首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adequate delivery of AA is essential for normal fetal growth and development. Recently, we reported that when ewes from the University of Wyoming flock (farm flock with adequate nutrition) were fed 50% (nutrient-restricted) or 100% (control-fed) of the NRC-recommended nutrient requirements between d 28 and 78 of gestation, fetal weights as well as concentrations of most AA in maternal and fetal blood were substantially reduced in nutrient-restricted vs. control-fed pregnancies. The current study utilized Baggs ewes, which were selected under a markedly different production system (range flock with limited nutrition), to test the hypothesis that adaptation of ewes to nutritional and environmental changes may alter placental efficiency and conceptus nutrient availability in the face of maternal nutrient restriction. Baggs ewes received 50 or 100% of the NRC nutrient requirements between d 28 and 78 of pregnancy. On d 78, maternal uterine arterial and fetal umbilical venous blood samples were obtained, and the ewes were euthanized. Amino acids and their metabolites (ammonia, urea, and polyamines) in plasma were analyzed using enzymatic and HPLC methods. The results showed that maternal plasma concentrations of 9 AA (Asp, Ile, Leu, Lys, Orn, Phe, Thr, Trp, and Val) as well as maternal and fetal plasma concentrations of ammonia and urea were reduced (P < 0.05) in nutrient-restricted compared with control-fed Baggs ewes. However, fetal plasma concentrations of all AA and polyamines did not differ (P = 0.842) between the 2 groups of ewes. Collectively, these findings suggest that Baggs ewes, by adapting to the harsh conditions and limited nutrition under which they were selected, were able to maintain fetal concentrations of AA in the face of a maternal nutrient restriction through augmenting placental efficiency.  相似文献   

2.
This study utilized maternal undernutrition from early to midgestation in the ewe to determine the impact(s) of intrauterine growth restriction on postpartum growth of male offspring and the potential mechanisms involved. Multiparous ewes were fed 50% (nutrient-restricted) or 100% (control-fed) of their nutrient requirements (NRC, 1985) between d 28 and 78 of gestation, and then all ewes were fed 100% of the NRC requirements from d 79 through lambing. Male lambs born to nutrient-restricted (n = 9) and control-fed (n = 9) ewes exhibited similar BW (5.8 vs. 6.0 +/- 0.3 kg) and crown-rump lengths (53.8 vs. 55.4 +/- 1.0 cm) at birth. At 63 and 250 d of postnatal age, wether lambs were subjected to a glucose tolerance test, in which a bolus of glucose was administered i.v. to evaluate changes in glucose and insulin concentrations. After i.v. glucose administration at 63 d of age, lambs from nutrient-restricted ewes exhibited a greater area under the curve for glucose (AUCg; 6,281 vs. 5,242 +/- 429; P < 0.05) and insulin (AUCi; 21.0 vs. 8.6 +/- 1.9; P < 0.001) than lambs from control-fed ewes. After glucose administration at 250 d of age, lambs from nutrient-restricted ewes had greater AUCg (7,147 vs. 5,823 +/- 361; P < 0.01) but a lower AUCi (6.4 vs. 10.2 +/- 1.9; P = 0.05) than lambs from control-fed ewes. Lambs from nutrient-restricted ewes were heavier (26.6 vs. 21.8 +/- 2.3 kg; P < 0.05) and had more backfat (0.30 vs. 0.21 +/- 0.03 cm, P < 0.05) by 4 mo of age than the lambs from control-fed ewes. At slaughter at 280 d of age, lambs from nutrient-restricted ewes remained heavier than lambs from control-fed ewes, had greater (P < 0.05) amounts of kidney and pelvic-area adipose tissue, and tended (P < 0.10) to have reduced LM and semitendinosus muscle weights as a percentage of HCW. These data demonstrate that a bout of maternal undernutrition during early to midgestation in sheep increased BW and fat deposition during adolescence and dysregulated glucose uptake in the absence of any change in birth weight.  相似文献   

