首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
为解决山地地形起伏大、无人机飞行高度高导致图像中尺度小且纹理模糊的松枯死木识别困难问题,该研究提出了一种在特征层级进行超分辨率重建的YOLOv5松枯死木识别算法。在YOLOv5网络中添加选择性核特征纹理迁移模块生成有细节纹理的高清检测特征图,自适应改变感受野的机制分配权重,将更多注意力集中在纹理细节,提升了小目标和模糊目标的识别精度。同时,使用前景背景平衡损失函数抑制背景噪声干扰,增加正样本的梯度贡献,改善正负样本分布不平衡问题。试验结果表明,改进后算法在交并比(intersection over union,IoU)阈值取0.5时的平均精度均值(mean average precision,mAP50)为92.7%,mAP50~95(以步长0.05从0.5到0.95间取IoU阈值下的平均mAP)为62.1%,APsmall(小目标平均精度值)为53.2%,相比于原算法mAP50提高了3.2个百分点,mAP50~95提升了8.3个百分点,APsmall提升...  相似文献   

2.
在植物图像实例分割任务中,由于植物种类与形态的多样性,采用全监督学习时人们很难获得足量、有效且低成本的训练样本。为解决这一问题,该研究提出一种基于自生成标签的玉米苗期图像实例分割网络(automatic labelling based instance segmentation network,AutoLNet),在弱监督实例分割模型的基础上加入标签自生成模块,利用颜色空间转换、轮廓跟踪和最小外接矩形在玉米苗期图像(俯视图)中生成目标边界框(弱标签),利用弱标签代替人工标签参与网络训练,在无人工标签条件下实现玉米苗期图像实例分割。试验结果表明,自生成标签与人工标签的距离交并比和余弦相似度分别达到95.23%和94.10%,标签质量可以满足弱监督训练要求;AutoLNet输出预测框和掩膜的平均精度分别达到68.69%和35.07%,与人工标签质量相比,预测框与掩膜的平均精度分别提高了10.83和3.42个百分点,与弱监督模型(DiscoBox和Box2Mask)相比,预测框平均精度分别提高了11.28和8.79个百分点,掩膜平均精度分别提高了12.75和10.72个百分点;与全监督模型(CondInst和Mask R-CNN)相比,AutoLNet的预测框平均精度和掩膜平均精度可以达到CondInst模型的94.32%和83.14%,比Mask R-CNN模型的预测框和掩膜平均精度分别高7.54和3.28个百分点。AutoLNet可以利用标签自生成模块自动获得图像中玉米植株标签,在无人工标签的前提下实现玉米苗期图像的实例分割,可为大田环境下的玉米苗期图像实例分割任务提供解决方案和技术支持。  相似文献   

3.
针对复杂环境下柑橘果实大量重叠、枝叶遮挡且现有模型参数量大、计算复杂度高等问题,提出了一种基于改进YOLOv8n的柑橘识别模型YOLOv8-MEIN。首先,该研究设计了ME卷积模块并使用它改进YOLOv8n的C2f模块。其次,为了弥补CIoU损失函数在检测任务中泛化性弱和收敛速度慢的问题,使用Inner-CIoU损失函数加速边界框回归,提高模型检测性能。最后,在自建数据集上进行模型试验对比,试验结果表明,YOLOv8-MEIN模型交并比阈值为0.5的平均精度均值mAP0.5值为96.9%,召回率为91.7%,交并比阈值为0.5~0.95的平均精度均值mAP0.5~0.95值为85.8%,模型大小为5.8MB,参数量为2.87M。与原模型YOLOv8n相比,mAP0.5值、召回率、mAP0.5~0.95值分别提高了0.4、1.0、0.6个百分点,模型大小和参数量相比于原模型分别降低了3.3%和4.3%,为柑橘的自动化采摘提供技术参考。  相似文献   

4.
为弥补目前多作物分类提取精细化程度不高的问题,探究不同尺度数据集对网络精度的影响,该研究对协调注意力进行改进,并将此模块加入到UNet网络中,以验证改进后的空间-协调注意力UNet(spatial-coordinate attention UNet,SPCA-UNet)的合理性与有效性。结果表明:以1 500×1 500像素分辨率数据为输入的网络提取精度最高,UNet和DeepLab v3+网络模型对尺度信息不敏感;在注意力比较试验中,改进的空间-协调注意力的平均交并比、平均像素精度、平均精准率、平均召回率均优于SENet(squeeze-and-excitation networks)、CBAM(convolutional block attention module)、ECA(efficient channel attention)和CA(coordinate attention)模块,平均交并比达到了92.20%,平均像素精度达到95.97%,比CA模块的平均交并比和平均像素精度分别高出1.16和0.76个百分点。改进的空间-协调注意力可以很好地保持作物边界信息,由于其较强的规范...  相似文献   

