首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pathogenic bacteria belonging to the family Anaplasmataceae include species of the genera Ehrlichia and Anaplasma. Ehrlichia chaffeensis, first known as the causative agent of human monocytic ehrlichiosis, also infects several vertebrate hosts including white-tailed deer, dogs, coyotes and goats. E. chaffeensis is transmitted from the bite of an infected hard tick, such as Amblyomma americanum. E. chaffeensis and other tick-transmitted pathogens have adapted to both the tick and vertebrate host cell environments. Although E. chaffeensis persists in both vertebrate and tick hosts for long periods of time, little is known about that process. Immunological studies will be valuable in assessing how the pathogen persists in nature in both vertebrate and invertebrate hosts. Understanding the host immune response to the pathogen originating from dual host backgrounds is also important to develop effective methods of diagnosis, control and treatment. In this paper, we provide our perspective of the current understanding of the immune response against E. chaffeensis in relation to other related Anaplasmataceae pathogens.  相似文献   

2.
Bartonella spp. are facultative intracellular bacteria that cause characteristic host-restricted hemotropic infections in mammals and are typically transmitted by blood-sucking arthropods. In the mammalian reservoir, these bacteria initially infect a yet unrecognized primary niche, which seeds organisms into the blood stream leading to the establishment of a long-lasting intra-erythrocytic bacteremia as the hall-mark of infection. Bacterial type IV secretion systems, which are supra-molecular transporters ancestrally related to bacterial conjugation systems, represent crucial pathogenicity factors that have contributed to a radial expansion of the Bartonella lineage in nature by facilitating adaptation to unique mammalian hosts. On the molecular level, the type IV secretion system VirB/VirD4 is known to translocate a cocktail of different effector proteins into host cells, which subvert multiple cellular functions to the benefit of the infecting pathogen. Furthermore, bacterial adhesins mediate a critical, early step in the pathogenesis of the bartonellae by binding to extracellular matrix components of host cells, which leads to firm bacterial adhesion to the cell surface as a prerequisite for the efficient translocation of type IV secretion effector proteins. The best-studied adhesins in bartonellae are the orthologous trimeric autotransporter adhesins, BadA in Bartonella henselae and the Vomp family in Bartonella quintana. Genetic diversity and strain variability also appear to enhance the ability of bartonellae to invade not only specific reservoir hosts, but also accidental hosts, as shown for B. henselae. Bartonellae have been identified in many different blood-sucking arthropods, in which they are typically found to cause extracellular infections of the mid-gut epithelium. Adaptation to specific vectors and reservoirs seems to be a common strategy of bartonellae for transmission and host diversity. However, knowledge regarding arthropod specificity/restriction, the mode of transmission, and the bacterial factors involved in arthropod infection and transmission is still limited.  相似文献   

3.
Canine babesiosis caused by different Babesia species is a protozoal tick-borne disease with worldwide distribution and global significance. Historically, Babesia infection in dogs was identified based on the morphologic appearance of the parasite in the erythrocyte. All large forms of Babesia were designated Babesia canis, whereas all small forms of Babesia were considered to be Babesia gibsoni. However, the development of molecular methods has demonstrated that other Babesia species such as Babesia conradae, Babesia microti like piroplasm, Theileria spp. and a yet unnamed large form Babesia spp. infect dogs and cause distinct diseases. Babesia rossi, B. canis and Babesia vogeli previously considered as subspecies are identical morphologically but differ in the severity of clinical manifestations which they induce, their tick vectors, genetic characteristics, and geographic distributions, and are therefore currently considered separate species. The geographic distribution of the causative agent and thus the occurrence of babesiosis are largely dependent on the habitat of relevant tick vector species, with the exception of B. gibsoni where evidence for dog to dog transmission indicates that infection can be transmitted among fighting dog breeds independently of the limitations of vector tick infestation. Knowledge of the prevalence and clinicopathological aspects of Babesia species infecting dogs around the world is of epidemiologic and medical interest. Babesiosis in domestic cats is less common and has mostly been reported from South Africa where infection is mainly due to Babesia felis, a small Babesia that causes anemia and icterus. In addition, Babesia cati was reported from India and sporadic cases of B. canis infection in domestic cats have been reported in Europe, B. canis presentii in Israel and B. vogeli in Thailand. Babesiosis caused by large Babesia spp. is commonly treated with imidocarb dipropionate with good clinical response while small Babesia spp. are more resistant to anti-babesial therapy. Clinical and parasitological cure are often not achieved in the treatment of small Babesia species infections and clinical relapses are frequent. The spectrum of Babesia pathogens that infect dogs and cats is gradually being elucidated with the aid of molecular techniques and meticulous clinical investigation. Accurate detection and species recognition are important for the selection of the correct therapy and prediction of the course of disease.  相似文献   

