首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 609 毫秒
1.
针对插拔式取苗机构单靠取苗爪插入钵体夹取苗时,因受钵体与穴盘之间粘附力和盘根性不佳双重影响,造成取苗成功率低、钵体破碎率高的问题,提出了一种顶夹拔组合式取苗技术,阐述了取苗装置结构和工作原理,开展了顶夹拔组合式取苗试验研究。首先以72孔和128孔黄瓜穴盘苗为试验对象,通过顶压脱盘粘附力试验,测试了不同顶苗速度(10、20、30、40mm/s)下黄瓜苗的脱盘粘附力以及顶压脱离位移,试验结果表明:顶苗速度对于苗钵粘附力及脱离位移影响不大,粘附力与苗钵脱离位移呈正相关,两种规格穴盘苗顶苗脱离位移平均值分布在5.5~6.9mm之间,综合考虑苗盘落水孔直径和顶压脱盘粘附力试验结果,确定顶杆直径为6mm,顶杆顶苗位移需大于5mm。其次以生长周期为25d的72孔黄瓜穴盘苗为试验对象,开展了先顶后取、边顶边取、先插后顶3种取苗模式试验,结果表明:先顶后取模式下取苗成功率和钵体完整率最高。最后以顶杆顶入位移、取苗爪插入苗钵取苗深度及插入取苗速度为试验因素,开展了三因素三水平正交试验,通过极差分析和方差分析得出顶夹拔取苗装置的最优工作参数组合为:顶入位移为15mm、插入苗钵深度为35mm,插入取苗速度为225mm/s,此组合下取苗成功率94.12%,苗钵完整率94.12%,满足了自动取苗高质量要求。  相似文献   

2.
番茄穴盘苗移栽机自动取苗机构的研制   总被引:1,自引:0,他引:1  
为解决新疆穴盘苗移栽机的取苗机构自动化程度不高的问题,建立穴盘苗移栽机取苗机构的虚拟样机,并使用ADAMS对其进行运动仿真分析。同时,以取苗成功率为性能指标,以基质含水率、抗压力、摩擦角和翻转比为影响因素,进行正交试验。经过仿真分析,设定顶杆的顶出速度范围为1.5~2.3m/s,取苗效果理想。最终确定基质含水率为35,%的穴盘苗,基质抗压力为6N、摩擦角为35°时取苗成功率最高。该研究旨在为自动取苗机构的进一步设计、优化和研制提供理论依据。  相似文献   

3.
为解决自动移栽机取苗装置落苗轨迹不可控、落苗位置一致性差等问题,设计了一种移栽机取苗装置顶出机构。对钵苗顶出力大小进行测量,各组钵苗的顶出力平均值在2.1N-3.25N之间。通过ANSYS、ADAMS仿真软件对取苗顶杆进行静力学以及速度分析,确定速度最大位置为最佳取苗点。设计了取苗装置控制逻辑,对钵苗顶出过程进行运动学分析,确定了钵苗的水平运动距离以及顶苗时传送带的提前量,提高了控制逻辑的精度。搭建了取苗装置试验台,进行取苗试验,结果表明,取苗合格率为91.6%,破碎率为14.3%。  相似文献   

4.
针对油菜钵苗移栽过程中钵体受损影响钵苗成活率的问题,研究油菜钵苗钵体在顶苗夹具作用下的运动及力学特性,探究在不同含水率下钵体顶出力、脱离位移和承压力之间的变化规律,为油菜移栽机顶苗取苗机构参数设计提供依据。结果表明:钵体顶出力随钵体含水率的提高而增大;当钵体含水率由20.44%提高至31.02%时,脱离位移的范围由3.04~4.23 mm增长至5.02~5.44 mm,钵体承压力由5.61 N增长至7.90 N;当钵体含水率由31.02%提高至40.84%时,脱离位移的范围基本不变,钵体承压力由7.90 N减少至4.83 N。即钵体承压力随含水率的提高先增大后减少,呈非线性变化,且在相同含水率下,钵体的承压力基本不变;综合得出钵体含水率在30%左右时,有利于油菜钵苗被顶出,且钵体受损较小。   相似文献   