5.
快速精准识别棚内草莓的改进YOLOv4-Tiny模型   总被引:5,自引:5,他引:0  
为了实现棚内草莓果实的快速精准识别,该研究提出一种基于改进YOLOv4-Tiny的草莓检测模型。首先,为了大幅度减少模型计算量,采用轻量型网络GhostNet作为特征提取网络,并在GhostBottleneck结构中嵌入卷积注意力模块以加强网络的特征提取能力;其次,在颈部网络中添加空间金字塔池化模块和特征金字塔网络结构,融合多尺度特征提升小目标草莓的检测效果;最后,采用高效交并比损失作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进YOLOv4-Tiny模型权重大小仅为4.68 MB,平均每幅图片的检测时间为5.63 ms,在测试集上的平均精度均值达到92.62%,相较于原YOLOv4-Tiny模型提升了5.77个百分点。与主流的目标检测模型SSD、CenterNet、YOLOv3、YOLOv4和YOLOv5s相比,改进YOLOv4-Tiny模型平均精度均值分别高出9.11、4.80、2.26、1.22、1.91个百分点,并且模型权重大小和检测速度方面均具有绝对优势,该研究可为后续果实智能化采摘提供技术支撑。  相似文献   

6.
畜牧业自动化管理面临的一个关键挑战是如何准确地检测大规模放牧养殖牲畜的种群,确定其数量和实时更新群体信息。牲畜规模化、自动化检测受环境场地等因素影响,当前目标检测算法经常出现漏检、误检等情况。该研究基于YOLOV5s目标检测网络设计了一种牲畜检测算法LDHorNet(livestock detect hor net),参考HorNet的递归门控卷积设计了HorNB模块对网络模型进行改进,以提高检测算法的空间交互能力和检测精度。然后在网络结构中嵌入CBAM(convolutional block attention module)注意力机制,以提高小目标的检测精度和注意力权重,并利用Repulsion 损失函数提高目标检测网络的召回率和预测精度。试验结果表明,所提出的LDHorNet算法的精准率、召回率分别为95.24%、88.87%,平均精准率均值mAP_0.5、mAP_0.5:0.95分别为94.11%、77.01%,比YOLOv5s、YOLOv8s、YOLOv7-Tiny精准率分别提高了2.83、2.93和9.79个百分点,召回率分别提高了6.66和4.95、13.42个百分点,平均精准率均值mAP_0.5:0.95分别提高12.46、5.26和20.97个百分点。该算法对于小目标和遮挡场景下的牲畜检测效果优于原算法与对比算法,表现出良好的鲁棒性,具有广泛的应用前景。  相似文献   

7.
为提高诱虫板图像蔬菜害虫检测精度,针对背景区域容易导致误检的问题基于显著图分析技术构建了一种注意力深度网络害虫智能视觉检测方法。首先通过显著图筛选出粗候选区域;然后在粗候选区域内用全卷积神经网络精选出细候选区域;接着用神经网络分类器识别细候选区域害虫种类,得到含有冗余的若干检测框;最后用改进的非极大值抑制消除冗余检测框,实现诱虫板图像中目标害虫的检测。针对小菜蛾和瓜实蝇展开试验,获得86.4%的平均精度均值和0.111只的平均绝对计数误差均值,所提方法平均精度均值比Faster R-CNN和YOLOv4分别高2.74和1.56个百分点,平均绝对计数误差均值比Faster R-CNN和YOLOv4分别低0.006和0.003只;同时,消融试验中移除显著图注意力模块后平均精度均值下降了4个百分点、平均绝对计数误差均值增加了0.207只。试验结果表明,所提方法有效提高了诱虫板图像蔬菜害虫检测精度,其中,引入显著图注意力模块对提升检测精度有重要作用。  相似文献   

