB diagnosis of TSEs requires the use of fresh or frozen nonfixed tissue samples, whereas formalin-fixed, paraffin-embedded tissue is required for the localization of PrP Sc by IHC. Because disparate processing methods are used for these accepted diagnostic techniques, separate tissue samples are collected from the same animal. Occasions arise in which there is either insufficient quantity of tissue available to complete analysis by both techniques or initial tissue processing is incompatible with one of the assays. Also, results between the assays may differ because of the vagaries of sampling, especially in case material that contains moderate-to-low levels of PrP Sc. The present article describes a method to conduct a WB assay from the same paraffin-embedded brainstem sample used for the IHC diagnosis of experimentally induced sheep scrapie.  相似文献   

18.
The brains of 26 Bavarian bovines clinically suspected of bovine spongiform encephalopathy (BSE) were the subject of a neuropathological evaluation containing histopathology and immunohistochemistry. Six animals tested positive for BSE. In these six brains severe histological lesions that correlated with previous reports from the United Kingdom were observed. Immunohistochemistry with prion protein (PrP(Sc)), glial fibrillary acidic protein (GFAP) and synaptophysin were conducted on the mid-brain containing the red nucleus. All BSE-positive brains stained positively for PrP(Sc), and no plaques were observed. The BSE-affected brains showed a substantially more intense staining pattern for GFAP in comparison with the control groups, some of which were diagnosed with severe neuropathological disorders. Synaptophysin staining on BSE-positive brains was substantially reduced in the neuropil of the mid-brain, especially in the red nucleus. Twenty animals tested negative for BSE. The most common diagnoses were listeriosis, viral infections of unknown aetiology, brain oedema and hypomagnesaemia. These disorders may represent the most important clinical differential diagnoses for BSE in Bavaria.  相似文献   

19.
Molecular profiling of the proteinase K resistant prion protein (PrP(res)) is a technique that has been applied to the characterisation of transmissible spongiform encephalopathy (TSE) strains. An interesting example of the application of this technique is the ability to differentiate, at the experimental level, between bovine spongiform encephalopathy (BSE) and scrapie infection in sheep, and to distinguish between classical and atypical BSE and scrapie cases. Twenty-six BSE cases and two scrapie cases from an active TSE surveillance program and diagnosed at the PRIOCAT, TSE Reference Laboratory (Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Catalunya, Spain) were examined by Western blotting. Molecular profiling was achieved by comparing the glycosylation profile, deglycosylated PrP molecular weight and 6H4/P4 monoclonal antibody binding ratio. The results obtained during the characterisation of these field cases indicated an absence of atypical BSE cases in Catalunya.  相似文献   

20.
To determine the transmissibility of chronic wasting disease (CWD) to cattle and to provide information about clinical course, lesions, and suitability of currently used diagnostic procedures for detection of CWD in cattle, 13 calves were inoculated intracerebrally with brain suspension from mule deer naturally affected with CWD. Between 24 and 27 months postinoculation, 3 animals became recumbent and were euthanized. Gross necropsies revealed emaciation in 2 animals and a large pulmonary abscess in the third. Brains were examined for protease-resistant prion protein (PrP(res)) by immunohistochemistry and Western blotting and for scrapie-associated fibrils (SAFs) by negative-stain electron microscopy. Microscopic lesions in the brain were subtle in 2 animals and absent in the third case. However, all 3 animals were positive for PrP(res) by immunohistochemistry and Western blot, and SAFs were detected in 2 of the animals. An uninoculated control animal euthanized during the same period did not have PrP(res) in its brain. These are preliminary observations from a currently in-progress experiment. Three years after the CWD challenge, the 10 remaining inoculated cattle are alive and apparently healthy. These preliminary findings demonstrate that diagnostic techniques currently used for bovine spongiform encephalopathy (BSE) surveillance would also detect CWD in cattle should it occur naturally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号