首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
广西海岸沙地木麻黄防护林带的生物量和生产力   总被引:1,自引:0,他引:1  
对海岸沙地木麻黄防护林带生物量和生产力的研究结果表明:13年生木麻黄林带的生物量为100.01t.hm-2,生物量的大小序列为干材>根系>树枝>叶枝>干皮>枯枝。立木生物量总量的空间格局是随树高的增加而减少,不同器官生物量的空间分布却有所不同,干材和干皮生物量随树高的增加而减少,树枝生物量则主要集中在树冠中层或中下层,叶枝则主要分布在上层或中上层。沙地木麻黄林带具有较高的生产力,为7.693t.hm-2.a-1。海岸沙地木麻黄这种生物量和生产力水平足以说明它对海岸沙地的生态环境具有很强的适应能力。  相似文献   

2.
Empirical allometric equations relating biomass of aboveground components to dendrometric variables for Pinus brutia Ten. trees are derived in this paper. They are based on data collected from Lesvos (North Aegean Sea) and Crete (South Aegean Sea) Islands. Comparisons to published equations for the same species growing in northwestern and southeastern Turkey, for Pinus nigra A. growing in Turkey and Pinus halepensis Mill. found in Western Aegean (island of Evia), are also presented. The biomass of branches from destructively sampled trees (twelve in Crete and six in Lesvos) was divided into four size classes (0?C0.63 cm, 0.64?C2.5 cm, 2.51?C7.61 cm, and 7.62?C22.8 cm). Tree crown biomass was calculated as the sum of the biomass in the four classes plus the fraction of stem above crown base. Over bark stem biomass was estimated through bole volume conversion based on wood density. The results showed clearly that, for a given diameter, the Cretan trees had more crown biomass and a higher share of small branches than trees on Lesvos, probably due to differences in environment and stand structure. Comparisons to published diameter versus crown biomass equations reveal a lower crown biomass for Turkish sites of Calabrian pine and Aleppo pine on Evia Island, while only Turkish Black pine seems to be comparable to the Calabrian pine on Crete. The derived allometries can be used for landscape fire behavior modeling, for ecophysiological studies and for the Kyoto protocol requirements of carbon changes in Pinus brutia Ten. forests located in northern and southern Greek sites.  相似文献   

3.
In a 4-year study, we investigated changes in leaf physiology, crown morphology and whole-tree biomass allocation in seedlings and saplings of shade-tolerant sugar maple (Acer saccharum Marsh.) and intermediate shade-tolerant yellow birch (Betula alleghaniensis Britt.) growing in natural understory light (0.5 to 35% of full sunlight) or in understory light reduced by 50% with shade nets to simulate the effect of gap closure. Leaf physiological parameters were mainly influenced by the light gradient, whereas crown morphological and whole-tree allocational parameters were mainly influenced by tree size. No single physiological, morphological or allocational trait was identified that could explain the difference in shade tolerance between the species. Yellow birch had higher growth rates, biomass allocation to branches and leaf physiological plasticity and lower crown morphological plasticity in unmodified understory light than sugar maple. Sugar maple did not display significant physiological plasticity, but showed variation with tree size in both crown morphology and whole-tree biomass allocation. When sugar maple was small, a greater proportion of whole-tree biomass was allocated to roots. However, physiological differences between the species decreased with decreasing light and most morphological and allocational differences tended to disappear with increasing tree size, suggesting that many species differences in shade-tolerance are expressed mainly during the seedling stage. Understory trees of both species survived for 4 years under shade nets, possibly because of higher plasticity when small and the use of stored reserves when taller.  相似文献   

4.
两个金银花品种根系对土壤物理性状影响的对比研究   总被引:1,自引:0,他引:1  
采用分层挖取根系方法调查两个金银花品种秧花、蒙花的根系分布,同时测定植被下不同深度土壤的水分含量、土壤容重、土壤孔隙度、土壤持水量等土壤物理性状指标。结果表明:秧花根系主要分布在0~20cm土壤中,占总根系生物量的97.9%以上;蒙花根系主要分布在0~30cm土壤中,占总根系生物量的99.0%以上。秧花的吸收根系分布对土壤水分具有一定影响,吸收根集中分布区域下层土壤含水量虽仍在增加,但增加的趋势有所减缓。吸收根集中分布深度的比较发现,蒙花明显大于秧花。研究结果表明,两金银花品种根系的分布对土壤物理性状均有一定影响,并与对照样地有一定差异。  相似文献   