8.
针对名优茶智能采摘中茶叶嫩梢识别精度不足的问题,该研究对YOLOv8n模型进行优化。首先,在主干网络中引入动态蛇形卷积(dynamic snake convolution,DSConv),增强模型对茶叶嫩梢形状信息的捕捉能力;其次,将颈部的路径聚合网络(path aggregation network,PANet)替换为加权双向特征金字塔网络(bi-directional feature pyramid network,BiFPN),强化模型的特征融合效能;最后,在颈部网络的每个C2F模块后增设了无参注意力模块(simple attention module,SimAM),提升模型对茶叶嫩梢的识别关注度。试验结果表明,改进后的模型比原始模型的精确率(precision,P)、召回率(recall,R)、平均精确率均值(mean average precision,mAP)、F1得分(F1 score,F1)分别提升了4.2、2.9、3.7和3.3个百分点,推理速度为42 帧/s,模型大小为6.7 MB,满足低算力移动设备的部署条件。与Faster-RCNN、YOLOv5n、YOLOv7n和YOLOv8n目标检测算法相比,该研究提出的改进模型精确率分别高出57.4、4.4、4.7和4.2个百分点,召回率分别高出53.0、3.6、2.8和2.9个百分点,平均精确率均值分别高出58.9、5.0、4.6和3.7个百分点,F1得分分别高出了56.8、3.9、3.7和3.3个百分点,在茶叶嫩梢检测任务中展现出了更高的精确度和更低的漏检率,能够为名优茶的智能采摘提供算法参考。  相似文献   

9.
基于深度学习与目标跟踪的苹果检测与视频计数方法   总被引:2,自引:2,他引:0  
基于机器视觉技术自动检测苹果树上的果实并进行计数是实现果园产量测量和智慧果园生产管理的关键。该研究基于现代种植模式下的富士苹果视频,提出基于轻量级目标检测网络YOLOv4-tiny和卡尔曼滤波跟踪算法的苹果检测与视频计数方法。使用YOLOv4-tiny检测视频中的苹果,对检测到的果实采用卡尔曼滤波算法进行预测跟踪,基于欧氏距离和重叠度匹配改进匈牙利算法对跟踪目标进行最优匹配。分别对算法的检测性能、跟踪性能和计数效果进行试验,结果表明:YOLOv4-tiny模型的平均检测精度达到94.47%,在果园视频中的检测准确度达到96.15%;基于改进的计数算法分别达到69.14%和79.60%的多目标跟踪准确度和精度,较改进前算法分别提高了26.86和20.78个百分点;改进后算法的平均计数精度达到81.94%。该研究方法可有效帮助果农掌握园中苹果数量,为现代化苹果园的测产研究提供技术参考,为果园的智慧管理提供科学决策依据。  相似文献   

10.
目标检测与分割是实现黄花菜智能化采摘的关键技术,原始目标检测算法容易出现漏检、误检等问题,无法满足自然环境下生长的黄花菜采摘要求。该研究提出一种基于改进YOLOv7-seg的黄花菜目标检测与实例分割识别算法模型(YOLO-Daylily)。通过在YOLOv7-seg骨干网络(backbone)中引入CBAM(convolutional block attention module)注意力机制模块,降低背景等干扰因素的影响;在ELAN(efficient layer aggregation networks)模块中采用PConv(partial convolution)替换原有的3×3卷积层,减少冗余计算和内存访问,提升对目标黄花菜特征提取的能力。颈部网络(neck)采用坐标卷积(CoordConv)替换PA-FPN(path aggregation-feature pyramid networks)中1×1卷积层,增强模型对位置的感知,提高掩膜(mask)鲁棒性。在改进的PA-FPN结构中采用残差连接方法将浅层特征图几何信息与深层特征图语义信息特征相结合,提高模型对目标黄花菜的检测分割性能。消融试验表明:改进后的算法检测准确率、召回率和平均精度分别达到92%、86.5%、93%,相比YOLOv7-seg基线算法分别提升2.5、2.3、2.7个百分点;分割准确率、召回率和平均精度分别达到92%、86.7%、93.5%,比基线算法分别提升0.2、3.5、3个百分点。与Mask R-CNN、SOLOv2、YOLOV5-seg、YOLOv5x-seg算法相比,平均精度分别提升8.4、12.7、4.8、5.4个百分点。改进后的模型减少了漏检、误检等情况,对目标定位更加精准,为后续黄花菜智能化采摘实际应用提供理论支持。  相似文献   