4.
African horse sickness virus (AHSV) is an orbivirus that is usually transmitted between its equid hosts by adult Culicoides midges. In this article, we review the ways in which AHSV may have adapted to this mode of transmission. The AHSV particle can be modified by the pH or proteolytic enzymes of its immediate environment, altering its ability to infect different cell types. The degree of pathogenesis in the host and vector may also represent adaptations maximising the likelihood of successful vectorial transmission. However, speculation upon several adaptations for vectorial transmission is based upon research on related viruses such as bluetongue virus (BTV), and further direct studies of AHSV are required in order to improve our understanding of this important virus.  相似文献   

5.
American trypanosomiasis is a parasitic zoonosis that occurs throughout Latin America. The etiological agent, Trypanosoma cruzi, is able to infect almost all tissues of its mammalian hosts and spreads in the environment in multifarious transmission cycles that may or not be connected. This biological plasticity, which is probably the result of the considerable heterogeneity of the taxon, exemplifies a successful adaptation of a parasite resulting in distinct outcomes of infection and a complex epidemiological pattern. In the 1990s, most endemic countries strengthened national control programs to interrupt the transmission of this parasite to humans. However, many obstacles remain to the effective control of the disease. Current knowledge of the different components involved in elaborate system that is American trypanosomiasis (the protozoan parasite T. cruzi, vectors Triatominae and the many reservoirs of infection), as well as the interactions existing within the system, is still incomplete. The Triatominae probably evolve from predatory reduvids in response to the availability of vertebrate food source. However, the basic mechanisms of adaptation of some of them to artificial ecotopes remain poorly understood. Nevertheless, these adaptations seem to be associated with a behavioral plasticity, a reduction in the genetic repertoire and increasing developmental instability.  相似文献   

6.
Spotted fever group Rickettsiae are predominantly transmitted by ticks. Rickettsiae have developed many strategies to adapt to different environmental conditions, including those within their arthropod vectors and vertebrate hosts. The tick-Rickettsiae relationship has been a point of interest for many researchers, with most studies concentrating on the role of ticks as vectors. Unfortunately, less attention has been directed towards the relationship of Rickettsiae with tick cells, tissues, and organs. This review summarizes our current understanding of the mechanisms involved in the relationship between ticks and Rickettsiae and provides an update on the recent methodological improvements that have allowed for comprehensive studies at the molecular level.  相似文献   

7.
Babesia sp. (EU1), first characterized in 2003, has been implicated in human cases of babesiosis in Italy, Austria and Germany. It has been identified in roe deer and in its suspected tick vector, Ixodes ricinus, in several European countries. The aim of the present study was to validate the competence of I. ricinus as a vector of Babesia sp. (EU1) via experimental infections. For this purpose, a parasite strain isolated from roe deer was cloned in sheep erythrocytes. After experimental infections, parasite DNA was successfully amplified by PCR in both eggs and larvae originating from infected I. ricinus females and in the salivary glands of females exposed to Babesia sp. (EU1) as nymphs. We also demonstrate that infected females were able to transmit parasite DNA during a new blood meal. Together with previous epidemiological studies, these results validate I. ricinus as a competent vector for Babesia sp. (EU1).  相似文献   