5.
MAYHEAD  G. J.; JENKINS  T. A. R. 《Forestry》1992,65(4):453-462
Sitka spruce (Picea sitchensis (Bong.) Carr.) 1 + 1 transplantswere grown at 1 x 1 m for 3 years with 100 per cent chemicalweed control on a very fertile site. Treatments were control,firm staking, staked with 15 cm diameter netting with simulatedbrowsing, staked with simulated browsing to 15 cm diameter crown,1.2 m treeshelter, 1.2 treeshelter with holes and no browsing.No leaders were browsed. Trees were assessed for annual heightgrowth, stem diameter at 0.5 m and 1.0 m, total above and belowground biomass, root:shoot ratio, root plate diameter, rootdepth and root volume. No 3-year heights were significantlydifferent but third-year increments were; the greatest finalheight was in the control at 200.7 cm. All other tree parametershad significant treatment differences demonstrating the needto select carefully the criteria of success in experiments.Treatments which restricted the horizontal development of thecanopy either physically or by simulated browsing seriouslyreduced stem diameter and root development. The controls hada root:shoot ratio of 0.418; treeshelter treatments had thesmallest root:shoot ratio of 0.238; staked trees were 0.379while staked browsed trees had the highest value at 0.447. Acceptanceof browsing or use of shelters or guards to protect trees frombrowsing may seriously reduce growth.  相似文献   

6.
海南木莲人工林生物量及养分分配   总被引:3,自引:0,他引:3       下载免费PDF全文
本文测定并分析了海南尖峰岭地区30年生的热带乡土树种海南木莲人工林生物量及其估算模型,论述了生物量及其养分分配规律。指出:海南木莲各器官及整株生物量模型以幂函数模型W=a(D2H)b比较理想;全林分的总生物量为144.066t/hm2,其中地上部分生物量89.935t/hm2。乔木层生物量占78.81%,林下植物层占21.19%;在乔木层中,树干、树叶、树枝、树皮和树根所占的比例分别是54.127%、2.354%、7.762%、9.370%和26.388%;乔木层中,各器官的养分含量,除Ca外,都是叶比其它器官(枝、皮、干、根)的养分含量高许多,N、P、K、Ca、Mg5个常量养分元素在海南木莲人工林生物体中的总贮量分别为557.754,24.330,599.908,275.557,64.103kg/hm2,各养分贮量在各器官中分布,除P外,从小到大为树叶、树枝、树皮、树干、树根  相似文献   

7.
To determine the effect of shade on morphology, growth and biomass allocation in Picea sitchensis, Larix × eurolepis and Thuja plicata, seedlings were grown in the open or under shadehouses providing 25%, 50% and 75% reductions of full-light for two growing seasons. For most of the characteristics assessed there was no significant interaction between species and shade indicating that the morphological responses to changing shade treatments were not species-dependent. After two growing seasons the mean height increment for the three species was significantly greater in 25% (76.1 cm) and 50% shade (74.9 cm) than in the open (69.5 cm). Root collar diameter increment, shoot, root and total biomass declined significantly with increasing shade while the opposite was true for the height:diameter ratio. In both western red cedar and hybrid larch the shoot:root ratio was significantly greater in the shade while in Sitka spruce this characteristic was not influenced by shade. While all species had significantly greater specific shoot areas in 75% shade than in 0% shade, this trend was particularly pronounced in hybrid larch. In hybrid larch and western red cedar, the normalised specific projected shoot area increased significantly with increasing shade. The opposite trend was observed for Sitka spruce. We conclude that in the main the species studied demonstrated similar shade acclimation responses despite their reported differences in shade tolerance.  相似文献   