3.
The effect of early gestation maternal undernutrition followed by realimentation on placentomal vascular growth and angiogenic factor expression was determined in multiparous beef cows bred to the same bull. Cows gestating only female fetuses (n = 30) were fed in equal numbers to meet the NRC requirements (control) or were fed below the NRC requirements to lose BW (nutrient restricted; NR) from d 30 to 125 of gestation. After slaughter on d 125 of gestation, 10 control and 10 NR cows were necropsied. The remaining NR cows (n = 5) were then fed to achieve a BCS equal to their control group contemporaries (n = 5) by d 220 of gestation. All cows were fed the control diet from d 220 until 250 of gestation, when the remaining control and NR cows were slaughtered and necropsied. At necropsy, placentomes were fixed via perfusion of the caruncular and cotyledonary arteries to determine capillary vascular density. Cotyledonary (fetal placental) and caruncular (maternal placental) tissues also were snap-frozen in liquid nitrogen, and mRNA concentrations of vascular endothelial growth factor and its 2 specific receptors, fms-like tyrosine kinase and kinase insert domain containing receptor, as well as placental growth factor, were determined. There was no effect of diet or day of gestation on the percentage of proliferating caruncular cells. Although diet did not impact cotyledonary cellular proliferation, there was an increase (P < 0.05) in the percentage of proliferating cells on d 250 compared with d 125 of gestation. Nutrient restriction from d 30 to 125 increased (P < or = 0.10) placental mRNA concentrations of placental growth factor and fms-like tyrosine kinase; however, there was no alteration in vascularity. By d 250 of gestation, NR cows had increased (P < 0.05) caruncular capillary surface density and decreased (P < 0.05) cotyledonary capillary area density, capillary number density, and capillary surface density compared with control cows. Although nutrient restriction had little effect on placental vascularity by d 125, upon realimentation, alterations in vascularity became apparent by d 250 of gestation, suggesting a placental programming effect.  相似文献   

4.
To evaluate the effects of pre- and post-conception undernutrition (UN) on fetal and placental development at mid-gestation, 28 Katahdin × Pelibuey multiparous ewes were blocked by weight and assigned to the following four dietary treatments (n = 7 each): ewes fed 100% (control) or 60% of their nutritional requirements 30 days before mating (UNPre), 50 days after mating (UNPost) or during both periods (UNB). Four twin-bearing ewes were selected per treatment at day 50 post-conception and then slaughtered at day 75 of gestation to analyze their fetuses. Control fetuses were heavier (P < 0.05) than UNPost and UNB fetuses in 14.6 and 9.4%, respectively. Organ weights as percentage of the fetal weight (except for liver) and morphometric measurements (except for abdominal girth) were similar between control and UN fetuses (UNPre, UNPost, and UNB). Placental mass was heavier (P < 0.05) in control ewes than UNB ewes, but not relative to ewes of other treatments. The number of placentomes per ewe and placental efficiency were unaffected by UN treatments. Compared to control, only UNB ewes exhibited variations (P < 0.05) in the proportion of placentomes, specifically for type A (+13.8%) and B (?12.6%). Placentomes of type A and B had lower weight, length, and width of placentas in UNPost and UNB ewes than placentas of control ewes (P < 0.05). Overall results indicate that fetal and placental development of ewes carrying twins is mainly altered when nutritional restriction occurs simultaneously before conception and during the first third of pregnancy.  相似文献   

5.
The objective of these studies was to evaluate the effects of dietary restriction and Se on maternal and fetal metabolic hormones. In Exp. 1, pregnant ewe lambs (n = 32; BW = 45.6 +/- 2.3 kg) were allotted randomly to 1 of 4 treatments. Diets contained (DM basis) either no added Se (control), or supranutritional Se added as high-Se wheat at 3.0 mg/kg (Se-wheat), or sodium selenate at 3 (Se3) and 15 (Se15) mg/kg of Se. Diets (DM basis) were similar in CP (15.5%) and ME (2.68 Mcal/kg). Treatments were initiated at 50 +/- 5 d of gestation. The control, Se-wheat, Se3, and Se15 treatments provided 2.5, 75, 75, and 375 microg/kg of BW of Se, respectively. Ewe jugular blood samples were collected at 50, 64, 78, 92, 106, 120, and 134 d of gestation. Fetal serum samples were collected at necropsy on d 134. In Exp. 2, pregnant ewe lambs (n = 36; BW 53.8 +/- 1.3 kg) were allotted randomly to treatments in a 2 x 2 factorial arrangement. Factors were nutrition (control, 100% of requirements vs. restricted nutrition, 60% of control) and dietary Se (adequate Se, 6 microg/kg of BW vs. high Se, 80 microg/kg of BW). Selenium treatments were initiated 21 d before breeding, and nutritional treatments were initiated on d 64 of gestation. Diets were 16% CP and 2.12 Mcal/kg of ME (DM basis). Blood samples were collected from the ewes at 62, 76, 90, 104, 118, 132, and 135 d of gestation. Fetal blood was collected at necropsy on d 135. In Exp.1, dietary Se source and concentration had no effect (P > 0.17) on maternal and fetal serum IGF-I, triiodothyronine (T(3)), or thyroxine (T(4)) concentrations. Selenium supplementation increased (P = 0.06) the T(4):T(3) ratio vs. controls. In Exp. 2, dietary Se had no impact (P > 0.33) on main effect means for maternal and fetal serum IGF-I, T(3), or T(4) concentrations from d 62 to 132; however, at d 135, high-Se ewes had lower (P = 0.01) serum T(4) concentrations than adequate-Se ewes. A nutrition by Se interaction (P = 0.06) was detected for the T(4):T(3) ratios; ewes fed restricted and adequate-Se diets had greater (P = 0.10) T(4):T(3) ratios compared with the other treatments. Nutrient-restricted ewes had lower (P < 0.05) serum IGF-I, T(3), and T(4) concentrations. Fetal serum IGF-I concentrations were lower (P = 0.01) in restricted-vs. control-fed ewes; however, fetal T(3) and T(4) concentrations were unaffected (P > 0.13) by dietary Se or maternal plane of nutrition. These data indicate that dietary Se may alter maternal T(4):T(3) ratios. In addition, nutrient restriction during gestation reduces maternal IGF-I, T(3), and T(4) and fetal IGF-I concentrations.  相似文献   