8.
The genus Anaplasma (Rickettsiales: Anaplasmataceae) includes several tick-transmitted pathogens that impact veterinary and human health. Tick-borne pathogens cycle between tick vectors and vertebrate hosts and their interaction is mediated by molecular mechanisms at the tick–pathogen interface. These mechanisms have evolved characteristics that involve traits from both the tick vector and the pathogen to insure their mutual survival. Herein, we review the information obtained from functional genomics and genetic studies to characterize the tick–Anaplasma interface and evolution of A. marginale and A. phagocytophilum. Anaplasma and tick genes and proteins involved in tick–pathogen interactions were characterized. The results of these studies demonstrated that common and Anaplasma species-specific molecular mechanism occur by which pathogen and tick cell gene expression mediates or limits Anaplasma developmental cycle and trafficking through ticks. These results have advanced our understanding of the biology of tick–Anaplasma interactions and have opened new avenues for the development of improved methods for the control of tick infestations and the transmission of tick-borne pathogens.  相似文献   

9.
Bartonella and Babesia infections and the association with cattle breed and age as well as tick species infesting selected cattle herds in Taiwan were investigated. Blood samples were collected from 518 dairy cows and 59 beef cattle on 14 farms and 415 ticks were collected from these animals or in a field. Bartonella and Babesia species were isolated and/or detected in the cattle blood samples and from a selected subset (n = 254) of the ticks either by culture or DNA extraction, PCR testing and DNA sequence analysis. Bartonella bovis was isolated from a dairy cow and was detected in 25 (42.4%) beef cattle and 40 (15.7%) tick DNA samples. This is the first isolation of B. bovis from cattle in Asia and detection of a wide variety of Bartonella species in Rhipicephalus microplus. Babesia spp. were detected only on one farm from dairy cows either infected by Babesia bovis (n = 10, 1.9%) or B. bigemina (n = 3, 0.6%).  相似文献   

10.
Babesia are tick-borne parasites that are increasingly considered as a threat to animal and public health. We aimed to assess the role of European free-ranging wild ruminants as maintenance mammalian hosts for Babesia species and to determine risk factors for infection. EDTA blood was collected from 222 roe deer (Capreolus c. capreolus), 231 red deer (Cervus e. elaphus), 267 Alpine chamois (Rupicapra r. rupicapra) and 264 Alpine ibex (Capra i. ibex) from all over Switzerland and analysed by PCR with pan-Babesia primers targeting the 18S rRNA gene, primers specific for B. capreoli and Babesia sp. EU1, and by sequencing. Babesia species, including B. divergens, B. capreoli, Babesia sp. EU1, Babesia sp. CH1 and B. motasi, were detected in 10.7% of all samples. Five individuals were co-infected with two Babesia species. Infection with specific Babesia varied widely between host species. Cervidae were significantly more infected with Babesia spp. than Caprinae. Babesia capreoli and Babesia sp. EU1 were mostly found in roe deer (prevalences 17.1% and 7.7%, respectively) and B. divergens and Babesia sp. CH1 only in red deer. Factors significantly associated with infection were low altitude and young age. Identification of Babesia sp. CH1 in red deer, co-infection with multiple Babesia species and infection of wild Caprinae with B. motasi and Babesia sp. EU1 are novel findings. We propose wild Caprinae as spillover or accidental hosts for Babesia species but wild Cervidae as mammalian reservoir hosts for B. capreoli, possibly Babesia sp. EU1 and Babesia sp. CH1, whereas their role regarding B. divergens is more elusive.  相似文献   