8.
López BC  Sabate S  Gracia CA 《Tree physiology》2003,23(17):1217-1224
The dynamics of the fine root system are relevant to calculations of the carbon balance of the ecosystem, and there is also a need to quantify changes in this component caused by disturbances. Mediterranean forest systems have historically been coppiced to obtain charcoal. As a result of the resprouting capacity of holm oaks (Quercus ilex L.), these forests present more than 50% of their biomass below ground (stump + roots > 1 cm in diameter), but the effects of thinning on the fine root system are unknown. Fine root biomass, production, mortality and longevity were studied in a control and a thinned Mediterranean holm oak forest by minirhizotron methodology. Observations of fine roots started 2 years after thinning and continued for almost 3 years. Extraction of 80% of the former basal area of the forest greatly affected carbon allocation patterns. Biomass increased by more than 100%, production increased by 76%, mortality increased by 32% and longevity decreased by around 2 weeks. The greatest differences between treatments were associated with differences in growth during autumn months in the top 40 cm of soil, particularly between 10 and 20 cm depth.  相似文献   

9.
川西高山松林火烧迹地植被生物量与生产力恢复动态   总被引:2,自引:0,他引:2  
用"空间序列代替时间序列"的研究方法对川西高山松林不同年龄火烧迹地的研究结果表明:高山松干生物量占地上部总生物量比例随年龄的增大逐渐增加,到23年生时,干生物量比例已达80%左右;较小的林分密度可以促进高山松的提早结实,但较大的结实量则导致较小的干生物量比例.灌木层生物量在恢复早期随迹地年龄增大逐渐增高,在火烧后20年时达最高,随着高山松开始形成乔木层,其生物量开始逐渐减小;草本层生物量以1~6年火烧迹地较高,在总体生物量中占有较大比例,但随着灌木和高山松迅速生长,其生物量呈现减少的趋势;在火烧迹地恢复的前27年,高山松的生产力呈现随迹地年龄增大逐渐升高的趋势,且生产力增大的速率也随迹地年龄的增大而迅速提高,而草本层生产力则随迹地年龄的增大而逐渐减小.  相似文献   

10.
【目的】随着森林的发育过程,林木个体的生长和生物量分配,以及林分水平的结构和功能均发生了明显的变化。然而,细根生物量与林分年龄的联系,目前仍然了解有限。本研究以黑龙江省帽儿山地区兴安落叶松人工林为研究对象,比较了同一林分在19年和32年生时林分水平(单位面积)和单株水平细根生物量的垂直分布和季节动态,分析了影响细根生物量变化的林分与土壤因子,旨在明确林分年龄对细根生物量的影响和潜在的机制。【方法】在生长季内的5月、7月和9月,采用土钻法获取土壤0~30 cm深度细根并测定生物量,同时测定林分特征和土壤养分和水分含量。【结果】随林龄增加,落叶松人工林单位面积细根生物量显著下降,而单株细根生物量变化不显著;与19年生林分相比,32年生林分土壤表层(0~10 cm)细根生物量占总细根生物量的比例明显下降,土壤亚表层(10~20 cm)和底层(20~30 cm)细根生物量所占比例增加,呈现出细根向深层土壤增生的趋势。土壤表层(0~10cm)单位面积细根生物量随林分年龄的变化趋势与林分密度和胸高断面积、土壤铵态氮浓度变化有关,但是单株细根生物量受林分和土壤因子的影响均不显著。【结论】林分发育过程中,落叶松细根生物量降低,细根的资源吸收策略发生了明显的改变。  相似文献   