6.
The objectives were to examine effects of dietary Se supplementation and nutrient restriction during defined periods of gestation on maternal adaptations to pregnancy in primigravid sheep. Sixty-four pregnant Western Whiteface ewe lambs were assigned to treatments in a 2 x 4 factorial design. Treatments were dietary Se [adequate Se (ASe; 3.05 microg/kg of BW) vs. high Se (HSe; 70.4 microg/kg of BW)] fed as Se-enriched yeast, and plane of nutrition [control (C; 100% of NRC requirements) vs. restricted (R; 60% of NRC requirements]. Selenium treatments were fed throughout gestation. Plane of nutrition treatments were applied during mid (d 50 to 90) and late gestation (d 90 to 130), which resulted in 4 distinct plane of nutrition treatments [treatment: CC (control from d 50 to 130), RC (restricted from d 50 to 90, and control d 90 to 130), CR (control from d 50 to 90, and restricted from d 90 to 130), and RR (restricted from d 50 to 130)]. All of the pregnant ewes were necropsied on d 132 +/- 0.9 of gestation (length of gestation approximately 145 d). Nutrient restriction treatments decreased ewe ADG and G:F, as a result, RC and CR ewes had similar BW and maternal BW (MBW) at necropsy, whereas RR ewes were lighter than RC and CR ewes. From d 90 to 130, the HSe-CC ewes had greater ADG (Se x nutrition; P = 0.05) than did ASe-CC ewes, whereas ADG and G:F (Se x nutrition; P = 0.08) were less for HSe-RR ewes compared with ASe-RR ewes. The CR and RR treatments decreased total gravid uterus weight (P = 0.01) as well as fetal weight (P = 0.02) compared with RC and CC. High Se decreased total (g; P = 0.09) and relative heart mass (g/kg of MBW; P = 0.10), but increased total and relative mass of liver (P < or = 0.05) and perirenal fat (P < or = 0.06) compared with ASe. Total stomach complex mass was decreased (P < 0.01) by all the nutrient restriction treatments, but was reduced to a greater extent in CR and RR compared with RC. Total small intestine mass was similar between RC and CC ewes, but was markedly reduced (P < 0.01) in CR and RR ewes. The mass of the stomach complex and the small and large intestine relative to MBW was greater (P = 0.01) for RC than for CR ewes. Increased Se decreased jejunal DNA concentration (P = 0.07), total jejunal cell number (P = 0.03), and total proliferating jejunal cell number (P = 0.05) compared with ASe. These data indicate that increased dietary Se affected whole-body and organ growth of pregnant ewes, but the results differed depending on the plane of nutrition. In addition, the timing and duration of nutrient restriction relative to stage of pregnancy affected visceral organ mass in a markedly different fashion.  相似文献   