11.
This epidemiological survey on canine babesiosis was carried out in three distinct rural regions (Lavras, Belo Horizonte and Nanuque) of the State of Minas Gerais, Brazil. Ticks and blood samples were collected during a dry season (Lavras, n = 92; Belo Horizonte, n = 50; Nanuque, n = 102) and the subsequent rainy season (Lavras, n = 71; Belo Horizonte, n = 28; Nanuque, n = 66) from dogs living on farms. Plasma samples were analyzed by the indirect fluorescent antibody test for detection of anti-Babesia canis vogeli antibodies. DNA was extracted from blood of serologically positive dogs and molecular characterization of Babesia species was performed. Rhipicephalus sanguineus, Amblyomma cajennense and Boophilus microplus were the tick species identified in all regions. In Lavras, in addition to those tick species, A. tigrinum and A. ovale were also identified. The most prevalent tick species was A. cajennense (35.3%), followed by R. sanguineus (19%) and B. microplus (4.0%). Dogs living in Nanuque region were more heavily infested with ticks than dogs living in Belo Horizonte and Lavras regions. The overall frequency of anti-B. c. vogeli antibodies in the canine population in rural areas of Minas Gerais was 28.7%, with prevalence rates of 49.0% in Nanuque, 34.0% in Belo Horizonte and 3.3% in Lavras. The age of the animals and tick infestation were associated with seroprevalence of B. c. vogeli. The sequence analysis showed that B. c. vogeli was the only Babesia species present in all three regions. This study showed different rates of prevalence and incidence of canine babesiosis among the three rural regions sampled in Minas Gerais State. The results point to the importance of canine babesiosis in rural areas and to the need for further studies related to its transmission and maintenance in nature.  相似文献   

12.
Pure strains of Babesia bovi, Babesia bigemina and Anaplasma marginale were isolated from cattle infected with all 3 species as well as a Theileria sp. and Eperythrozoon teganodes, using only transmission by the tick, Boophilus microplus. Unengorged adult ticks transferred to susceptible cattle transmitted A. marginale, but not Babesia. Engorged adults gave rise to progeny that transmitted Babesia, B. bovis by larvae and B. bigemina by male ticks. The Theileria and E. teganodes were not transmitted by the ticks and thus did not appear in calves used for isolating the pure strains of Babesia and A. marginale.  相似文献   

13.
Seven laboratory mammal and bird species were orally inoculated with 200–1,000 encysted Metagonimus hakubaensis metacercariae that had been isolated from naturally infected lampreys (Lethenteron reissneri) captured in Aomori Prefecture. At 8 and 15 days post-infection, adult flukes were recovered from all of the laboratory animals tested, and therefore, hamster, rat, mouse, dog, cat, chicken and quail were considered as final hosts of M. hakubaensis. Recovery rates of the fluke were higher in dogs and hamsters than in cats, rats, mice, chickens and quails. The flukes recovered from dogs and hamsters showed increased body length and higher fecundity than those recovered from the other hosts. These results indicate that the suitability of dogs and hamsters for M. hakubaensis infection is higher than that of the other laboratory animals.  相似文献   

14.
West Nile virus (WNV) is a flavivirus (Flaviviridae) transmitted between Culex spp. mosquitoes and avian hosts. The virus has dramatically expanded its geographic range in the past ten years. Increases in global commerce, climate change, ecological factors and the emergence of novel viral genotypes likely play significant roles in the emergence of this virus; however, the exact mechanism and relative importance of each is uncertain. Previously WNV was primarily associated with febrile illness of children in endemic areas, but it was identified as a cause of neurological disease in humans in 1994. This modulation in disease presentation could be the result of the emergence of a more virulent genotype as well as the progression of the virus into areas in which the age structure of immunologically naïve individuals makes them more susceptible to severe neurological disease. Since its introduction to North America in 1999, a novel WNV genotype has been identified that has been demonstrated to disseminate more rapidly and with greater efficiency at elevated temperatures than the originally introduced strain, indicating the potential importance of temperature as a selective criteria for the emergence of WNV genotypes with increased vectorial capacity. Even prior to the North American introduction, a mutation associated with increased replication in avian hosts, identified to be under adaptive evolutionary pressure, has been identified, indicating that adaptation for increased replication within vertebrate hosts could play a role in increased transmission efficiency. Although stable in its evolutionary structure, WNV has demonstrated the capacity for rapidly adapting to both vertebrate hosts and invertebrate vectors and will likely continue to exploit novel ecological niches as it adapts to novel transmission foci.  相似文献   

