首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 406 毫秒
1.
用RT-PCR法,以1株H5N1亚型禽流感病毒新疆分离株A/Duck/XJ/4为模板,扩增了NP全基因cDNA,克隆至T载体,并进行序列测定.序列分析结果表明:扩增的NP基因全长1518bp,最大的开放阅读框在18~1514bp,编码499个氨基酸.将A/Duck/XJ/4毒株NP基因序列与15株A型流感病毒NP基因序列进行比较,各毒株间NP基因核苷酸序列同源性81.4%~99.0%,编码的氨基酸同源性在92.8%~99.6%.  相似文献   

2.
【目的】禽流感病毒(avian influenza virus, AIV)根据其表面糖蛋白血凝素(hemagglutinin, HA)和神经氨酸(neuraminidase, NA)的不同,可分为16种HA和9种NA亚型。根据其致病力的差异可分为高致病性禽流感病毒(highly pathogenic avian influenza virus, HPAIV)和低致病性禽流感病毒(low pathogenic avian influenza virus, LPAIV)。虽然H4亚型禽流感病毒为低致病性AIV,感染家禽表现为无症状感染,但其对禽类甚至是哺乳动物是一个潜在的威胁,因此必须要加强对H4亚型禽流感病毒的调查监控。【方法】为了探讨H4亚型禽流感病毒的分子特征及遗传演化规律,对2010年在中国华东地区某活禽市场进行流行病学监测时分离到的一株H4N8亚型禽流感病毒A/duck/Nanjing/1102/2010(简称DK/NJ /1102)进行了全基因组序列测定及遗传进化分析。通过常规的血清学试验确定其HA亚型,提取病毒总RNA,并通过RT-PCR方法分别扩增出其各基因片段,连接 pGEM-Teasy载体上后进行序列测定。利用GenBank中的BLAST工具进行核苷酸序列的同源性分析,并与GeneBank 中的H4亚型流感病毒及其它相关序列进行遗传进化分析。【结果】DK/NJ/1102的HA基因与Mongolia 分离株A/duck/Mongolia/274/2007(H4N3)的核苷酸同源性最高,为98.9%。推导的氨基酸剪切位点序列为“P-E-K-A-S-R-G”,符合典型的低致病性禽流感病毒特征;NA基因与华东地区分离的鸭源毒株A/Duck/Eastern China/n91/2009(H3N8)核苷酸同源性最高,达99.4%;PB1、PA和NP基因均与H1亚型禽流感病毒亲缘关系最近;M基因与A/wild duck/Korea/CSM4-12/2009(H5N1)核苷酸同源性最高,高达99.9%;NS基因与韩国2009年分离的H7N7亚型流感病毒遗传距离最近。NS1蛋白的80-84处氨基酸没有发生氨基酸缺失。【结论】该H4N8亚型禽流感病毒基因组构成比较复杂,可能是一株多基因重组病毒。  相似文献   

3.
为了解江苏H9N2亚型禽流感病毒(AIV)的变异情况,采用RT-PCR技术对10株从江苏不同地区分离的H9N2亚型禽流感病毒的HA和NA基因进行了扩增、克隆、测序和遗传进化分析。结果显示:10株H9N2病毒间HA基因核苷酸和氨基酸的同源性分别是94.3%~99.0%、93.8%~99.6%,NA基因核苷酸和氨基酸的同源性分别是94.9%~99.9%、95.2%~100.0%,它们均属于欧亚分支中的A/Duck/Hong Kong/Y280/97亚群;10株病毒的HA裂解位点均为RSSR-GLF,受体结合位点第198位有8株为苏氨酸,2株为丙氨酸,第191位有1株为组氨酸;10株病毒NA基因在62~64位均存在缺失的现象,从而导致61位的糖基化位点缺失,NA基因第402位均出现了由天冬酰胺(N)到天冬氨酸(D)的变异,8株病毒只具有6个糖基化位点。  相似文献   

4.
利用RT-PCR技术对禽流感病毒新疆株A/Duck/XJ/4的M基因进行了扩增与克隆,得到了全长核苷酸序列为1 016 bp的M基因,序列分析表明,M基因最大的开放阅读框位于19~1 000碱基;M1蛋白位于19~777碱基,编码252个氨基酸.M2蛋白位于19~44碱基和733~1 000碱基,编码97个氨基酸.同源性分析显示,A/Duck/XJ/4 株M基因的核苷酸序列和氨基酸序列与所选H5N1亚型的参考毒株以及所选不同HA亚型的参考毒株均有很高的同源性.  相似文献   

