首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present paper reports the clinical and neuropathological findings in two cats with a neuropathologically confirmed diagnosis of necrosis of the hippocampus and piriform lobe. The cats were presented because of acute onset of behavioural changes and complex partial seizures. The neurological examination suggested a forebrain lesion. The results of blood examination were within the normal range, and the cerebrospinal fluid (CSF) analysis and computed tomography (CT) scan in one cat did not show any abnormality. Despite therapy with diazepam (Valium; Roche) there was deterioration of the clinical signs and the cats were euthanased. The neuropathological examination revealed hippocampal necrosis that included the piriform lobe.  相似文献   

2.
Feline hippocampal and piriform lobe necrosis (FHN) has been reported from several countries worldwide and is considered an important aetiology for feline epileptic seizures. The aetiology of FHN remains unclear, however it is suspected that FHN might occur secondary to intense epileptic activity as described in humans and dogs although this has not yet been documented in cats. The purpose of our report is to describe the first cases of FHN in Finland diagnosed by magnetic resonance imaging (MRI) and histopathology. The two cases we describe had a well documented history of pre-existing seizures with normal brain MRI at the onset of cluster seizures but MRI done when the cats exhibited clinical deterioration secondary to severe seizure activity, revealed lesions in the hippocampus and piriform lobes typical of FHN. Our report confirms that feline hippocampus and piriform lobe necrosis does occur in the Finnish cat population and should therefore be considered as a differential diagnosis in cats with seizures. In addition, the presentation, clinical findings, results of MRI and/or histopathology shows that cats may develop FHN secondary to severe seizure activity.  相似文献   

3.
The clinical records of 38 cats (1985-1995) with a neuropathologically confirmed diagnosis of necrosis of the hippocampus and occasionally the lobus piriformis were evaluated retrospectively. There was no sex or breed predisposition. Most cats were between 1 and 6 years of age (mean age 35 months) and had either generalized or complex-partial seizures of acute onset and rapid progression. The seizures had a tendency to become recurrent and to present as clusters or even status epilepticus later in the course of the disease. Fourteen cats died spontaneously, and 24 were euthanized. Histopathologic examination revealed bilateral lesions restricted to the hippocampus and occasionally the lobus piriformis. The lesions seemed to reflect different stages of the disease and consisted of acute neuronal degeneration to complete malacia, affecting mainly the layer of the large pyramidal cells but sometimes also the neurons of the dentate gyrus and the piriform lobe. The clinical, neuropathologic, and epidemiologic findings suggest that the seizures in these cats were triggered by primary structural brain damage, perhaps resulting from excitotoxicity. The cause remains unknown, but epidemiologic analysis suggests an environmental factor, probably a toxin.  相似文献   

4.
The purpose of the study was to describe magnetic resonance (MR) imaging features of histologically confirmed necrotizing encephalitis in four Pugs and to compare those findings with MR imaging characteristics of necrotizing encephalitis in other breeds. All dogs had the following common findings: lesions restricted to the forebrain, both cerebral hemispheres diffusely but asymmetrically affected, lesions affected gray and white matter resulting in loss of distinction between both, most severe lesions in occipital and parietal lobes, lesions were irregularly T2-hyperintense and T1-isointense to slightly T1-hypointense, and no cavitation. There were various degrees of contrast enhancement of brain and leptomeninges. Asymmetry of lateral ventricles and midline shift was seen in one dog each. Two dogs had brain herniation, which may have contributed to the progression of neurologic signs. Hyperintensity on T2-weighted and fluid attenuated inversion recovery images in the hippocampus and piriform lobe was consistent with excitotoxic edema, whereas similar imaging features in other forebrain areas corresponded to areas of inflammation or liquefaction on histopathology. In comparison with necrotizing encephalitis in other canine breeds, Pug dog encephalitis has some unique MR imaging features. Therefore, these characteristics cannot be applied to other breeds, nor should imaging features of necrotizing encephalitis of other canine breeds be used for interpretation of MR images in Pug dogs.  相似文献   