15.
Equine piroplasmosis (EP) is a tick-borne protozoal disease of horses, mules, donkeys, and zebras that is characterized by acute hemolytic anemia. The etiologic agents are two hemoprotozoan parasites, Theileria equi (Laveran, 1901) and Babesia caballi (Nutall and Strickland, 1910) that are transmitted primarily by ixodid ticks. Equine piroplasmosis is found globally where tick vectors are present and is endemic in tropical, subtropical, and some temperate regions. Horses infected with B. equi remain seropositive for life; horses infected with B. caballi are seropositive for several years to life. Economic losses associated with EP are significant and include the cost of treatment, especially in acutely infected horses; abortions; loss of performance; death; and restrictions in meeting international requirements related to exportation or participation in equestrian sporting events. Equine babesiosis–free countries limit the entrance of Babesia-seropositive horses into their countries. In the United States a few sporadic outbreaks have occurred in recent years but have been limited due to implementation of stringent control methods. The cELISA for both T. equi and B. caballi is currently the recommended test for international horse transport. Different therapies for control and sterilization of the parasites are discussed.  相似文献   

16.
Tick saliva contains molecules that are inoculated at the site of attachment on their hosts in order to modulate local immune responses and facilitate a successful blood meal. Bovines express heritable, contrasting phenotypes of infestations with the cattle tick, Rhipicephalus (Boophilus) microplus: breeds of Bos taurus indicus are significantly more resistant than those of Bos taurus taurus. Tick saliva may contain molecules that interfere with adhesion of leukocytes to endothelium and resistant hosts may mount an inflammatory profile that is more efficient to hamper the tick's blood meal. We show in vitro that adhesion of peripheral blood mononuclear cells to monolayers of cytokine-activated bovine umbilical endothelial cells was significantly inhibited by tick saliva. The inflammatory response to bites of adults of R. microplus mounted by genetically resistant and susceptible bovine hosts managed in the same pasture was investigated in vivo. The inflammatory infiltrates and levels of message coding for adhesion molecules were measured in biopsies of tick-bitten and control skin taken when animals of both breeds were exposed to low and high tick infestations. Histological studies reveal that cutaneous reactions of resistant hosts to bites of adult ticks contained significantly more basophils and eosinophils compared with reactions of the susceptible breed. Expression of the adhesion molecules – intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1) and P-selectin – was higher in adult-infested skin of susceptible hosts undergoing low infestations compared to resistant hosts; when host was exposed to high infestations expression of these adhesion molecules was down-regulated in both phenotypes of infestations. Expression of leukocyte adhesion glycoprotein-1 (LFA-1) was higher in skin from susceptible hosts undergoing low or high infestations compared to resistant hosts. Conversely, higher levels of E-selectin, which promotes adhesion of memory T cells, were expressed in skin of resistant animals. This finding may explain the resistant host's ability to mount more rapid and efficient secondary responses that limit hematophagy and infestations. The expression profiles observed for adhesion molecules indicate that there are differences in the kinetics of the inflammatory reactions mounted by resistant and susceptible hosts and the balance between tick and host is affected by the number of tick bites a host receives. We show that the contrasting phenotypes of infestations seen in bovines infested with R. microplus are correlated with differences in the cellular and molecular composition of inflammatory infiltrates elicited by bites with adult ticks.  相似文献   