5.
应用RT-PCR方法,对从一只野生白眉鸭(Anas querquedula)中分离出的禽流感病毒分离株A/Grganey/SanJiang/160/2006(H5N2)的HA基因进行了序列的克隆和测定.测序结果显示,克隆的HA基因全长为1 731 bp,共编码565个氨基酸.核苷酸和氨基酸的最大同源性比较结果表明,该毒株的HA基因与其它31株H5N2亚型禽流感病毒HA基因的同源性为71.0%~98.2%,氨基酸序列同源性为84.0%~98.2%;遗传进化关系表明,该毒株属于欧亚群系.通过血凝素裂解位点的氨基酸序列分析可知,该毒株的HA切割位点上未见到典型的高致病力毒株H5、H7所具有的一系列碱性氨基酸,符合低致病力禽流感毒株的分子特征.  相似文献   

6.
由发病蛋鸡体内分离得到一株禽流感病毒,经PCR、血凝试验和免疫荧光鉴定为H9N2亚型,命名为A/Chicken/henanxy/2010(H9N2),病毒对SPF鸡无致病性,对其HA基因进行克隆测序,HA基因氨基酸裂解位点为PSRSSRGLF,符合低致病性禽流感的分类标准;并将HA基因和自GenBank读取的H9N2病毒的HA基因序列比较,表明河南分离株属于欧亚分支中的Y280-like分支,与A/Chicken/shandongHL/2010(H9N2)氨基酸同源性94.8%,可能是Y280-like个别核苷酸突变的一株。  相似文献   

7.
从鸡胚尿囊液中提取H9N2亚型禽流感病毒的RNA,根据已发表的A型流感病毒(AIV)的核苷酸序列,设计一对特异引物,采用反转录-聚合酶链式反应(RT-PCR)成功地扩增了AIV的M基因。将M基因的cDNA克隆后进行了序列测定,测序结果表明所扩增的1 192 nt片段包含了完整的M基因的两个开放阅读框。核苷酸序列比较分析结果表明:该毒株与A/Hong Kong/1073/99(H9N2)、A/Duck/Hong Kong/380.5/2001(H5N1)、A/Duck/NY/191255-79/02(H5N2)相比,核苷酸序列的同源性在92.2%~96.1%之间,其相对应的氨基酸序列的同源性在91.7%~96.3%之间。  相似文献   

8.
旨在利用杆状病毒表达系统构建1株对高致病性H7N9亚型禽流感病毒(A/Chicken/Huizhou/HZ-3/2016)攻击后的家禽提供保护的候选疫苗株.用同源重组的方法构建1株表达H7N9亚型禽流感病毒(A/chicken/Shaoxing/5201/2013株)血凝素(Hemagglutinin,HA)蛋白的重组...  相似文献   

9.
为了解江苏H9N2亚型禽流感病毒(AIV)的变异情况,采用RT-PCR技术对10株从江苏不同地区分离的H9N2亚型禽流感病毒的HA和NA基因进行了扩增、克隆、测序和遗传进化分析。结果显示:10株H9N2病毒间HA基因核苷酸和氨基酸的同源性分别是94.3%99.0%、93.8%99.0%、93.8%99.6%,NA基因核苷酸和氨基酸的同源性分别是94.9%99.6%,NA基因核苷酸和氨基酸的同源性分别是94.9%99.9%、95.2%99.9%、95.2%100.0%,它们均属于欧亚分支中的A/Duck/Hong Kong/Y280/97亚群;10株病毒的HA裂解位点均为RSSR-GLF,受体结合位点第198位有8株为苏氨酸,2株为丙氨酸,第191位有1株为组氨酸;10株病毒NA基因在62100.0%,它们均属于欧亚分支中的A/Duck/Hong Kong/Y280/97亚群;10株病毒的HA裂解位点均为RSSR-GLF,受体结合位点第198位有8株为苏氨酸,2株为丙氨酸,第191位有1株为组氨酸;10株病毒NA基因在6264位均存在缺失的现象,从而导致61位的糖基化位点缺失,NA基因第402位均出现了由天冬酰胺(N)到天冬氨酸(D)的变异,8株病毒只具有6个糖基化位点。  相似文献   

10.
为探明贵州H9N2亚型禽流感病毒(AIV)的遗传演化特征,为其科学防控提供参考,通过GenBank登载H9N2亚型AIV参考毒株的神经氨酸酶(NA)基因设计引物,进行RT-PCR扩增,然后克隆测序,并进行生物信息学分析。结果表明:H9N2亚型禽流感病毒贵州分离株的NA基因全长为1 414bp,可编码467个氨基酸,与国内外参考毒株相应序列的核苷酸同源性在87.5%~98.1%;含有6个潜在的糖基化位点;在63~65位缺失T、E和I等3个茎部氨基酸,导致第61位糖基化位点丢失;从NA基因系统发育树看,该毒株属于欧亚种系Y280分支。  相似文献   