11.
在无人机上安装光学传感器捕捉农作物图像是一种经济高效的方法,它有助于产量预测、田间管理等。该研究以无人机小麦作物图像为研究对象,针对图像中麦穗分布稠密、重叠现象严重、背景信息复杂等特点,设计了一种基于TPH-YOLO(YOLO with transformer prediction heads)的麦穗检测模型,提高无人机图像麦穗计数的精度。首先,为了减小光照不均匀对无人机图像质量造成的影响,该研究采用Retinex算法进行图像增强处理。其次,在YOLOv5的骨干网络中添加坐标注意力机制(coordinateattention,CA),使模型细化特征,更加关注麦穗信息,抑制麦秆、麦叶等一些背景因素的干扰。再次,将YOLOv5中原始的预测头转换为Transformer预测头(transformer prediction heads,TPH),该预测头具有多头注意力机制的预测潜力,可以在高密度场景下准确定位到麦穗。最后,为了提高模型的泛化能力和检测精度,采用了迁移学习的训练策略,先使用田间采集的小麦图像数据集对模型进行预训练,接着再使用无人机采集的小麦图像数据集对模型进行参数更新和优化训练,...  相似文献   

12.
基于无人机图像和贝叶斯CSRNet模型的粘连云杉计数   总被引:1,自引:1,他引:0  
自动、准确且快速地统计苗木数量是实现苗圃高效管理的重要基础。针对现有苗木计数方法准确率较低且无法准确统计粘连苗木等问题,该研究提出了一种基于贝叶斯CSRNet模型的云杉计数模型。该模型以对粘连苗木具有良好稳定性的CSRNet模型为基础,引入贝叶斯损失函数,以人工标注的点标签数据作为监督信号。以1 176幅云杉图像训练贝叶斯CSRNet模型,并通过166幅测试集云杉图像测试。结果表明,贝叶斯CSRNet模型可以准确、快速地统计无人机航拍图像内的云杉,对测试集图像内云杉的平均计数准确率(Mean Counting Accuracy,MCA)、平均绝对误差(Mean Absolute Error,MAE)和均方误差(Mean Square Error,MSE)分别为99.19%、1.42和2.80。单幅云杉图像耗时仅为248 ms,模型大小为62 Mb。对比YOLOv3模型、改进YOLOv3模型、CSRNet模型和贝叶斯CSRNet模型对166幅测试集云杉图像的计数结果,贝叶斯CSRNet模型的MCA分别比YOLOv3模型、改进YOLOv3模型、CSRNet模型高3.43%、1.44%和1.13%;贝叶斯CSRNet模型的MAE分别比YOLOv3模型、改进YOLOv3模型、CSRNet模型低6.8、2.9和1.67;贝叶斯CSRNet模型的MSE分别比YOLOv3模型、改进YOLOv3模型、CSRNet模型低101.74、23.48和8.57。在MCT和MS两项指标上,贝叶斯CSRNet模型与CSRNet模型相同且优于YOLOv3模型和改进YOLOv3模型。贝叶斯CSRNet模型可实现无人机航拍图像内苗木数量的自动、准确、快速统计,为苗木库存智能盘点提供参考。  相似文献   

13.
基于无人机图像的多尺度感知麦穗计数方法   总被引:3,自引:3,他引:0  
小麦是世界上重要的粮食作物,其产量的及时、准确预估对世界粮食安全至关重要,小麦穗数是估产的重要数据,因此该研究通过构建普适麦穗计数网络(Wheat Ear Counting Network,WECnet)对灌浆期小麦进行精准的计数与密度预估。选用多个国家不同品种的麦穗图像进行训练,并且对数据集进行增强,以保证麦穗多样性。在原始人群计数网络CSRnet基础上,针对小麦图像特点构建WECnet网络。在网络前端,通过使用VGG19的前12层进行特征提取,同时与上下文语义特征进行融合,充分提取麦穗的特征信息。后端网络使用不同空洞率的卷积加大感受野,输出高质量的密度图。为了验证模型的可迁移性与普适性,该研究通过基于全球小麦数据集训练好的模型对无人机实拍的麦田图像进行计数。试验结果表明:在全球小麦数据集上,WECnet训练模型的决定系数、均方根误差(Root Mean Square Error,RMSE)与平均绝对误差(Mean Absolute Error,MAE)分别达到了0.95、6.1、4.78。在无人机拍摄图像计数中,决定系数达到0.886,整体错误率仅为0.23%,平均单幅小麦图像计数时间为32 ms,计数速度与精度均表现优异。结果表明,普适田间小麦计数模型WECnet可以对无人机获取图像中小麦的准确计数及密度预估提供数据参考。  相似文献   