7.
The mammalian target of rapamycin (mTOR) signaling controls nutrient-stimulated protein synthesis in skeletal muscle, whereas ubiquitin-proteasome systems control the degradation of myofibrillar proteins. The objective of this study was to elucidate the effect of nutrient restriction on the mTOR signaling and ubiquitin-proteasome system in the skeletal muscle of cows and their fetuses. Beginning 30 d after conception, 20 cows were fed either a control diet that provided 100% nutrient requirements or a nutrient-restricted diet at 68.1% of NE(m) and 86.7% of metabolizable protein requirement. Cows were slaughtered on 125 d of gestation, and the LM of both cows and fetuses was sampled for the measurement of mTOR, ribosomal protein S6, adenosine 5'-monophosphate-activated protein kinase (AMPK), and protein ubiquitylation. When comparing the muscle samples from nutrient-restricted and control cows and their fetuses, no difference was observed for the content of mTOR and ribosomal protein S6, but the phosphorylation of mTOR at Ser(2448) and ribosomal protein S6 at Ser(235/336) were greater (P < 0.05) in control muscle than in muscle from nutrient-restricted animals. Because the phosphorylation of mTOR and ribosomal protein S6 upregulates translation, these results showed that nutrient restriction inhibits protein synthesis in muscle. The activity of AMPK in the muscle of nutrient-restricted cows was significantly lower (P = 0.05) than that of control cows. The protein ubiquitylation, however, was greater (P < 0.05) in the muscle from nutrient-restricted cows, showing accelerated protein degradation. No difference in the protein ubiquitylation was detected for fetal muscle. Data suggested that the decreased protein synthesis and promoted protein degradation resulted in muscle atrophy of pregnant cows, but not in fetal muscle. Results of this study show that in response to nutrient restriction, protein degradation was differentially regulated between cow and fetal muscle. The atrophy of cow muscle during nutrient deficiency may involve the enhanced degradation of muscle proteins.  相似文献   

8.
Our objectives were to evaluate maternal body changes in response to dietary restriction or the increased nutrient requirement of fetal growth. In Exp. 1, 28 mature crossbred ewes (61.6 +/- 1.8 kg initial BW) were fed a pelleted forage-based diet to evaluate effects of pregnancy and nutrient restriction on visceral organ mass. Treatments were arranged in 2 x 3 factorially, with dietary restriction (60% restriction vs. 100% maintenance) and reproductive status (nonpregnant [NP], d 90 or d 130 of gestation) as main effects. Dietary treatments were begun at d 50 of gestation, and restricted ewes remained at 60% of maintenance throughout the experiment. Nonpregnant and d-90 ewes were fed dietary treatments for 40 d and slaughtered. The d-130 ewes were fed dietary treatments for 80 d and then slaughtered. In Exp. 2, four Romanov ewes were naturally mated (Romanov fetus and Romanov dam; R/ R), and two Romanov embryos were transferred to each of four Columbia recipients (Romanov embryos and Columbia recipient; R/C). Three Columbia ewes were naturally mated (Columbia fetus and Columbia recipient; C/C). In both experiments, maternal organ weights were reported as fresh weight (grams), scaled to empty body weight (EBW; grams per kilogram) and maternal body weight (MBW; grams per kilogram). In Exp. 1, ewe EBW and fetal mass were decreased (P < 0.02) with restriction compared with maintenance. Dietary restriction decreased liver mass (16.7 vs. 14.5 g/kg EBW or 18.8 vs. 16.4 g/kg MBW; P < 0.01), but dietary restriction did not affect total digestive tract mass. In Exp. 2, ewe BW was less for the R/R compared with R/C and C/C (44.8 vs. 110.4 and 98.1 +/- 7.9 kg, respectively; P < 0.01). Fetal weight at d 130 was less for the R/R than for R/C and C/C (2.2 vs. 3.3 and 4.7 +/- 0.3 kg, respectively; P < 0.01) when measured as individual fetuses; however, when measured as total fetal mass carried in each ewe, there was no effect of ewe type. These data suggest that the gastrointestinal tract, along with other maternal organs, responds to both level of dietary intake and nutrient requirements for gestation, and that fetal weight is decreased as a result of a 40% decrease in nutrients offered.  相似文献   

9.
Calpains are crucial for the degradation of myofibrillar proteins in muscle. Calpastatin is a specific inhibitor of calpains. The objective of this study was to elucidate the effect of nutrient restriction on the activity of calpains and calpastatin in the skeletal muscle of both cows and fetuses. Beginning 30 d after conception, 20 cows were fed either a control diet consisting of native grass hay fortified with vitamins and minerals at recommendations for a mature cow to gain 0.72 kg/d or half the vitamins and minerals and millet straw at 68.1% of NEm requirements. Cows were slaughtered on d 125 of gestation, and the LM was sampled at the 12th rib for calpain and calpastatin measurement. When comparing the muscle samples from nutrient-restricted and control cows, no difference in the activity of calpain I and II was observed; however, there was a significant difference (P < 0.05) in calpastatin activity. Muscle samples from control cows had greater calpastatin content than those of nutrient-restricted cows (P < 0.05); in contrast, the calpastatin content of fetal muscle was greater in fetuses gestated by nutrient-restricted cows than those of control cows (P < 0.05). Further, there were three calpastatin isoforms of 125, 110, and 70 kD detected in fetal muscle, whereas only the110-kD isoform was detected for cow muscle. These results indicate that the activity of the calpain system in skeletal muscle is mainly controlled through the expression of calpastatin. Alternating the calpastatin content in muscle and thereby modulating calpain activity may provide a mechanism for the maintenance of fetal muscle growth during nutrient restriction, whereas skeletal muscle loss in cows is upregulated.  相似文献   