5.
Reversible magnetic resonance (MR) imaging lesions have been described in humans following seizures. This condition has not yet been reported in animals. This paper describes reversible abnormalities identified in 3 dogs using MR imaging that was performed initially within 14 days of the last seizure and follow-up imaging that was performed after 10 to 16 weeks of anticonvulsant therapy. All three dogs had lesions in the piriform/temporal lobes, characterized by varying degrees of hyperintensity on T2-weighted images and hypointensity on T1-weighted images. In one dog, contrast enhancement was evident. On reevaluation, partial resolution occurred in all 3 dogs. In a fourth animal with an olfactory meningioma, similar appearing lesions in the temporal cortex and right and left piriform lobes were identified after seizure activity. A surgical biopsy of the temporal cortex and hippocampus was performed and edema, neovascularization, reactive astrocytosis, and acute neuronal necrosis were evident. These histologic findings are similar to those reported in humans with seizures. Recognizing the potential occurrence of reversible abnormalities in MR images is important in developing a diagnostic and therapeutic plan in canine patients with seizures. Repeat imaging after seizure control may help differentiate between seizure-induced changes and primary multifocal parenchymal abnormalities.  相似文献   

6.
Accumulating evidence suggests that epileptic seizures originating from the temporal lobe (TL) occur in cats. Typically, affected animals have clinically focal seizures with orofacial automatisms including salivation, facial twitching, lip smacking, chewing, licking, and swallowing. Motor arrest and autonomic and behavioral signs also may occur. Many affected cats have magnetic resonance imaging (MRI) changes within the hippocampus or histopathologically confirmed hippocampal sclerosis or necrosis. From the 1950s to the 1980s, cats frequently were used as animal models for neurophysiological experiments and electrophysiological studies, from which important basic knowledge about epilepsy originated, but which has been rarely cited in clinical veterinary studies. These studies were reviewed. Experimental research on cats showed the widespread anatomical connections among TL structures. The ictal clinical signs originating from the hippocampus, amygdala, or lateral temporal cortex are similar, because of their dense interconnections. The ictal signs can be divided into autonomic, somatic, and behavioral. For research purposes, a 6‐stage system was established, reflecting the usual sequential progression from focal to generalized seizure: attention response (1), arrest (2), salivation, licking (3), facial twitching (4), head turning or nodding (5), and generalized clonic convulsions (6). Knowledge of this data may help in recognizing low‐stage (stage 1 or stage 2) epileptic seizures in clinical practice. Early experimental research data are in accordance with recent clinical observations regarding ictal clinical signs of TL epileptic seizures in cats. Furthermore, the research data supports the idea that TL epilepsy represents a unique clinical entity with a specific seizure type and origin in cats.  相似文献   

7.
Five cats had clinical signs, radiographic findings, and cerebrospinal fluid analyses consistent with fibrocartilaginous embolic myelopathy. All cats had an acute onset of nonpainful, asymmetrical spinal cord signs (paresis or paralysis of one or more limbs). Magnetic resonance imaging was performed in three cats. On T2-weighted images, an intramedullary lesion was revealed that was hyperintense to normal spinal cord gray matter. On T1-weighted images, the lesion was isointense. Three of the cats were euthanized, and postmortem examination confirmed myelomalacia with intralesional fibrocartilaginous emboli. Two cats survived and were clinically improved within 3 weeks.  相似文献   

8.
Cerebrospinal fluid collection is fundamental to the investigation of central nervous system disorders although it carries potential risks. Herein we report the clinical signs and magnetic resonance (MR) imaging findings associated with needle injury to the brainstem during cerebellomedullary cistern puncture in four dogs. Three dogs were nonambulatory tetraparetic with cranial nerve deficits and one dog had unexplained left thoracic limb paresis. In MR images, there were conspicuous T2 hyperintensities in the myelencephalon in all dogs. In T2* gradient echo images, the lesions were hypointense in two dogs with multiple cranial nerve deficits, and hyperintense in another dog. One dog was euthanized due to sudden neurologic deterioration 12 days later, one died shortly after MR imaging, and a third was euthanized due to concurrent cervical spondylomyelopathy. The fourth dog recovered gradually. Diagnosis was confirmed histopathologically in one dog and was presumptive based on clinical signs and MR findings in three dogs. None of the dogs with cranial nerve deficits recovered, only the one dog with left thoracic limb paresis and concurrent syringomyelia.  相似文献   

9.
A 3‐year‐old, intact female Golden Retriever was presented with acute tetraplegia. Neurologic examination was consistent with a C1–C5 myelopathy. On magnetic resonance (MR) imaging a well‐defined, extradural mass was detected within the spinal canal at the level of C1–C2. The mass was isointense to normal spinal cord gray matter on T1‐weighted (T1W) images, hyperintense on T2‐weighted (T2W), and gradient‐echo (GE) images, and enhanced homogeneously after intravenous contrast administration. MR imaging features were mainly consistent with a meningioma. Surgical treatment was refused by the owners, and the dog was euthanized. Postmortem examination demonstrated that the intraspinal mass was a schwannoma.  相似文献   