11.
对甘肃H9N2亚型的A/Chicken/GanSu/2/99(A/CK/GS/2/99)株PA基因进行了克隆、测序及分子进化分析.结果表明:该病毒PA基因开放阅读框由2 151个碱基组成,编码716个氨基酸;其与A/Quail/HongKong/NT28/99(H9N2)株和A/Duck/HongKong/Y280/97(H9N2)株的核苷酸同源性分别为98.4%和98.5%,氨基酸同源性分别为98.7%和98.7%;与A/HongKong/156/97(H5N1)和A/Goose/GuangDong/1/96(H5N1)的核苷酸同源性分别为89.0%和87.8%,氨基酸同源性分别为为93.9%和94.3%.  相似文献   

12.
一株H9N2型禽流感病毒全基因的序列分析   总被引:2,自引:1,他引:2  
采用异硫氰酸胍法提取禽流感病毒分离株的SPF鸡胚尿囊毒RNA,利用反转录-聚合酶链式反应(RT-PCR)技术扩增出禽流感病毒A/chicken/Zhuhai/154/03(H9N2)的8个基因片段(HA,NA,M,NP,NS,PA,PB1,PB2)。然后将其克隆到线状克隆载体pGEM-Teasy vector后进行序列测定和拼接,并将克隆到的8个基因片段与其他禽流感病毒毒株(A/Chicken/Guangdong/SS/94,A/Swine/Hong Kong/9/98-MA,A/Chicken/Shanghai/F/98,A/Duck/Hong Kong/Y439/97,A/Quail/Hong Kong/G1/97,A/Chicken/Shanghai/4/01)各个基因的相应序列进行比较分析。结果表明:克隆到的A/chicken/Zhuhai/154/03(AZH154)株的8个基因片段均含有相应病毒基因的完整开放阅读框架:AZH154的各基因与A/Chicken/Guangdong/SS/94株相应各基因同源性最高(NS基因除外,同源性只有67.5%),与A/Chicken/Shanghai/4/01各基因同源性高于A/Swine/HongKong/9/98-MA,A/Duck/Hong Kong/Y439/97和A/Chicken/Shanghai/F/98各基因同源性。所克隆的基因为禽流感病毒HA基因芯片的研究奠定了基础,同时为诊断和预防禽流感(AI)提供了科学依据。  相似文献   

13.
为了解鸭源H4N6亚型禽流感病毒A/duck/Shanghai/Y20/2006(DK/SH/Y20/06)的来源、特征及其分子演化规律,进一步丰富水禽流感病毒的基因库,对该病毒8个基因片段分别进行了扩增和序列测定,利用分子生物学软件对测序结果进行序列分析,并与GenBank登录的相关病毒进行了遗传演化分析。结果表明,DK/SH/Y20/06的HA基因切割位点附近的氨基酸序列(PEKASR↓GLF)符合低致病力AIV的特征,其分子遗传演化关系属于欧亚分支;NA基因与A/mallard/Yanchen/2005(H4N6)在同一分支内,核苷酸序列同源性为98.3%;而PB2、PB1、NP、PA基因与目前在国内流行的H6亚型禽流感病毒关系密切;M基因与A/environment/Korea/CSM05/2004(H3N1)处于同一分支;而NS基因与A/wild duck/Korea/YS44/2004(H1N2)同源性最高。且DK/SH/Y20/06的8个基因与美洲H4N6亚型AIV分离株均不处在同一遗传进化分支上,相互之间遗传关系较远。可见,DK/SH/Y20/06可能是由H4N6、H6N2、H6N5、H3N1和H1N2等不同亚型来源的基因在鸭体内经过复杂重组演变的一株重组病毒。  相似文献   

