首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In boreal forests of western Canada, lodgepole pine (Pinus contorta Dougl. ex. Loud.) and white spruce (Picea glauca (Moench) Voss) often grow together with numerous tall shrubs such as green alder (Alnus crispa (Ait.) Pursh) and little-tree willow (Salix spp.). In an area south of Grande Prairie, Alberta, Canada, we examined the effects of shrubs, herbs and other trees on nutrient and light availability and growth of white spruce and lodgepole pine. For white spruce the best competition measure (tested against volume increments of the past 3 years) was visually estimated % ground cover times the height of the competitor (VCHT) with light (DIFN) ranking in third place. For lodgepole pine, DIFN was the best competition measure for predicting volume increment and the best competition index was again VCHT. Taller conifers had a stronger competitive effect than tall shrubs, with their effect on white spruce being larger than that on lodgepole pine.  相似文献   

2.
Using tree data from permanent sample plots and climate data from the ClimateWNA model, mixed-effects height to live crown (HTC) models were developed for three boreal tree species in Alberta, Canada: trembling aspen (Populus tremuloides Michx.), lodgepole pine (Pinus contorta var. latifolia Engelm.) and white spruce (Picea glauca (Moench) Voss). Three model forms, the Wykoff model, a logistic model and an exponential model, were evaluated for each species. Tree height was the most significant predictor of HTC and was used in all models. In addition, we investigated the effects of competition and climatic variables on HTC modelling. Height–diameter ratio and either total stand basal area or basal area of coniferous trees were used as competition measures in the models. Different climate variables were evaluated, and spring degree-days below 0 °C, mean annual precipitation and summer heat–moisture index were incorporated into the aspen, lodgepole pine and white spruce models, respectively. Site index was only significant in lodgepole pine models. Residual variances were modelled as functions of tree height to account for heteroscedasticity still present in the mixed-effects models after the inclusion of random parameters. Based on model fitting and validation results as well as biological realism, the mixed-effects Wykoff models were the best for aspen and white spruce, and the mixed-effects logistic model was the best for lodgepole pine.  相似文献   

3.
This study was designed to answer questions about the patterns of understory diversity in managed forests of southern New England, and the factors that appear associated with those patterns. At the landscape-level, we used plot data to answer questions regarding the spatial distribution of forest understory plant species. Data from a combination of fixed area (understory vegetation) and variable radius (overstory trees) plot methods are combined with site variables for the analysis. Univariate and multivariate statistical methods are used to test for understory diversity relationships with overstory cover types and topography separately, and in combination. Analyses also test for relationships between specific understory species and cover types. In general the understory flora is dominated by four common clonal species that occur across the range of forest cover types: wild sarsaparilla (Aralia nudicaulis L.), Canada mayflower (Maianthemum candense Desf.), star flower (Trientalis borealis Raf.), and partridgeberry (Mitchella repens L.). Results also show that over story composition and structure can be used to assess understory species richness. Species richness follows a general trend among cover types of: hardwood ≥ regenerating forest, hardwood–pine, and pine ≥ mixed ≥ hardwood–hemlock > hemlock. Eastern hemlock (Tsuga canadensis L. Carriere) and mountain laurel (Kalmia latifolia L.) (which decreased in dominance from ridge to valley) both showed negative trends with understory species richness. Topographic position also appears associated with understory floristic patterns (particularly for the hardwood cover type), both in terms of species richness and compositional diversity which both increased from ridge, to midslope, to valley. However, overstory composition (covertype) appears to have a higher order influence on vegetation and mediates the role of topography. The results from this study provide foresters with a better understanding for maintaining floristic diversity and composition of the understory in managed forests.  相似文献   