5.
蔬菜移栽机气吹振动复合式取苗机构设计与试验   总被引:5,自引:0,他引:5  
针对我国全自动蔬菜移栽机取苗、投苗机构复杂等问题,设计了一种蔬菜移栽机气吹振动复合式取苗机构及其配套苗盘。设计的取苗机构主要由送苗装置、振动装置和气吹装置等组成,各部分配合完成自动取苗、投苗工作。构建了振动过程中苗盘与钵苗的动力学模型,通过分析钵苗取苗条件,求解出振动过程中影响取苗成功率的3个主要参数:振动频率、振幅以及钵苗基质含水率。综合考虑振动与气吹相结合的取苗方式,以取苗成功率、基质破损率作为取苗效果评价指标,选取钵苗基质含水率、振动器振动频率、吹气气压为试验因素,进行多目标正交试验。试验结果表明:在给定因素水平下,当钵苗含水率为55%、振动器振动频率为36 Hz、吹气气压为0. 45 MPa时,取苗效果最佳,此时取苗成功率为92%,基质破损率为3. 46%。  相似文献   

6.
本文以培杂泰丰杂交稻种为试验对象,在立体育秧温室培育穴盘秧苗。试验时苗龄28天,钵体含水率为35.76~54.08%,仪器为TA-XT2i型质地分析仪。对穴盘苗钵体进行平板压缩、加卸载循环和蠕变试验研究,发现平板压缩变形为3.15 mm前后,抗压力随变形的变化趋势差异明显,在4 mm压缩量前后,抗压力出现峰值上升变化陡点。当加载力为1、2、3、4、5 N,秧苗钵体的平均蠕变量为0.0055、0.0055、0.0056、0.0057、0.0059 mm。试验结果表明钵抗压力与变形呈非线性变动;平板压缩过程,钵体无明显屈服破坏点;苗钵体面对外界加卸载时表现较强塑变能力。选用Burgers模型能有效表征穴盘苗钵体压缩蠕变特性。最后通过分析多种稻种穴盘苗力学特性,结果发现不同穴盘苗钵抗压力与变形关系遵循非线性曲线。本研究结果为水稻移栽机设计优化提供理论参考。  相似文献   

7.
蔬菜移栽穴盘苗自动输送装置设计与试验   总被引:6,自引:0,他引:6  
针对目前穴盘蔬菜自动移栽中钵苗离盘转运至导苗筒过程钵体损伤大、机构轨迹复杂及机电气控制成本高等问题,设计了一种由纵向移盘机构、顶苗机构、横向移盘机构、导苗筒、夹苗机构等组成的纯机械传动式蔬菜移栽穴盘苗自动输送装置。利用功能-动作过程-动作法(F-P-A法)对穴盘苗自动输送过程进行动作分解,确定了符合各环节动作要求的机构形式;运用运动建模、仿真和精度综合分析等方法,并结合农艺与动力学要求,得出横向移盘机构圆柱凸轮最大压力角α_(max)=29.32°,夹苗机构的苗爪翻转凸轮行程hp=29 mm等关键部件参数;基于建立的时序分析模型,利用Visual Studio编写了可视化的蔬菜移栽穴盘苗自动输送装置时序分析程序,通过对各机构动作进行匹配,优选出一组最佳参数:纵移机构初始相位角φ_z=185°,顶苗机构初始相位角φ_d=108°,曲柄长度a=78mm,连杆长度b=112 mm,偏距e=20 mm,苗爪翻转机构初始相位角φ_f=15°,苗爪开合机构初始相位角φ_k=135°。以苗龄期45 d、3种不同含水率的番茄穴盘苗为试验对象,进行自动输送试验。结果表明:穴盘苗基质含水率和取苗速度对装置取苗成功率均有影响,呈负相关,基质损失率则与取苗速度关系不大;该装置能够实现140株/min的取苗速度(取苗成功率超过95%),当基质含水率为符合育苗规范的32.79%时,取苗成功率98.44%、基质损失率36.67%,满足移栽农艺要求且远超人工移栽效率。  相似文献   