10.
We describe the abnormal magnetic resonance (MR) imaging findings in the deep digital flexor tendon (DDFT) and distal sesamoid bone in horses with radiographic changes compatible with navicular syndrome. Thirteen postmortem specimens were examined using a 1.5-T magnetic field, with spin echo (SE) T1-weighted, turbo SE (TSE) proton density-weighted (with and without fat saturation), and fat saturation TSE T2-weighted sequences. The limbs were then dissected to compare the MR findings with the gross assessment and histologic examination of the DDFT and distal sesamoid bones. Tendonous abnormalities were detected by MR imaging in 12 DDFTs and confirmed at necropsy. Most tendon lesions were located at the level of the distal sesamoid bone and the proximal recess of the podotrochlear bursa. Tendon lesions were classified based on their MR imaging features as core lesions, dorsal lesions, dorsal abrasions, and parasagittal splits. Areas of increased MR signal in the DDFTs were characterized by tendon fiber disturbance and lack of continuity of the collagen fibers, foci of edema, hemorrhages, and formation of lakes containing eosinophilic plasma-like material or amphophilic material of low density. Bone marrow signal alterations in the distal sesamoid bone were seen in all digits. Two main phenomena were responsible for the abnormal signal, respectively, in T1-weighted (decreased signal) and in T2-weighted fat-suppressed images (increased signal): a decrease in the fat marrow content in the trabecular spaces and an increase in the fluid content. Histologic examination revealed foci of bone marrow edema, hemorrhage, necrosis, and fibrosis. Cyst formation and trabecular abnormalities (disorganization, thinning, remodelling) were also observed in areas of abnormal signal intensity. Increased bone density because of trabecular thickening induced a decrease in signal in all sequences.  相似文献   

11.
Magic angle magnetic resonance (MR) imaging consists of imaging tendons at 55° to the magnetic field. In people, magic angle MR imaging is valuable for detection of chronic tendon lesions and allows calculation of tendon T1 values. Increased T1 values occur in people with chronic tendinopathy. The T1 values of normal equine tendons have been reported but there are no available data for abnormal equine tendons. Twelve limbs were studied. Two limbs had diode laser tendon lesions induced postmortem, four limbs had diode laser tendon lesions induced in vivo and six limbs had naturally occurring tendon lesions. The limbs were imaged at 1.5 T using both conventional MR imaging and magic angle MR imaging. The post-mortem laser induced lesions were identified only with magic angle MR imaging. The in vivo induced lesions and naturally occurring lesions were identified with both techniques but had a different appearance with the two imaging techniques. Magic angle imaging was helpful at identifying lesions that were hypointense on conventional imaging. Increased T1 values were observed in all abnormal tendons and in several tendons with a subjectively normal MR appearance. The increased T1 value may reflect diffuse changes in the biochemical composition of tendons. Magic angle imaging has potential as a useful noninvasive tool to assess the changes of the extracellular tendon matrix using T1 values.  相似文献   

12.
A 12-year-old Welsh pony mare was presented to the Ontario Veterinary College Teaching Hospital for signs of intermittent lethargy and increased abdominal breathing effort of 6 months duration. After physical examination, blood work, bronchoscopy, bronchoalveolar lavage, and diagnostic imaging of the thorax and attempted lung biopsy, pulmonary mineralization of unknown origin was suspected. The pony was treated palliative for 7 months with nonsteroidal anti-inflammatories and inhaled corticosteroids to treat accompanying airway inflammation before being euthanized because of poor prognosis and deterioration of clinical signs. On postmortem examination, the pulmonary architecture of the right and left cranioventral lung lobes, accessory lobe, and cranial potions of the left caudal lung lobe was replaced by hard mineralized tissue. No other organs other than a mediastinal lymph node and the lung were affected by mineralization. After decalcification, thick sheets of fibrous connective tissue organized into layers and lamellae replaced the normal architecture of the pulmonary parenchyma in more than 90% of the lung lobe examined on histopathology. The findings were consistent with generalized severe pulmonary fibrosis and dystrophic calcification.  相似文献   