11.
Zhang Q  Chen YJ  Song LY  Liu N  Sun LL  Peng CL 《Tree physiology》2012,32(5):545-553
We selected five typical tree species, including one early-successional species (ES) Pinus massoniana Lamb., two mid-successional species (MS) Schima superba Gardn. et Champ. and Castanopsis fissa (Champ. ex Benth.) Rehd. et Wils. and two late-successional species (LS) Cryptocarya concinna Hance. and Acmena acuminatissima (BI.) Merr et Perry., which represent the plants at three successional periods in Dinghushan subtropical forest succession of southern China. Potted seedlings of the five species were grown under 12% of full sunlight for 36 months. The ES and MS showed the slowest and fastest responses to lightflecks, respectively, which correlated with the rate of stomatal opening. In contrast to P. massoniana and C. concinna, the other three species exhibited a high induction loss. Early-successional species showed the lowest specific leaf area and chlorophyll content, the highest photosynthetic capacity (A(max)) and respiratory carbon losses (R(d)). Compared with ES and MS, LS showed lower A(max) and R(d). The five tree species showed a similar chlorophyll a/b ratio after long-term low-light adaptations. On the other hand, LS had a relatively higher de-epoxidation state to protect themselves from excess light during lightflecks. Our results indicated that (i) slower responses to lightflecks could partially explain why ES species could not achieve seedling regeneration in low-light conditions; (ii) fast responses to lightflecks could partially explain why MS species could achieve seedling regeneration in low-light conditions; and (iii) smaller respiratory carbon losses might confer on the LS species a competitive advantage in low-light conditions.  相似文献   

12.
刺槐是我国重要的造林树种之一,尤其是在环境恶劣地区,发挥着重要的生态功能。本文利用从全国各地收集的刺槐无性系繁育的1年生插根苗,研究了幼苗的生物量、生物量分配、组织相对含水量。研究结果表明,无性系之间在生物量和生物量分配上有着极显著差异,但在根、枝和茎相对含水量上差异不显著。利用聚类分析,将16个无性系分为三类:第一类生物量低、无分枝,第二类生物量低、较多分枝,第三类为生物量大、稍有分枝。无性系之间,C041、W021有着最强的生长能力,W005和W027有着最高的根冠比。无性系在生物量及其分配上的差异为进一步的选育提供了依据。  相似文献   

13.
黄土高原丘陵区不同立地条件下柠条根系研究   总被引:11,自引:0,他引:11       下载免费PDF全文
对黄土高原丘陵区不同立地条件下3年生柠条的根系作了初步研究,结果表明:柠条侧根发生的主要部位在距地表0~20 cm的土层中,除在阳坡、半阳坡分布的植株外,其它的在50 cm以下没有侧根发生,侧根总数以阳坡最多,半阴坡最少;不同立地下根系生物量的垂直分布,均表现为从土壤表层到深层逐次递减;在各土层中,0~60cm土层中分布的根系生物量所占的比重最大,超过了总量的80%.不同立地条件下单株根系生物量以阳坡最大,为66.63 g,阴坡最低,仅为6.69 g.不同立地条件下柠条的地上部分差异显著,阳坡、半阳坡的株高、生物量等都高于阴坡和半阴坡的.柠条在幼龄期适宜生长的立地类型为阳坡和半阳坡.  相似文献   

14.
One-year old seedlings of trembling aspen (Populus tremuloides Michx.), black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss), and jack pine (Pinus banksiana Lamb.) were subject to seven soil temperatures (5, 10, 15, 20, 25, 30 and 35 °C) for 4 months. All aspen seedlings, about 40% of jack pine, 20% of white spruce and black spruce survived the 35 °C treatment. The seedlings were harvested at the end of the fourth month to determine biomass and biomass allocation. It was found that soil temperature, species and interactions between soil temperature and species significantly affected root biomass, foliage biomass, stem biomass and total mass of the seedling. The relationship between biomass and soil temperature was modeled using third-order polynomials. The model showed that the optimum soil temperature for total biomass was 22.4, 19.4, 16.0 and 13.7 °C, respectively, for jack pine, aspen, black spruce and white spruce. The optimum soil temperature was higher for leaf than for root in jack pine, aspen and black spruce, but the trend was the opposite for white spruce. Among the species, aspen was the most sensitive to soil temperature: the maximum total biomass for aspen was about 7 times of the minimum value while the corresponding values were only 2.2, 2.4 and 2.3 times, respectively, for black spruce, jack pine and white spruce. Soil temperature did not significantly affect the shoot/root (S/R) ratio, root mass ratio (RMR), leaf mass ratio (LMR), or stem mass ratio (SMR) (P>0.05) with the exception of black spruce which had much higher S/R ratios at low (5 °C) and high (30 °C) soil temperatures. There were significant differences between species in all the above ratios (P<0.05). Aspen and white spruce had the smallest S/R ratio but highest RMR while black spruce had the highest S/R but lowest RMR. Jack pine had the highest LMR but lowest SMR while aspen had the smallest LMR but highest SMR. Both LMR and SMR were significantly higher for black spruce than for white spruce.  相似文献   