10.
本试验旨在研究妊娠后期限饲蒙古绵羊对其胎盘生长发育及胎盘块类型分布的影响。选择健康蒙古绵羊42只(经同期发情且受孕),于妊娠90 d选择6只母羊进行屠宰,其余按体重随机分配到3个组:0.175 MJ/(kgW0.75.d)(RG1:n=14)、0.33 MJ/(kgW0.75.d)(RG2:n=12)和自由采食组0.67 MJ/(kgW0.75.d)(CG:n=10),进行不同能量水平饲养至妊娠140 d,再选择6只母羊进行屠宰。结果表明:妊娠后期限饲母羊严重影响了RG1组(P<0.01)、RG2组(P<0.05)的胎盘重及胎儿重(P<0.01);RG1组A类型胎盘块重量(P<0.01)、数量(P<0.01)与RG2组A类型胎盘块数量(P<0.05)显著低于CG组;RG1组B类型胎盘块重量(P<0.05)、数量(P<0.01)与RG2组B类型胎盘块数量(P<0.05)显著高于CG组;随着母体营养水平的降低,C、D类型胎盘块出现的几率增加,且C、D类型胎盘块血管数量显著高于A、B类型胎盘块血管数量(P<0.05)。这说明妊娠后期限饲蒙古绵羊影响了胎盘的生长发育,使得胎盘块数量、重量、类型和血管数量等发生了明显改变。  相似文献   

11.
To examine effects of nutrient restriction and dietary Se on maternal and fetal visceral tissues, 36 pregnant Targhee-cross ewe lambs were allotted randomly to 1 of 4 treatments in a 2 x 2 factorial arrangement. Treatments were plane of nutrition [control, 100% of requirements vs. restricted, 60% of controls] and dietary Se [adequate Se, ASe (6 microg/kg of BW) vs. high Se, HSe (80 microg/kg of BW)] from Se-enriched yeast. Selenium treatments were initiated 21 d before breeding and dietary restriction began on d 64 of gestation. Diets contained 16% CP and 2.12 Mcal/kg of ME (DM basis) and differing amounts were fed to control and restricted groups. On d 135 +/- 5 (mean +/- range) of gestation, ewes were slaughtered and visceral tissues were harvested. There was a nutrition x Se interaction (P = 0.02) for maternal jejunal RNA:DNA; no other interactions were detected for maternal measurements. Maternal BW, stomach complex, small intestine, large intestine, liver, and kidney mass were less (P < or = 0.01) in restricted than control ewes. Lung mass (g/kg of empty BW) was greater (P = 0.09) in restricted than control ewes and for HSe compared with ASe ewes. Maternal jejunal protein content and protein:DNA were less (P < or = 0.002) in restricted than control ewes. Maternal jejunal DNA and RNA concentrations and total proliferating jejunal cells were not affected (P > or = 0.11) by treatment. Total jejunal and mucosal vascularity (mL) were less (P < or = 0.01) in restricted than control ewes. Fetuses from restricted ewes had less BW (P = 0.06), empty carcass weight (P = 0.06), crown-rump length (P = 0.03), liver (P = 0.01), pancreas (P = 0.07), perirenal fat (P = 0.02), small intestine (P = 0.007), and spleen weights (P = 0.03) compared with controls. Fetuses from HSe ewes had heavier (P < or = 0.09) BW, and empty carcass, heart, lung, spleen, total viscera, and large intestine weights compared with ASe ewes. Nutrient restriction resulted in less protein content (mg, P = 0.01) and protein:DNA (P = 0.06) in fetal jejunum. Fetal muscle DNA (nutrition by Se interaction, P = 0.04) concentration was greater (P < 0.05) in restricted ewes fed HSe compared with other treatments. Fetal muscle RNA concentration (P = 0.01) and heart RNA content (P = 0.04) were greater in HSe vs. ASe ewes. These data indicate that maternal dietary Se may alter fetal responses, as noted by greater fetal heart, lung, spleen, and BW.  相似文献   