14.
基于特征融合的棉花幼苗计数算法   总被引:3,自引:3,他引:0       下载免费PDF全文
为了获取棉花幼苗数量,掌握播种成活率和出苗率等关键苗情信息,该研究提出一种基于特征融合的棉花幼苗计数算法。首先,该算法采用VGG-16作为基础模块提取图像特征,使用注意力模块(Convolutional Block Attention Module,CBAM)在通道和空间维度上进行特征增强,然后将增强后的特征与基础模块中的特征进行融合,进一步强化幼苗特征表达,最后通过去冗余和归一化操作得到计数结果。此外,还构建了一个包含399张棉花幼苗图像的数据集,其中包含了对212 572株幼苗的精准手工标注点标签。在该数据集上的测试结果表明,所提出的棉花幼苗计数算法取得了较好的计数效果,平均计数误差(Mean Absolute Error,MAE)和均方根误差(Root Mean Square Error,RMSE)分别为63.46和81.33,对比多列卷积神经网络(Multi-column Convolutional Neural Network, MCNN)、拥挤场景识别网络(Congested Scene Recognition Network, CSRNet)、TasselNet、MobileCount等方法,MAE平均下降了48.8%,RMSE平均下降了45.3%。  相似文献   

15.
油菜精量排种器种子流传感装置设计与试验   总被引:4,自引:11,他引:4  
针对油菜精量播种过程中缺乏小粒径种子流传感而导致播量监测困难的问题,设计了一种油菜精量排种器种子流传感装置。运用高速摄影技术及碰撞动力学模型,记录并分析油菜种子与聚偏氟乙烯压电薄膜的碰撞轨迹,为传感装置的导管、压电薄膜倾角、出种口位置等关键结构参数提供依据。基于油菜种子与压电薄膜的碰撞信号特征分析,设计了沉槽基板-压电薄膜感应结构,将碰撞信号的衰减时间从9缩短至1 ms,提高了对高频种子流检测的时间分辨率,同时能够有效抵抗机械振动带来的干扰影响。对微弱碰撞信号进行放大、半波整流、电压比较、单稳态触发转化为单脉冲信号,通过单片机定时计数采集处理,实现油菜种子流排种频率与排种总量的实时检测,并利用无线收发模块定时发送给监测显示终端,实现播量数据的实时显示与保存。油菜精量排种器台架及数粒仪高频排种试验表明:在排种频率8.1~32.9 Hz范围内,检测准确率不低于99.5%。田间播种试验表明传感装置能够实时检测精量排种器的排种频率与排种总量,在无排种时计数为零,正常播种状态时检测准确率不低于99.1%,机械振动及粉尘对传感装置没有影响。该传感装置为油菜精量播种过程播量监测、漏播检测以及补种提供有效支撑。  相似文献   

16.
不同油菜品种适栽期机械化移栽植株形态特征研究   总被引:2,自引:7,他引:2  
油菜机械化移栽效果取决于移栽机栽植执行器结构和运动参数与移栽苗植株形态特征的耦合度。该文针对当前油菜移栽机械化程度低植株形态特征与栽植机构不匹配的实际问题,选择8个甘蓝型杂交油菜品在播种后28~40 d的适栽期内,应用LA-S系列植物图像分析仪进行了植株形态特征(苗长、苗幅宽、株形锥角、根长和根直径)的系统试验研究,并根据试验结果分析确定了油菜移栽机鸭嘴式栽植器部分结构参数和工作参数的合理设计区间。试验结果表明:不同油菜品种苗长、苗幅宽、株形锥角和根长差异显著;油菜苗播种后28~40 d适载期内植株形态特征服从正态或偏态分布;所构建的播种后28~40 d的适栽期内植株形态特征的生长模型表明,不同油菜品种的植株苗长、苗幅宽、根长和根直径等特征随生长时间增加呈正线性关系,平均相关系数为0.9736;株型锥角呈负线性关系,平均相关系数为0.9818。研究表明,油菜移栽应优选适应机械化移栽的品种,并根据植株发育形态调整油菜苗移栽时间,实现油菜机械化移栽的农机农艺融合。该研究可为油菜移栽机结构设计和优化提供依据。  相似文献   