17.
The tick Rhipicephalus (Boophilus) microplus is a hematophagous ectoparasite that causes considerable economic losses to cattle breeding. Although R. microplus saliva contains several molecules that interfere with the blood coagulation process, so far the systemic alterations in the host hemostatic system have not been described. This study aims to determine if R. microplus infestation induces any disturbance to the host’s hemostatic system. To address these questions, six calves were experimentally infested with 20,000 R. microplus larvae and their blood was collected before and 7, 14 and 21 days post-infestation. Collagen and ADP-induced platelet aggregation as well as coagulation (activated partial thromboplastin time and prothrombin time) decreased in infested bovines. Platelet blood count and fibrinogen increased during the course of infestation, probably as a compensatory response. These alterations may play a role in host health status, and show that the host cannot fully counteract the tick anti-hemostatic mechanisms.  相似文献   

18.
Babesiosis is a tick-borne disease of cattle which occurs in many tropical and subtropical areas of the world. Despite the extensive investigations which have been carried out since the discovery of the organism (Babes, 1888) many problems of major importance remain to be solved in Babesia spp. — host complex. In Colombia (South America) the experiments were carried out to identify the existing Babesia spp. by morphologic and immunoserologic methods. The immunoserologic relationship of Babesia spp. were studied by several serologic techniques. Attempts were made to develop a sensitive and practical serologic test for diagnosis of latent Babesia spp. infections. Several groups of intact and splenectomized calves were inoculated with various antigens isolated from Babesia spp. infections and the response to vaccination, premunition and tick-borne challenge were studied. The second part of this investigation was mainly concerned with evaluating the system of chemoprophylaxis against Babesia spp. infections under actual field conditions.  相似文献   

19.
This study was carried out to determine the presence and distribution of tick-borne haemoprotozoan parasites (Theileria and Babesia) in apparently healthy cattle in the East Black Sea Region of Turkey. A total of 389 blood samples were collected from the animals of various ages in six provinces in the region. Prevalence of infection was determined by reverse line blot (RLB) assay. The hypervariable V4 region of the 18S ribosomal RNA (rRNA) gene was amplified with a set of primers for members of the genera Theileria and Babesia. Amplified PCR products were hybridized onto a membrane to which generic- and species-specific oligonucleotide probes were covalently linked. RLB hybridization identified infection in 16.19% of the samples. Blood smears were also examined microscopically for Theileria and/or Babesia spp. and 5.14% were positive. All samples shown to be positive by microscopy also tested positive with RLB assay. Two Theileria (T. annulata and T. buffeli/orientalis) and three Babesia (B. bigemina, B. major and Babesia sp.) species or genotypes were identified in the region. Babesia sp. genotype shared 99% similarity with the previously reported sequences of Babesia sp. Kashi 1, Babesia sp. Kashi 2 and Babesia sp. Kayseri 1. The most frequently found species was T. buffeli/orientalis, present in 11.56% of the samples. T. annulata was identified in five samples (1.28%). Babesia infections were less frequently detected: B. bigemina was found in three samples (0.77%), B. major in two samples (0.51%) and Babesia sp. in five samples (1.28%). A single animal infected with T. buffeli/orientalis was also infected with B. bigemina.  相似文献   

20.
The zoonotic roundworms Toxocara canis and T. cati are not only present worldwide in their definitive hosts; they also frequently occur in other animal species, including humans. In those so-called paratenic hosts, the larvae do not develop into the adult stage, but rather migrate throughout the somatic tissue and persist as infectious L3 stage for extensive periods. Those arrested larvae may lead to severe inflammatory reactions and consequently to a wide range of pathological and clinical manifestations. However, the infected paratenic hosts also constitute a potential source of infection for the definitive hosts or humans who may also function as paratenic hosts. In the present review, current knowledge of larval migration in a variety of possible paratenic hosts is summarized including variations of migration routes and susceptibilities. Furthermore, information about the clinical and pathological changes for the presented species and possible consequences of the somatic migration of larvae, i.e. the resulting tissue damage as well as adverse host reactions to arrested larvae are reviewed. There are still many questions unanswered regarding larval behaviour in hosts other than their definitive host. Therefore, it is of great importance to continue further elaboration on the biology of Toxocara spp. to prevent further spreading of larvae in both the paratenic and the definitive host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号