15.
We investigated the differential roles of physiological and morphological features on seedling survivorship along an experimental irradiance gradient in four dominant species of cool temperate-Mediterranean forests (Quercus robur L., Quercus pyrenaica Willd., Pinus sylvestris L. and Pinus pinaster Ait.). The lowest photochemical efficiency (F(v)/F(m) in dark-adapted leaves) was reached in deep shade (1% of full sunlight) in all species except Q. robur, which had the lowest photochemical efficiency in both deep shade and 100% of full sunlight. Species differed significantly in their survival in 1% of full sunlight but exhibited similar survivorship in 6, 20 and 100% of full sunlight. Shade-tolerant oaks had lower leaf area ratios, shoot to root ratios, foliage allocation ratios and higher rates of allocation to structural biomass (stem plus thick roots) than shade-intolerant pines. Overall phenotypic plasticity for each species, estimated as the difference between the minimum and the maximum mean values of the ecophysiological variables studied at the various irradiances divided by the maximum mean value of those variables, was inversely correlated with shade tolerance. Observed morphology, allocation and plasticity conformed to a conservative resource-use strategy, although observed differences in specific leaf area, which was higher in shade-tolerant species, supported a carbon gain maximization strategy. Lack of a congruent suite of traits underlying shade tolerance in the studied species provides evidence of adaptation to multiple selective forces. Although the study was based on only four species, the importance of ecophysiological variables as determinants of interspecific differences in survival in limiting light was demonstrated.  相似文献   

16.
《Southern Forests》2013,75(3):221-226
The experiment was conducted to ascertain narrow-sense heritability (h 2) and the family-within-provenance variation in shoot die-back, taproot length and root biomass of half-sib Pterocarpus angolensis families from Malawi, Namibia and Zambia. Provenances differed significantly in shoot die-back for both shoot die-back seasons. A within provenance family effect was not significant in the first shoot die-back season but was significant in the second shoot die-back season. An increase in proportion of seedlings dying back, to 91%, for a Malawi family was observed in the second shoot die-back season. Provenance and within provenance family effects may be due to latitudinal differences between the provenances. The h 2 of shoot die-back was 0.07 (SE = 0.07) in the first shoot die-back season and 0.42 (SE = 0.27) in the second shoot die-back season. Narrow-sense heritability for root biomass was 0.81 (SE = 0.45). The h 2 for the second die-back season and root biomass suggest the traits are heritable. Random selection of individual families for assessing shoot die-back is important since this trait is only restricted to seedlings and saplings and not mature trees. Within provenance family effects for root biomass were significant, indicating differences between families. Two families from the most northerly provenances of Phalombe and Skull Rock in Malawi were significantly different from other southern families. Non-significant phenotypic correlation between shoot die-back and root biomass shows that shoot die-back is not likely to be determined by root size nor taproot depth. Although a non-significant negative phenotypic correlation (–0.15) between the second shoot die-back season and root biomass was obtained, a family from Malawi that had the highest mean shoot die-back in the second shoot die-back season had the smallest root biomass. Half-sib families with post shoot die-back growth potential, in the first shoot die-back season, are likely to have a better chance of post shoot die-back growth later.  相似文献   

17.
A study was conducted in northwest Florida, USA, to investigate root development and morphology of cotton (Gossypium hirsutum L.) under pecan (Carya illinoensis K. Koch) trees in an alleycropping experiment. Root:shoot ratio, root biomass, total root length and root length density were examined under three treatments: (1) barrier (separating belowground interspecific competition by trenching to a depth of 120 cm and installing polyethylene barrier), (2) non-barrier (root systems were free to interact), and (3) monoculture of cotton (without above and belowground interspecific competition with trees). Results indicated that plants in the barrier and non-barrier treatments had lower root:shoot ratios compared to the monoculture treatment. Belowground competition for resources between pecan and cotton in the non-barrier treatment resulted in 25 and 33% reduction of total root length (359 cm) when compared to that of the barrier (477 cm) and monoculture (539 cm) treatments, respectively. The non-barrier plants also exhibited the lowest root length density. Specific root length was highest for the monoculture (179 cm g−1) and lowest for the non-barrier treatment (146 cm g−1) with the barrier treatment being intermediate (165 cm g−1). Interspecific competition with pecan significantly altered root development and morphology of cotton plants. Research in agroforestry should take into account the developmental differences in root systems of the associated crop species so that better models incorporating nutrient and water uptake can be developed.  相似文献   