17.
倒伏是限制油料作物高产、稳产、优产的主要因素,对油菜倒伏类型的实时监测与评估对于油菜预产和品种选育至关重要。该研究提出一种无人机可见光影像下融合多尺度特征和注意力机制的油菜倒伏分类方法,对绿熟期和黄熟期的倒伏级别进行分类鉴定。首先,设计一种图像分类模型NGnet(nam-ghost network),用于对角果期的油菜倒伏程度进行分类。该网络采用改进的GhostBottleNeck模块,融入利用权重因子来体现重要特征的注意力机制模块NAM(normalization-based attention module),再将不同尺度的注意力特征进行融合,以降低模型参数量、提高准确率;其次,构建使用无人机高空遥感正射影像的油菜倒伏数据集(rape lodging dataset, RLD),该数据集由5789张分辨率为3×255×255且人工标注倒伏级别的小区影像构成;最后,将本文NGnet模型在RLD数据集上的进行验证,准确率达到85.10%,比T2T-VIT、SwinTransformerV2、MobileNetV3、Res2Net、RepVGG 和 RepLKNet分别高出15.6、11.92、7.01、6.22、6.08、2.37个百分点。试验结果表明,NGnet模型对油菜倒伏分类任务是有效的,可为基于无人机RGB影像的油菜倒伏鉴定和良种选育等提供参考。  相似文献   

18.
油菜无人机飞播装置设计与试验   总被引:5,自引:5,他引:0  
针对丘陵山区油菜种植面积逐步扩大和平原地区稻油茬口矛盾突出的生产现状,结合无人机飞播作业不受地形限制、作业速度快、工作效率高和适用范围广等优点,该研究开发了与极飞P20四旋翼无人机平台配套的油菜无人机飞播装置和控制系统。分析确定了飞播装置种箱、充种漏斗、槽轮等的结构参数,并研制了相应的控制系统。在分析无人机飞播质量影响要素基础上,建立了无人机旋翼气流场仿真模型,并以充种漏斗长度和槽轮转速为试验因素开展台架试验。仿真分析和台架试验结果表明,旋翼气流场对油菜种子的空中漂移运动轨迹有较大影响,根据获得的无人机飞行速度与槽轮转速关系模型,确定了旋翼气流场对种子影响较小的参数组合:导种管出种口与无人机旋翼距离300 mm,充种漏斗长度53 mm,槽轮转速10~50 r/min、无人机飞行速度2~4 m/s。场地试验表明:导种管出种口横向距离为1.1m,无人机飞行高度为2~2.5 m时,无人机有效作业幅宽2.15~2.45 m,种子分布均匀性变异系数为32.05%~34.78%,装置作业性能较好,满足油菜农艺种植要求。研究结果可为油菜无人机飞播配套装置设计提供参考。  相似文献   

19.
基于深度学习的森林虫害无人机实时监测方法   总被引:14,自引:12,他引:2  
无人机遥感是监测森林虫害的先进技术,但航片识别的实时性尚不能快速定位虫害爆发中心、追踪灾情发生发展。该文针对受红脂大小蠹危害的油松林,使用基于深度学习的目标检测技术,提出一种无人机实时监测方法。该方法训练精简的SSD300目标检测框架,无需校正拼接,直接识别无人机航片。改进的框架使用深度可分离卷积网络作为基础特征提取器,针对航片中目标尺寸删减预测模块,优化默认框的宽高比,降低模型的参数量和运算量,加快检测速度。试验选出的最优模型,测试平均查准率可达97.22%,在移动图形工作站图形处理器加速下,单张航片检测时间即可缩短至0.46 s。该方法简化了无人机航片的检测流程,可实现受害油松的实时检测和计数,提升森林虫害早期预警能力。  相似文献   

20.
群猪检测是现代化猪场智慧管理的关键环节。针对群猪计数过程中,小目标或被遮挡的猪只个体易漏检的问题,该研究提出了基于多尺度融合注意力机制的群猪检测方法。首先基于YOLOv7模型构建了群猪目标检测网络YOLOpig,该网络设计了融合注意力机制的小目标尺度检测网络结构,并基于残差思想优化了最大池化卷积模块,实现了对被遮挡与小目标猪只个体的准确检测;其次结合GradCAM算法进行猪只检测信息的特征可视化,验证群猪检测试验特征提取的有效性。最后使用目标跟踪算法StrongSORT实现猪只个体的准确跟踪,为猪只的检测任务提供身份信息。研究以育肥阶段的长白猪为测试对象,基于不同视角采集的视频数据集进行测试,验证了YOLOpig网络结合StongSORT算法的准确性和实时性。试验结果表明,该研究提出的YOLOpig模型精确率、召回率及平均精度分别为90.4%、85.5%和92.4%,相较于基础YOLOv7模型平均精度提高了5.1个百分点,检测速度提升7.14%,比YOLOv5、YOLOv7tiny和YOLOv8n 3种模型的平均精度分别提高了12.1、16.8和5.7个百分点,该文模型可以实现群猪的有...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号