4.
From 1989 to 2003, a widespread outbreak of spruce beetles (Dendroctonus rufipennis) in the Copper River Basin, Alaska, infested over 275,000 ha of forests in the region. During 1997 and 1998, we measured forest vegetation structure and composition on one hundred and thirty-six 20-m × 20-m plots to assess both the immediate stand and landscape level effects of the spruce beetle infestation. A photo-interpreted vegetation and infestation map was produced using color-infrared aerial photography at a scale of 1:40,000. We used linear regression to quantify the effects of the outbreak on forest structure and composition. White spruce (Picea glauca) canopy cover and basal area of medium-to-large trees [≥15 cm diameter-at-breast height (1.3 m, dbh)] were reduced linearly as the number of trees attacked by spruce beetles increased. Black spruce (Picea mariana) and small diameter white spruce (<15 cm dbh) were infrequently attacked and killed by spruce beetles. This selective attack of mature white spruce reduced structural complexity of stands to earlier stages of succession and caused mixed tree species stands to lose their white spruce and become more homogeneous in overstory composition. Using the resulting regressions, we developed a transition matrix to describe changes in vegetation types under varying levels of spruce beetle infestations, and applied the model to the vegetation map. Prior to the outbreak, our study area was composed primarily of stands of mixed white and black spruce (29% of area) and pure white spruce (25%). However, the selective attack on white spruce caused many of these stands to transition to black spruce dominated stands (73% increase in area) or shrublands (26% increase in area). The post-infestation landscape was thereby composed of more even distributions of shrubland and white, black, and mixed spruce communities (17–22% of study area). Changes in the cover and composition of understory vegetation were less evident in this study. However, stands with the highest mortality due to spruce beetles had the lowest densities of white spruce seedlings suggesting a longer forest regeneration time without an increase in seedling germination, growth, or survival.  相似文献   

5.
Old growth stands of boreonemoral spruce (Picea abies) forests frequently have a shrub layer dominated by hazel (Corylus avellana) – a species which is generally excluded in intensively managed forests due to clearcutting activities. We sampled understory species composition, richness and biomass, as well as environmental variables beneath these two species and also within forest ‘gaps’ in order to determine the effect of overstory species on understory vegetation. Species richness and biomass of herbaceous plants was significantly greater under Corylus compared with plots under Picea and in forest gaps. Indicator species analysis found that many species were significantly associated with Corylus. We found 45% of the total species found under woody plants occurred exclusively under Corylus. Light availability in spring and summer was higher in gaps than under forest cover but no difference was found between plots under Corylus and Picea. Hence, reductions in light availability cannot explain the differences in species composition. However, Ellenberg indicator values showed that more light demanding species were found under Corylus compared to Picea, but most light demanding species were found in gaps. The litter layer under Picea was three times thicker than under Corylus and this may be an important mechanism determining differences in understory composition and richness between the woody species. The presence of Corylus is an important factor enhancing local diversity and small-scale species variation within coniferous stands. Hence, management should maintain areas of Corylus shrubs to maintain understory species diversity in boreal forests.  相似文献   

6.
In this study we integrated digital terrain models, forest inventory maps, optical remote sensing and field data to analyze the spatial structure of a 4850 km2 boreal mixedwood forest landscape in northeastern British Columbia. We built independent maps of forest cover and landform using a Bayesian classification algorithm and quantitative surface analysis. These data were used to test the strength of the association between topographic position and forest cover using a modified electivity index. We then used logistic regression to test whether the probability of a site being occupied by either mixedwood or hardwood is correlated to its distance from white spruce (Picea glauca) seed sources. The relationship between forest cover and topography showed significant departures from randomness, with white spruce preferentially associated with channels and concave slopes, and hardwoods preferentially associated with ridges and convex slopes. The analysis of mixedwood and hardwood stand distribution showed a positive correlation between hardwood occurrence and distance from spruce stands, suggesting that the dispersal limitations of white spruce is a significant influence on landscape vegetation dynamics. Overall, the results support the hypothesis that mixedwood dynamics are the product of ecological processes at multiple scales. Furthermore, these dynamics are only revealed by taking a varied approach to both data gathering and analyses.  相似文献   