12.
A prospective cohort study was conducted using 32 randomly selected Awassi sheep flocks to identify factors hypothesized to be associated with the occurrence of pregnancy, twinning and fetal loss between August 2005 and May 2006 in the region of Al-Safawi (northeast of Jordan). Vitamins A and E and selenium concentrations were determined on 448 blood samples. Using the forward selection procedure of the logistic regression module, models with statistically significant risk factors (P?<?0.05) were constructed for three outcomes; pregnancy, twinning and fetal loss. Serum vitamin A concentration levels were associated with pregnancy (OR?=?2.26, 2.48), twinning (OR?=?6.49, 17.74) and fetal loss (OR?=?0.13, 0.19). Primiparous ewes were 48% less likely to become pregnant than fourth or higher parity ewes. The likelihood of twinning increased significantly in ewes up to the third parity. Ewes that were fed 700-900 g barley, 250-300 g wheat-bran per head per day and grazed on vegetables residues were 4.15 times more likely to have twins than ewes that were fed 600 g barley and 200 g wheat-bran per head per day. Fetal loss in first and second parity ewes was about 3 times more likely than that in third or higher-parity ewes. Ewes pregnant with twins were about 14 times more likely to have fetal loss than ewes carrying single fetus. Pregnant ewes of the stationary flocks were 37% less likely to have fetal loss than ewes of the semi-nomadic flocks. These results demonstrate that stationary Awassi sheep flocks had higher pregnancy and twinning rates and less pregnancy loss. Supplementation of vitamin A, providing sufficient quantity of dry feed and increasing ram: ewe ratio for primiparous ewes of semi-nomadic flocks is essential to improve Awassi sheep reproductive performance.  相似文献   

13.
The objectives of this study were to evaluate intestinal cellularity and vascularity in mature ewes in response to dietary restriction and pregnancy status and to quantify the response of these variables to increased nutrient demand of fetal growth. In Exp. 1, 28 mature Dorset x crossbred white-faced ewes (61.6+/-1.8 kg initial BW) were fed a pelleted, forage-based diet. Treatments were arranged in a 2 x 3 factorial, with dietary restriction (60% restriction vs. 100% maintenance for respective states of pregnancy) and pregnancy status (nonpregnant, NP; d 90 and 130) as main effects. Dietary treatments were initiated on d 50 of gestation and remained at 60 or 100% maintenance throughout the experiment. Nonpregnant ewes were fed dietary treatments for 40 d. In Exp. 2, four Romanov ewes were naturally serviced (Romanov fetus and Romanov dam; R/R); two Romanov embryos per recipient were transferred to four Columbia recipients (Romanov fetus and Columbia recipient; R/C), and three Columbia ewes were naturally serviced (Columbia fetus and Columbia dam; C/C). In Exp. 1, dietary restriction and pregnancy status interacted with regard to maternal jejunal DNA concentration (P < 0.01), with restricted ewes having a greater DNA concentration (mg/g; fresh basis) at d 130. Vascularity (percentage of total tissue area) in the jejunum was increased (P < 0.06) as a result of dietary restriction and pregnancy status. Total microvascular volume ofjejunal tissue was not altered by dietary restriction and increased (P < 0.01) at d 130 of pregnancy. In Exp. 2, R/R ewes had less (P < 0.09) DNA (g) in the jejunum compared with R/C and C/C ewes. Jejunal vascularity (%) was increased (P < 0.05) in R/R ewes compared with R/C or C/C ewes, whereas total jejunal microvascular volume remained unchanged. These data demonstrate intestinal vascular density responds to changes in diet and physiological state. In addition, pregnancy increased total jejunal microvascular volume.  相似文献   