13.
In September 2004, a neonatal sea otter pup was found alive on the beach in northern Monterey Bay, CA. Efforts to locate the mother were unsuccessful. Due to a poor prognosis for successful rehabilitation, the pup was euthanized. Postmortem examination revealed emaciation, systemic lymphadenopathy and a malformation of the left cerebral temporal lobe. On histopathology, free tachyzoites and tissue cysts compatible with Toxoplasma gondii were observed in the brain, heart, thymus, liver, lymph nodes and peri-umbilical adipose. The presence of T. gondii within host tissues was associated with lymphoplasmacytic inflammation and tissue necrosis. Immunofluorescent antibody tests using postmortem serum were positive for anti-T. gondii IgM and IgG (at 1:320 and 1:1280 serum dilution, respectively), but were negative for IgG directed against Sarcocystis neurona and Neospora caninum (<1:40 each). Brain immunohistochemistry revealed positive staining for tachyzoites and tissue cysts using antiserum raised to T. gondii, but not S. neurona or N. caninum. T. gondii parasite DNA was obtained from extracts of brain and muscle by PCR amplification using the diagnostic B1 locus. Restriction enzyme digestion followed by gel electrophoresis and DNA sequencing confirmed the presence of Type X T. gondii, the strain identified in the majority of southern sea otter infections.  相似文献   

14.
Animals with a portosystemic shunt (PSS) often have neurologic abnormalities. Diagnostic imaging, including brain magnetic resonance (MR) imaging, is not performed routinely in these animals. In this study, brain MR images were obtained in 13 dogs and three cats with a PSS, and in 15 dogs and five cats that were neurologically normal and used as controls. All animals with a PSS had widened sulci. In addition, 10 out of 13 dogs with a PSS and one out of three cats with a PSS had hyperintense focal areas in the lentiform nuclei on T1-weighted (T1W) images, which did not enhance after intravenous gadolinium. Following surgical correction of the PSS, MR imaging examinations were repeated in one dog and one cat. The hyperintensity of the lentiform nuclei had decreased. This study indicates that MR imaging findings of widened sulci and hyperintensity of the lentiform nuclei on T1W images may be found in dogs and cats with a PSS.  相似文献   

15.
This report describes the imaging features of radiography, computed tomography and virtual bronchoscopy in dogs and cats with lung lobe torsions. The medical records, thoracic radiographs and computed tomography images of four dogs and two cats with confirmed lung lobe torsions were retrospectively reviewed. Computed tomography with virtual bronchoscopy showed bronchial narrowing, collapse or occlusion in all six animals, while this was only appreciated on one radiographic examination. A tapering terminating angle of the air-filled bronchus proximal or distal to the collapsed region was seen only on computed tomography and virtual bronchoscopy in all six animals. The vesicular emphysema pattern typical of lung lobe torsion was seen on three computed tomographies but only on one radiographic examination. The lung lobe torsion-specific findings of vesicular emphysema and a proximally narrowed or occluded bronchus were more easily recognised on computed tomography and virtual bronchoscopy than with radiographs. Computed tomography slices acquired through the bronchus and lung lobe of interest in a cat or dog with possible lung lobe torsion can be reformatted into virtual bronchoscopic images that can be utilised along with computed tomography to help make a more definitive preoperative diagnosis.  相似文献   

16.
Over 100 free-ranging adult California sea lions (Zalophus californianus) and one Northern fur seal (Callorhinus ursinus), predominantly adult females, were intoxicated by domoic acid (DA) during three harmful algal blooms between 1998 and 2000 in central and northern California coastal waters. The vector prey item was Northern anchovy (Engraulis mordax) and the primary DA-producing algal diatom was Psuedonitzschia australis. Postmortem examination revealed gross and histologic findings that were distinctive and aided in diagnosis. A total of 109 sea lions were examined, dying between 1 day and 10 months after admission to a marine mammal rehabilitation center. Persistent seizures with obtundation were the main clinical findings. Frequent gross findings in animals dying acutely consisted of piriform lobe malacia, myocardial pallor, bronchopneumonia, and complications related to pregnancy. Gross findings in animals dying months after intoxication included bilateral hippocampal atrophy. Histologic observations implicated limbic system seizure injury consistent with excitotoxin exposure. Peracutely, there was microvesicular hydropic degeneration within the neuropil of the hippocampus, amygdala, pyriform lobe, and other limbic structures. Acutely, there was ischemic neuronal necrosis, particularly apparent in the granular cells of the dentate gyrus and the pyramidal cells within the hippocampus cornu ammonis (CA) sectors CA4, CA3, and CA1. Dentate granular cell necrosis has not been reported in human or experimental animal DA toxicity and may be unique to sea lions. Chronically, there was gliosis, mild nonsuppurative inflammation, and loss of laminar organization in affected areas.  相似文献   