7.
Natural fires and logging are two of the main disturbances affecting upland boreal forest in Alaska. The objectives of this study were to determine whether logged sites differ from burned sites in (1) overall plant species richness, (2) successional trajectories, and (3) species diversity at particular stand structural development stages. We compared plant species diversity on sites burned in natural fires to sites that were logged and not subsequently burned in central Alaska. We sampled 12 logged and 12 burned former upland white spruce (Picea glauca (Moench) Voss) forests in four stand development stages representing stand initiation (stage A), early stem exclusion (stage B), understory reinitiation (stage C), and mature hardwood (stage D) stages. In this study the dates of disturbance varied from 1990 to 1994 in stage A, 1978 to 1983 in stage B, 1957 to 1965 in stage C, and 1900 to 1920 in stage D plots. All sites were similar in slope, aspect, and soil type. Vascular plants were identified to the species level (except for certain willows) and bryophytes and lichens were identified to the level of presumptive (usually unknown) species within family groups. Organic layer thickness was significantly greater on logged sites compared to burned sites overall and at each stage. Burned sites (all stages combined) supported more species (146) than logged sites (111), and more species at each stand development stage. Burned plots in stages A and B supported abundant cover of a few apparent fire specialist species (Ceratodon purpureus (Hedw.) Brid., Marchantia polymorpha L. and Leptobryum pyriforme (Hedw.) Wils.) that were present in only minor amounts on logged sites. Burned plots exhibited higher species turnover from stage to stage and among all stages than logged plots. Species dominant in burned stage A plots were nearly absent in burned stage C and D plots, while logged stage A dominants, which were common mature forest species, increased in each subsequent stage. We compared floristic similarity between our disturbance plots and mature upland white spruce stands in Bonanza Creek Long-Term Ecological Research (LTER) site. Only five species found in the LTER dataset were not also present in this study, which suggests that nearly all species compositional change in our study area occurs during the first century after disturbance. Logged sites appear to begin and continue succession with a greater share of the original mature forest understory plants, while burned sites initiate succession with more distinctive and specialized plant species.  相似文献   

8.
Lodgepole pine (Pinus contorta Dougl. ex Loud.)-dominated ecosystems in north-central Colorado are undergoing rapid and drastic changes associated with overstory tree mortality from a current mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak. To characterize stand characteristics and downed woody debris loads during the first 7 years of the outbreak, 221 plots (0.02 ha) were randomly established in infested and uninfested stands distributed across the Arapaho National Forest, Colorado. Mountain pine beetle initially attacked stands with higher lodgepole pine basal area, and lower density and basal area of Engelmann spruce (Picea engelmannii [Parry]), and subalpine fir (Abies lasiocarpa (Hook.) Nutt. var. lasiocarpa) compared to uninfested plots. Mountain pine beetle-affected stands had reduced total and lodgepole pine stocking and quadratic mean diameter. The density and basal area of live overstory lodgepole declined by 62% and 71% in infested plots, respectively. The mean diameter of live lodgepole pine was 53% lower than pre-outbreak in infested plots. Downed woody debris loads did not differ between uninfested plots and plots currently infested at the time of sampling to 3 or 4–7 years after initial infestation, but the projected downed coarse wood accumulations when 80% of the mountain pine beetle-killed trees fall indicated a fourfold increase. Depth of the litter layer and maximum height of grass and herbaceous vegetation were greater 4–7 years after initial infestation compared to uninfested plots, though understory plant percent cover was not different. Seedling and sapling density of all species combined was higher in uninfested plots but there was no difference between infested and uninfested plots for lodgepole pine alone. For trees ≥2.5 cm in diameter at breast height, the density of live lodgepole pine trees in mountain pine beetle-affected stands was higher than Engelmann spruce, subalpine fir, and aspen, (Populus tremuloides Michx.), in diameter classes comprised of trees from 2.5 cm to 30 cm in diameter, suggesting that lodgepole pine will remain as a dominant overstory tree after the bark beetle outbreak.  相似文献   