14.
[目的]测定H9N2AIV4个毒株血凝素基因序列,并进行比较分析,从分子生物学角度了解各毒株间的差异和变异规律,进而了解该亚型禽流感的分布及流行规律:[方法]参照H9N2亚型禽流感HA基因序列设计1对引物,对禽流感A/Chicken/Hebei/WD/98(H9N2)、A/Chiken/Hebei/ZD/04(}19N2)、A/Chicken/Beijing/MY/06(H9N2)和A/Chicken/Beijing/PG/08(H9N2)4个毒株删基因进行扩增、克隆和测序,并将这4个毒株的HA基因序列分剐与GenBank登录的10个H9N2亚型禽流感毒株进行比较分析,[结果]获得了4个毒株圳基因(ORF)全长1683bp,编码561个氨基酸;4个毒株之间的核苷酸和氨基酸同源性分别为92.5%~95.6%和95.2%~96.8%;WD株、MY株、PG株和ZD株与其他10O个毒株的核苷酸和氨基酸序列同源性分别为82.6%~95.1%、83.O%~99.0%、82.7%~95.5%、81.30%~95.7%、86.6%~96.3%、86.6%~97.9%、87.O%~97.1%、86.9%~97.3.[结论]HA基因在不同毒株间具有很高的同源性.  相似文献   

15.
[目的]测定H9N2AIV4个毒株血凝素基因序列,并进行比较分析,从分子生物学角度了解各毒株间的差异和变异规律,进而了解该亚型禽流感的分布及流行规律。[方法]参照H9N2亚型禽流感HA基因序列设计1对引物,对禽流感A/Chicken/Hebei/WD/98(H9N2)、A/Chiken/Hebei/ZD/04(H9N2)、A/Chicken/Beijing/MY/06(H9N2)和A/Chicken/Beijing/PG/08(H9N2)4个毒株HA基因进行扩增、克隆和测序,并将这4个毒株的HA基因序列分别与GenBank登录的10个H9N2亚型禽流感毒株(序列号分别为AF156376,AF156377,AF156378,AF461517,AF461519.AF461521,AF461530,AY364228,AY862606,D90305)进行比较分析,并绘制进化树。[结果]4个毒株HA基因(ORF)全长1683bp,编码561个氨基酸;4个毒株之间的核苷酸和氨基酸同源性分别为92.5%~95.6%和95.2%~96.8%.其中MY株和ZD株HA基因同源性和氧基酸同源忡均为最高:WD株、MY株、PG株和ZD株与其他10个毒株的核苷酪和氧基酪序列同源性分别为82.6%-95.1%、83.0%-99.0%、82.7%~95.5%和81.30%~95.7%、86.6%~96.3%、86.6%~97.9%、87.0%~97.1%、86.9%-97.3%,遗传进化树分析表明,H9N2的HA基因的进化树有2个大的分支,分为2个种系:欧亚种系和北美种系。欧亚种系又分为3个群系,分别以A/Quailf HongKong/G1/97(AF156378),A/Duck/HongKong/Y439/97(AF156377)和A/Duck/HongKong/Y280/97(AF156376)为代表株,将这4个分离株与国内一些参考株、韩国代表株(AY862606)以及上述欧亚种系代表株的HA基因序列进行比较。结果表明,MY株、WD株、PG株和zD株均属于欧亚种系,并且都属于A/Duck/HongKong/Y280/97群系,与国内参考株的亲缘关系都较近,而MY株与A/ChickenfShandong/2/99(AF461521)亲缘关系最近。PG株与A/Chicken/Liaoning/2/00(AF461519)的亲缘关系最近,氨基酸同源性达到97%。ZD株与A/Chicken/Beijing/1/97(AF461530)的亲缘关系最近,核苷酸和氨基酸的同源性都是最高的,分别达95.7%、97.3%。韩国株(AY862606)则属于A/Duck/HongKong/Y439/97(AF156377)群系。总体来看,这4个分离株与国内参考株亲缘关系较近,而与韩国株(AF156377)较远。4个分离株除WD株的HA基因裂解位点为PSRSSR/GLF,MY、PG和ZD株的HA基因裂解位点均为PARSSR/GLF,WD株裂解位点附近的A变为S,也就是由丙氨酸变为丝氨酸,S也是非碱性氨基酸,因此,致病力没有变化,这4个分离株均为低致病性禽流感病毒。HA基因的几个受体位点分别为109aa,161aa,163aa,191aa,198aa,202aa,203aa,通过比较除了PG株的198aa为丙氨酸(Ala),其他3个都为缬氨酸(Via)。编码198aa的3个碱基由GTG突变为GCG,其他参考株的198aa变异性也较大,A/Duck/HongKong/Y439/97(AF156377)和A/Quail/HongKong/G1/97(AF156378)的198aa都是谷氨酸(Glu),还有的国内株为T。这4个分离株的其他几个受体结合位点的氨基酸都是一样的,然而,通过对10个参考株的比较发现,191aa也容易发生变异,有的变为组氨酸(His)。202aa和203aa在所有的毒株中都比较保守。[结论]HA基因在不同毒株间具有很高的同源性。但有很多因素能够影响其HA基因的变异,从而影响其致病力,这与地域因素有很大的相关性,因此,应加强地域间的防控。  相似文献   