8.
为了降低番茄钵苗移栽过程取钵机构对秧苗钵土根系的损伤,同时避免机械式钵苗移栽机构设计特殊取苗轨迹与姿态的优化难题,提出了一种可与系列移栽机构配合使用的番茄钵苗探出式取钵机构,实现取苗各关键位置机构秧针以固定角度完成探出入钵、移动送苗及收回推秧工序。根据钵苗移栽取钵过程分析与设计要求,建立了探出式取钵机构力学分析模型,并获得影响秧针扎入钵土时驱动杆受最小驱动力的因素。基于Matlab App Designer平台开发了取钵机构计算机辅助分析设计软件,获得满足番茄钵苗移栽要求的取钵机构设计参数集。采用三因素五水平二次回归正交旋转中心组合试验方法,以驱动杆斜杆夹角、钵体含水率、入钵深度为试验因素,以钵体完整率和取苗成功率为评价指标,试制样机并搭建台架实施参数组合优化及验证试验,结果表明:探出式取钵机构可有效地配合取苗机构完成各项性能工作要求,在参数组合为驱动斜杆间夹角112°、钵体含水率57.5%、入钵深度28.4mm时作业效果最佳,钵体完整率为96.44%,取苗成功率为97.06%,满足钵苗移栽作业性能。  相似文献   

9.
针对半自动移栽机作业效率低、作业质量差的问题,设计了一种面向蔬菜移栽机器人的夹茎式自动取苗装置。取苗装置经过整排取苗、等距分苗、精准投苗,可实现高效、高质自动化取投苗作业。建立多级剪叉分苗机构与夹苗装置的运动力学模型,对钵苗下落运动、气动系统进行模型设计及分析计算,搭建取苗试验装置。试验选取穴盘辣椒苗作为研究对象,以钵苗苗龄、基质含水率、取苗频率为试验因素,设计以取苗成功率、基质破碎率为评价指标的单因素试验。根据试验结果,采用Box-Behnken响应曲面分析法设计正交试验,探究了苗龄与基质含水率、苗龄与取苗频率及基质含水率与取苗频率之间的交互作用对取苗效果的影响,优化取苗参数。试验结果表明,当苗龄33 d、钵苗基质含水率46%、取苗频率75株/min时,取苗成功率为97.36%,基质破碎5.07%,可满足大田自动化移栽的取苗及投苗要求。  相似文献   

10.
茄子钵苗全自动移栽机构优化设计与试验   总被引:3,自引:0,他引:3  
为了实现茄子钵苗的全自动机械化移栽,设计了一种全自动茄子钵苗移栽机构,提出了一种以牛顿插值法构建的新型非圆齿轮,建立了茄子钵苗移栽机构运动学模型。通过农艺与农机的结合,以钵盘规格、基质体积比、土钵含水率为试验因素,取苗力与土钵基质损失率为试验指标,进行了三因素三水平的正交试验,试验结果表明,钵盘规格105穴、基质体积比1、土钵含水率70%~80%时,取苗力为2.70 N,土钵基质损失率为2.94%,利于茄子钵苗的全自动机械化移栽。根据移栽机构数学模型结合茄子钵苗农艺要求,开发了牛顿插值齿轮茄子钵苗移栽机构优化设计与分析软件,优化出一组满足茄子钵苗移栽要求的参数。根据优化的参数进行三维建模、虚拟仿真,运用3D打印技术制作物理样机进行了轨迹验证试验,验证了该机构的正确性与可行性,通过取苗试验与栽植试验,证明了该机构的实用性。  相似文献   

11.
根据挠性圆盘高速移栽机工作原理,选用西兰花、白菜花、辣椒3种蔬菜钵苗为试验对象,针对成排顶苗、垂直基质块夹持输送、圆盘茎秆夹持输送环节设计了力学特性试验,为顶苗杆顶出力、纵向输送带安装间距、栽植圆盘安装参数提供设计依据。采用质构仪分别进行钵体顶苗力试验、钵体柔性压缩试验、茎秆压缩特性试验,结果表明,西兰花、白菜花、辣椒的平均顶出力分别为10.8、13.57、9.97 N,取最大值13.57 N作为设计依据,每排顶出10棵苗,综合考虑导轨摩擦力等影响,选择顶出力约196 N的气缸规格。当夹板间距20 mm时,西兰花、白菜花、辣椒钵体基质平均损失率分别为6.13%、6.39%、11.82%,对栽后钵苗生长影响较小,确定输送带硬橡胶层间距为20 mm。西兰花、白菜花、辣椒钵苗茎秆U段的屈服强度分别为0.933、0.931、0.928 MPa,选取最小值0.928 MPa作为设计依据,以保证对不同钵苗茎秆都能适应。   相似文献   