18.
在张掖市五泉林场开展人工梭梭林接种肉苁蓉相关性研究,从2种植物种间相互影响的相关性入手,对梭梭细根密度的分布情况,肉苁蓉寄生对梭梭树高、地径、冠幅及生物量的影响,梭梭接种肉苁蓉的成因等方面进行了分析研究。结果表明:在梭梭水平距主干20~40 cm处垂直40 cm深的土壤环境利于细根生长,肉苁蓉接种成功率高。接种后的梭梭树高、地径和冠幅,普遍小于未接种的梭梭,寄主梭梭的生物量受到一定程度的抑制。  相似文献   

19.
Crown architecture and growth allocation were studied in saplings of eastern white pine (Pinus strobus L.), a species classified as intermediate in shade tolerance. A comparison was made of 15 understory saplings and 15 open-grown saplings that were selected to have comparable heights (mean of 211 cm, range of 180-250 cm). Mean ages of understory and open-grown trees were 25 and 8 years, respectively. Understory trees had a lower degree of apical control, shorter crown length, and more horizontal branch angle, resulting in a broader crown shape than that of open-grown trees. Total leaf area was greater in open-grown saplings than in understory saplings, but the ratio of whole-crown silhouette (projected) leaf area to total leaf area was significantly greater in understory pine (0.154) than in open-grown pine (0.128), indicating that the crown and shoot structure of understory trees exposed a greater percentage of leaf area to direct overhead light. Current-year production of understory white pine was significantly less than that of open-grown white pine, but a higher percentage of current-year production was allocated to foliage in shoots of understory saplings. These modifications in crown structure and allocation between open-grown and understory white pine saplings are similar to those reported for more shade-tolerant fir (Abies) and spruce (Picea) species, but the modifications were generally smaller in white pine. As a result, white pine did not develop the flat-topped "umbrella" crown structure observed in understory fir and spruce, which approaches the idealized monolayer form that maximizes light interception. The overall change to a broader crown shape in understory white pine was qualitatively similar, but much more limited than the changes that occurred in fir and spruce. This may prevent white pine from persisting in understory shade as long as fir and spruce saplings.  相似文献   

20.
[目的]以云南省普洱市主要植被思茅松人工林为研究对象,探讨不同林龄思茅松人工林根系生物量的大小分布及变化特征。[方法]分别在5、8、15、25、36年生思茅松人工林内,利用内径为8.5 cm的根钻分3层(0~10、10~20、20~30 cm)获取思茅松与其它物种的细根、粗根及死根生物量数据。[结果]表明:随着思茅松人工林林龄的增长,思茅松细根生物量呈减少的趋势,而其它物种细根生物量呈增加趋势,细根生物量最大出现在36年生思茅松人工林。不同林龄思茅松人工林的思茅松粗根和死根生物量之间无显著差异,而其它物种及林分的粗根生物量和根系生物量则随林龄增长而增加。思茅松人工林的细根生物量主要分布在土壤深度0~10 cm内,其中,思茅松、其它物种、林分细根生物量以及根系生物量随土层深度的增加呈减少趋势。林龄和土壤深度对思茅松与其它物种的细根生物量有显著影响,林龄与土壤深度的交叉作用对思茅松细根生物量有显著影响,林龄对死根生物量有显著影响,林龄、土壤深度及林龄与土壤深度的交叉作用对粗根与根系的生物量有显著影响。[结论]思茅松人工林随着林龄增长,群落结构与树种组成随之发生变化,从而对根系生物量产生较大影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号