16.
不同H9N2亚型鸭流感病毒NS1基因克隆和功能进化分析   总被引:2,自引:0,他引:2  
禽流感病毒(AIV)在高免疫压力情况下会发生变异而逃避免疫系统的监视。其NS1蛋白共有230个氨基酸,其中前73个氨基酸残基以二聚体形式存在,包含了所有RNA的结合活性。NS1的氨基端1—73位是mRNA的结合区,氨基端1—100位是双股RNA依赖性蛋白激酶(PKR)的结合区。PKR抗病毒作用机制如下:病毒侵染宿主细胞时,在宿主干扰素的诱导下,双股RNA与PKR结合,同时真核翻译启动子α亚单位发生磷酸化,导致PKR的激活。激活的PKR能同时抑制宿主细胞和病毒mRNA的翻译,从而最终抑制入侵病毒在细胞中的有效繁殖和扩散。  相似文献   

17.
表达H9亚型禽流感病毒HA基因重组鸭肠炎病毒的构建   总被引:1,自引:1,他引:0  
【背景】H9亚型禽流感病毒(AIV)存在宿主范围扩大、毒力增强的趋势,并为其他亚型AIV重排提供基因,给养禽业和公共卫生造成极大威胁。水禽不仅是流感病毒的宿主,更是其天然储存库,在禽流感病毒的传播和变异中发挥着重要作用。因此有效控制水禽感染对养禽业健康发展、公共卫生安全具有重要意义。鸭肠炎病毒(DEV)属于疱疹病毒,能感染鸭、鹅等雁形目禽类,可引起产蛋下降及高死亡率。DEV基因组大,免疫原性好,具有开发成活疫苗载体的潜力。【目的】构建缺失gE基因、表达H9亚型AIV HA基因的重组病毒rDEV-△gE-HA,探讨重组病毒rDEV-△gE-HA作为防治DEV-AIV的二联重组活载体疫苗的可行性。【方法】以H9N2亚型禽流感病毒HA基因作为靶基因,构建含有HA基因表达盒的转移载体pT-gE-HA,将其与携带绿色荧光蛋白标记的重组rDEV-△gE-GFP共转染CEF细胞后,进行蚀斑筛选、纯化表达HA基因的重组病毒rDEV-△gE-HA;利用PCR、基因测序鉴定重组病毒;在CEF中连续传代重组病毒20次,测定外源基因传代稳定性。以10 3 TCID50免疫易感鸭,分析重组病毒rDEV-ΔgE-HA对致死性DEV强毒攻毒保护效果;将不同剂量(10 3-10 6TCID50)rDEV-△gE-HA免疫鸭,免疫后14、21、28 d分别采集血清,测定H9血凝抑制(HI)抗体,并在免疫后28 d,以10 8EID50的剂量静脉注射H9N2 AIV(A/duck/GD/08),攻毒后2 d,采集喉拭子,进行病毒分离试验。【结果】将构建的转移质粒载体pT-gE-HA与rDEV-△gE-GFP共转染CEF细胞,经过3轮蚀斑筛选,获得纯化的重组病毒rDEV-△gE-HA。PCR鉴定及基因测序结果显示,HA基因成功地插入到DEV基因组中,替换了绿色荧光蛋白。重组病毒在CEF中至少能稳定传代20代。重组病毒rDEV-ΔgE-HA以10 3 TCID50免疫易感鸭,能抵抗致死性DEV强毒攻击。重组病毒rDEV-ΔgE-HA免疫易感鸭后14 d,各剂量免疫组均能检测到H9 HI抗体效价;免疫后21日,各组抗体效价水平略有上升,10 3TCID50剂量免疫组HI抗体效价达到1:2 4,而10 4-10 6TCID50剂量免疫组HI抗体效价在1:2 2.4-1:2 3。免疫鸭后28 d,用H9N2 AIV进行攻毒,10 3、10 4、10 6TCID50免疫组均未从喉拭子分离到病毒H9N2,说明能完全保护,阻止喉头排毒,而10 5TCID50免疫组保护率为80%(4/5),1/5病毒分离阳性。【结论】成功构建了稳定表达H9亚型AIV HA基因的重组DEV,该重组病毒保留了亲本毒的免疫原性,能抵抗致死性DEV强毒的攻击;免疫鸭后能诱导产生AIV HI抗体,尽管HI抗体滴度不高,但至少80%免疫鸭能阻止排毒。该研究为研制DEV-H9亚型AIV二联重组活载体疫苗奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号