12.
基于穴盘苗力学特性的自动取苗末端执行器设计   总被引:14,自引:0,他引:14  
通过对穴盘苗进行夹苗拉拔试验、钵体摩擦试验、钵体平板压缩抗压试验,研究分析了与自动移栽相关的穴盘苗力学特性,为机构设计提供依据。对穴盘苗自动取苗进行技术设计,得到两针钳夹式取苗末端执行器自动取苗的拉拔力与钵体抗压强度、夹持角度、夹持面积、静摩擦因数等参数的关系。利用建立的夹持参数关系,结合穴盘苗力学特性试验数据,设计了一种适应穴盘苗力学特性的自动取苗末端执行器。试制了物理样机,进行了自动取苗夹持力测试。测试结果表明,夹持力测试数据与理论计算数据无显著性差别,验证了理论设计的可靠性。在所测试的含水率下,当取苗频率为30株/min时,取苗成功率达到95.16%。  相似文献   

13.
针对油菜移栽机以半自动化为主,缺乏与基质块苗取苗机构相匹配送苗装置的问题,设计了一种油菜基质块苗移栽机双向递进式送苗装置.阐述了送苗装置工作过程,测定了油菜载苗基质块力学特性,确定了送苗过程中载苗基质块稳定输送的工作参数,构建了送苗过程中横向递进送苗阶段和纵向连续送苗阶段运动学模型.以苗框底高、上导杆高度、纵向送苗速度...  相似文献   

14.
为了实现蔬菜移栽机取投苗的稳定性和高效性,针对夹钵取投苗方式,设计了一种全自动曲柄摇杆-导轨组合式取投苗装置。取投苗装置与送盘装置、导苗装置及分苗装置配合完成自主送盘、取苗、投苗与分苗。用解析法对取投苗装置中的摆杆-导轨及曲柄摇杆进行了结构参数设计,用矢量方程法和ADAMS仿真对取投苗装置的运动过程进行计算分析,并利用高速摄像机拍摄取投苗装置的实际运动轨迹,与仿真结果进行对比,验证了设计的正确性和可行性。以辣椒钵苗为试验对象,选取取投苗速度、苗株高度及基质含水率为试验因素,以取苗成功率、伤苗率、投苗成功率及取栽成功率为评价指标进行正交试验。试验结果表明:在给定因素水平下,整机单行取投苗速度90株/min、苗株高度110mm、基质含水率50%时,取投苗效果最佳,取苗成功率为95.14%,伤苗率为1.39%,投苗成功率93.05%,取栽成功率91.67%。  相似文献   

15.
组合式非圆齿轮行星轮系取苗机构动力学分析与试验   总被引:1,自引:0,他引:1  
针对组合式不完全偏心圆-非圆齿轮行星轮系旋转式取苗机构,应用动态静力分析法和动力学方程组序列求解法,建立机构动力学模型,开发出机构动力学分析软件求解模型,计算得到机构链条受力、各齿轮旋转中心和啮合点受力、支座反力的变化规律;建立了机构虚拟样机,加工出机构物理样机,开展机构动力学仿真分析和台架试验,得到两种情况下机构转速为60r/min时支座反力与行星架转角之间的关系,取苗机构理论分析、仿真分析和台架试验所得到的支座反力变化规律基本一致,验证了取苗机构动力学模型的可靠性和动力学分析的正确性;与原取苗机构比较,本文取苗机构样机y方向支座反力的最大幅值和方差分别从155N和1171N2减小为77N和553N2,降低了50.3%和52.7%,表明提出的取苗机构具有比原机构更优的动力学性能。  相似文献   

16.
探讨压块压力、压块时间、含水率和压缩比对蔬菜育苗营养块抗压强度的影响规律。正交试验结果表明:压缩比和营养土含水率、压块压力、压块时间对营养块抗压强度影响分别为极显著、显著和不显著;确定压块工艺的最佳参数为压块压力3500N、压块时间30s、营养土含水率20%、压缩比1.0:3.0;综合考虑经济等因素,选取压缩比1.0:3.0、含水率20%、压力3000N、压块时间10s作为制作营养块的最适宜工艺参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号