17.
Greyhound nonsuppurative meningoencephalitis is an idiopathic breed‐associated fatal meningoencephalitis with lesions usually occurring within the rostral cerebrum. This disorder can only be confirmed by postmortem examination, with a diagnosis based upon the unique topography of inflammatory lesions. Our purpose was to describe the magnetic resonance (MR) imaging features of this disease. Four Greyhounds with confirmed Greyhound nonsuppurative meningoencephalitis were evaluated by MR imaging. Lesions predominantly affected the olfactory lobes and bulbs, frontal, and frontotemporal cortical gray matter, and caudate nuclei bilaterally. Fluid attenuation inversion recovery (FLAIR) and T2 weighted spin‐echo (T2W) sequences were most useful to assess the nature, severity, extension, and topographic pattern of lesions. Lesions were predominantly T2‐hyperintense and T1‐isointense with minimal or absent contrast enhancement.  相似文献   

18.
Diffusion‐weighted imaging (DWI) MRI has been primarily reported as a method for diagnosing cerebrovascular disease in veterinary patients. In humans, clinical applications for diffusion‐weighted MRI have also included epilepsy, Alzheimer's, and Creutzfeld–Jakob disease. Before these applications can be developed in veterinary patients, more data on brain diffusion characteristics are needed. Therefore, the aim of this study was to evaluate the distribution of diffusion in the normal canine brain. Magnetic resonance imaging of the brain was performed in ten, clinically normal, purpose‐bred beagle dogs. On apparent diffusion coefficient maps, regions of interest were drawn around the caudate nucleus, thalamus, piriform lobe, hippocampus, semioval center, and cerebral cortex. Statistically significant differences in mean apparent diffusion coefficient were found for the internal capsule, hippocampus, and thalamus. The highest apparent diffusion coefficient (1044.29 ± 165.21 μm2/s (mean ± SD (standard deviation)) was detected in the hippocampus. The lowest apparent diffusion coefficient was measured in the semioval center (721.39 ± 126.28 μm2/s (mean ± SD)). Significant differences in mean apparent diffusion coefficients of the caudate nucleus, thalamus, and piriform lobe were found by comparing right and left sides. Differences between brain regions may occur due to differences in myelination, neural density, or fiber orientation. The reason for the differences between right and left sides remains unclear. Data from the current study provide background for further studies of diffusion changes in dogs with brain disease.  相似文献   

19.

Background

The diagnosis of feline epilepsy of unknown cause (EUC) requires a thorough diagnostic evaluation, otherwise the prevalence of EUC could be overestimated.

Hypothesis

Feline EUC is a clinically defined disease entity, which differs from feline hippocampal necrosis by the absence of magnetic resonance imaging (MRI) signal alteration of the hippocampus. The objectives of this study were (1) to evaluate the prevalence of EUC in a hospital population of cats by applying well‐defined inclusion criteria, and (2) to describe the clinical course of EUC.

Animals

Eighty‐one cats with recurrent seizures.

Methods

Retrospective study—medical records were reviewed for cats presented for evaluation of recurrent seizures (2005–2010). Inclusion criteria were a defined diagnosis based on laboratory data, and either MRI or histopathology. Final outcome was confirmed by telephone interview with the owner. Magnetic resonance images were reviewed to evaluate hippocampal morphology and signal alterations.

Results

Epilepsy of unknown cause was diagnosed in 22% of cats with epilepsy. Physical, neurologic, and laboratory examinations, and either 1.5 T MRI and cerebrospinal fluid analysis or postmortem examination failed to identify an underlying cause. Cats with EUC had a higher survival rate (< .05) and seizure remission occurred frequently (44.4%).

Conclusion and Clinical Importance

A detailed clinical evaluation and diagnostic imaging with MRI is recommended in any cat with recurrent seizures. The prognosis of cats with normal MRI findings and a clinical diagnosis of EUC are good. Standardized imaging guidelines should be established to assess the hippocampus in cats.  相似文献   

20.
Magnetic resonance images were acquired of the brain of a 7-year-old male Golden Retriever with hydrocephalus secondary to a medullary lesion. Images were acquired prior to and 4 weeks following surgical treatment for the hydrocephalus, and the dog was euthanased following the second imaging session. The MR images demonstrated a medullary lesion with patchy but predominantly hyperintense signal with both T1- and T2-weighting, within which small areas of low signal were scattered. There was little edema associated with this lesion and no enhancement with gadolinium. Postmortem examination revealed the medullary mass to be a dermoid cyst. Several small nodular lesions were identified within the central nervous system on the magnetic resonance images whose origin was uncertain on postmortem examination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号