14.
There is a need to improve the lean tissue content of ruminant animals destined for meat production. Muscle fiber number is set during fetal development. The effect of undernutrition of pregnant ewes on subsequent muscle fiber characteristics of their offspring was investigated. The trial involved 32 pregnant ewes carrying twins. The ewes were allocated randomly to one of four groups: three different treatment groups (n = 8) and a control group (n = 8). The diet of the treatment groups was dropped to 50% of their daily requirement to support the ewe and allow for conceptus growth for varying periods before being returned to 100% of their daily requirement until term. Group d 30-70 ewes were fed 100% of their daily requirement until d 30, the diet was then decreased to 50% until d 70; it was then returned to 100% of their daily requirement until term. Group d 55-95 ewes were similarly restricted from d 55 through 95, and Group d 85-115 ewes were restricted from d 85 through 115. The control group was fed 100% of their daily requirement to support the ewe and allow for conceptus growth throughout gestation. After parturition, the lactating ewes were fed a normal commercial diet. On d 14 (after parturition), the lambs were slaughtered and the LM, semitendinosus (ST), and vastus lateralis (VL) were dissected and snap frozen. The immunochemical determination of myosin heavy-chain slow (MHC-slow) and myosin heavy-chain fast (MHC-fast) proteins was measured by immunoprobing of Western blots. The number of fast and slow fibers and the diameter of these fibers also were measured in each muscle sample by histochemical techniques. Decreased maternal nutrition before fiber formation (d 30 through 70) was observed to change the muscle characteristics of the newborn lambs. These lambs had significantly fewer fast fibers (P < 0.001) and significantly more slow fibers (P < 0.001) in both the LM and VL compared with the other groups. Maternal nutrient restriction at the other periods had no effect on the number of muscle fibers in the newborn lambs; however, a decrease (LM, P < 0.05; VL, P < 0.01; ST, P = 0.08) in muscle weight was observed in the lambs born to the ewes restricted between d 85 and 115 of gestation compared with the other groups. This study has shown that decreased maternal diet before muscle fiber formation will alter the muscle fiber development in the fetus.  相似文献   

15.
Serum calcium, magnesium and phosphate values of ewes recently affected by vaginal prolapse were compared with unaffected ewes in four flocks. Subclinical hypocalcaemia was demonstrated in some affected and unaffected ewes in three flocks. Magnesium and phosphate values were normal. In two flocks the body condition of ewes recently affected by vaginal prolapse was variable and reflected the variation in condition found in the flock. In a third flock affected ewes had significantly lower body condition scores than unaffected ewes (P less than 0.001). Analysis of the fourth flock was not possible. Oestrogenic mycotoxins were not detected in any of the feed samples taken from these flocks. The following year the management, nutrition and energy, and the protein and calcium status of ewes in 12 flocks of greyface/mule ewes with a history of a regular high (greater than 3 per cent) or low (less than 1 per cent) prevalence of vaginal prolapse were compared. A high prevalence was not associated with any particular feedstuff. A high or intermediate (1 to 3 per cent) prevalence of vaginal prolapse was found in three of the four flocks managed as a single group and these three flocks were fed on an unrestricted basis. Body condition scoring and beta-hydroxybutyrate estimation confirmed that ewes in these flocks were overfed. The prevalence of vaginal prolapse in the flocks was not related to the serum albumin, calcium or urea of the ewes. Therefore subclinical hypocalcaemia was probably a consequence of vaginal prolapse rather than a cause.  相似文献   

16.
Inadequate delivery of nutrients results in intrauterine growth restriction (IUGR), which is a leading cause of neonatal morbidity and mortality in livestock. In ruminants, inadequate nutrition during pregnancy is often prevalent due to frequent utilization of exensive forage based grazing systems, making them highly susceptible to changes in nutrient quality and availability. Delivery of nutrients to the fetus is dependent on a number of critical factors including placental growth and development, utero-placental blood flow, nutrient availability, and placental metabolism and transport capacity. Previous findings from our laboratory and others, highlight essential roles for amino acids and their metabolites in supporting normal fetal growth and development, as well as the critical role for amino acid transporters in nutrient delivery to the fetus. The focus of this review will be on the role of maternal nutrition on placental form and function as a regulator of fetal development in ruminants.  相似文献   

17.
Inadequate delivery of nutrients results in intrauterine growth restriction(IUGR), which is a leading cause of neonatal morbidity and mortality in livestock. In ruminants, inadequate nutrition during pregnancy is often prevalent due to frequent utilization of exensive forage based grazing systems, making them highly susceptible to changes in nutrient quality and availability. Delivery of nutrients to the fetus is dependent on a number of critical factors including placental growth and development, utero-placental blood flow, nutrient availability, and placental metabolism and transport capacity. Previous findings from our laboratory and others, highlight essential roles for amino acids and their metabolites in supporting normal fetal growth and development, as well as the critical role for amino acid transporters in nutrient delivery to the fetus. The focus of this review will be on the role of maternal nutrition on placental form and function as a regulator of fetal development in ruminants.  相似文献   

18.
Prenatal growth is very complex and a highly integrated process. Both maternal nutrition and the maternal somatotropic axis play a significant role in coordinating nutrient partitioning and utilization between maternal, placental and fetal tissues. Maternal nutrition may alter the nutrient concentrations and in turn the expression of growth regulating factors such as IGFs and IGFBPs in the blood and tissues, while GH acts in parallel via changing IGFs/IGFBPs and nutrient availability. The similarity in the target components implies that maternal nutrition and the somatotropic axis are closely related to each other and may induce similar effects on placental and fetal growth. Severe restriction of nutrients throughout gestation has a permanent negative effect on fetal and postnatal growth, whereas the effects of both temporary restriction and feeding above requirements during gestation seem to be of transitional character. Advantages in fetal growth gained by maternal growth hormone treatment during early to mid-gestation are not maintained to term, whereas treatment during late or greatest part of gestation increases progeny size at birth, which could be of advantage for postnatal growth. This review summarizes the available knowledge on the effects of different maternal feeding strategies and maternal GH administration during pregnancy and their interactions on metabolic and hormonal (especially IGFs/IGFBPs) status in the feto-maternal unit, skeletal muscle development and growth of the offspring in pigs.  相似文献   

19.
Two experiments were conducted to determine whether the decreased proportion of fast muscle fibers seen previously in 2-wk-old lambs from ewes that were dietary restricted from d 30 to 70 of gestation are still evident in older lambs and what the consequences may be in terms of growth rates and carcass composition. Throughout both experiments, ewes were fed on an individual basis according to the recommended dietary allowance throughout pregnancy relative to metabolic BW (BW(0.73)). Control groups were fed as above, and the treatment groups had their nutrient supply reduced to 50% of this recommended allowance from d 30 to 70 (Exp. 1) or d 30 to 85 (Exp. 2) of gestation, after which they were returned to the same level of nutrition as the control group. All twin lambs were kept with their dams, and at 2 wk were given access to creep. After weaning, lambs were individually housed and fed ad libitum to 24 or 17 wk of age for Exp. 1 and 2, respectively. Although not significant (P = 0.18), growth to 24 wk (Exp. 1) resulted in a small decrease in the protein content and therefore an increase in the fat:lean ratio in the carcass of lambs subjected to maternal dietary restriction. This was not apparent when animals were slaughtered at 17 wk (Exp. 2; P > 0.68). Few significant effects of maternal dietary restriction on the fiber type composition of muscles were observed. In Exp. 1 the number of fast fibers increased (P < 0.008) with no effect on slow fiber number in LM. In Exp. 2 an increase in the total number of fibers in male lambs and an increase in type II (A and B) fibers in female lambs were observed in the LM, and an increase in IIB fiber number was observed in semitendinosus (ST) muscle from male lambs. Prenatal maternal dietary restriction during the time of muscle differentiation demonstrated an increase in type IIB muscle fibers and increase in intramuscular fat; although significant, effects on subsequent carcass quality of lambs were relatively small. These data suggest that the lambs adapted to changes in muscle fiber composition previously observed at 2 wk. However, lambs in this study were well fed during postnatal growth. Whether offspring would still have been able to compensate if they had received poor nutrition postnatally and whether that failure to compensate would have influenced carcass composition remain to be determined.  相似文献   

20.
Pregnant ewes were chronically exposed to thermoneutral (TN; 20 degrees C, 30% relative humidity) or hot (H; 40 degrees C 9 h/d, 30 degrees C 15 h/d, 40% relative humidity) environments between d 64 and 136 to 141 of pregnancy. They were sampled for blood at 14-d intervals during this period for measurement of plasma metabolites and hormones, then slaughtered and dissected to measure conceptus weights, dimensions and fetal organ weights. Rectal temperatures of H ewes were elevated .3 to 1.0 C degrees above those of TN ewes throughout the experiment. Voluntary feed intakes were not altered by heat exposure except after 120 d of pregnancy, when feed intake was about 25% lower (P less than .10) by H than by TN ewes. Blood 3-hydroxybutyrate concentrations were not affected by heat, but plasma glucose concentrations were greater in H than in TN animals after 120 d (P less than .05). Placental weight, reduced by 54% (P less than .001) by heat exposure of ewes, was correlated positively with fetal weight and correlated negatively with fetal/placental weight ratio, fetal brain/liver weight ratio and fetal relative heart weight. Late in pregnancy, plasma concentrations of progesterone, cortisol and placental lactogen were reduced (P less than .01) in H ewes, whereas triiodothyronine levels were markedly lower (P less than .03) at all stages of pregnancy. Plasma concentrations of prolactin were elevated dramatically (P less than .01) and a modest increase (P less than .03) in somatotropin levels was recorded in H ewes. These results are consistent with our hypothesis that heat-induced fetal growth retardation is secondary to a primary reduction in placental growth; this could be mediated partly by reduced peripheral activity of thyroid hormones. Heat-induced reductions in secretion of progesterone and ovine placental lactogen more likely were a consequence than a cause of placental stunting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号