9.
We examined radial and height growth-climate relationships of juvenile white spruce in three contrasting microenvironments within a prairie-forest ecotone of western Canada. The three microenvironments were (1) the understory of mature trembling aspen (Populus tremuloides Michx.) groves, (2) the understory of mature white spruce (Picea glauca (Moench) Voss) tree islands, and (3) the open prairie outside the influence of mature trees. Interannual patterns in radial and height growth from each of the three environments were related to the regional climate (temperature and precipitation). The growth-climate relationships identified indicated that growth of juvenile white spruce was conditioned primarily by direct moisture stress during the wettest month of the year, namely June precipitation in the current growing season (t). The growth of juvenile white spruce also responded secondarily to moisture stress indirectly induced by high temperatures in June (t). The results support the general understanding that the southern limit of conifer species in western Canada is controlled mainly by moisture stress either directly by low precipitation or indirectly due to temperature-induced drought stress.  相似文献   

10.
Plantation data from northern Ontario were subjected to stepwise regression analysis to express survival and total height as functions of site factors, planting stock characteristics and age for each of black spruce (Picea mariana [Mill.] B.S.P.), white spruce (P. glauca [Moench] Voss) and jack pine (Pinus banksiana Lamb.).Total height and height increment were affected more significantly, but by fewer factors, than survival. Black spruce survival was the most heterogeneous variable, as six factors accounted for 55.6% of its variability. Between one and five qualitative site factors (represented by dummy variables) accounted for less than 23% and 30%, respectively, of the variability in survival rate and total height. Stock type, planting season, weed control and chemical site preparation showed low but significant correlations with the response variables. Quality index was significant in every case, while shoot:root ratio, root collar diameter and dry weight were significant in some cases. The single most significant variable was plantation age, accounting for up to 30% and 63%, respectively, of the variability in survival rate and total height.  相似文献   

11.
Forests of the Kenai Peninsula, Alaska experienced widespread spruce (Picea spp.) mortality during a massive spruce beetle (Dendroctonus rufipennis) infestation over a 15-year period. In 1987, and again in 2000, the U.S. Forest Service, Pacific Northwest Research Station, Forest Inventory and Analysis Program conducted initial and remeasurement inventories of forest vegetation to assess the broad-scale impacts of this infestation. Analysis of vegetation composition was conducted with indirect gradient analysis using nonmetric multidimensional scaling to determine the overall pattern of vegetation change resulting from the infestation and to evaluate the effect of vegetation change on forest regeneration. For the latter we specifically assessed the impact of the grass bluejoint (Calamagrostis canadensis) on white spruce (Picea glauca) and paper birch (Betula papyrifera) regeneration. Changes in vegetation composition varied both in magnitude and direction among geographic regions of the Kenai Peninsula. Forests of the southern Kenai Lowland showed the most marked change in composition indicated by relatively large distances between 1987 and 2000 measurements in ordination space. Specific changes included high white spruce mortality (87% reduction in basal area of white spruce >12.7 cm diameter-at-breast height (dbh)) and increased cover of early successional species such as bluejoint and fireweed (Chamerion angustifolium). Forests of the Kenai Mountains showed a different directional change in composition characterized by moderate white spruce mortality (46% reduction) and increased cover of late-successional mountain hemlock (Tsuga mertensiana). Forests of the Gulf Coast and northern Kenai Lowland had lower levels of spruce mortality (22% reduction of Sitka spruce (Picea sitchensis) and 28% reduction of white spruce, respectively) and did not show consistent directional changes in vegetation composition. Bluejoint increased by ≥10% in cover on 12 of 33 vegetation plots on the southern Kenai Lowland but did not increase by these amounts on the 82 plots sampled elsewhere on the Kenai Peninsula. Across the Kenai Lowland, however, regeneration of white spruce and paper birch did not change in response to the outbreak or related increases in bluejoint cover from 1987 to 2000. Although some infested areas will be slow to reforest owing to few trees and no seedlings, we found no evidence of widespread reductions in regeneration following the massive spruce beetle infestation.  相似文献   

12.
Understory plants could can act as indicators of temperate forest sustainability, health and conservation status due to their importance in ecosystem function. Harvesting impacts on understory plant diversity depends on their intensity. Variable retention has been proposed to mitigate the harmful effects of timber harvesting, but its effectiveness remains unknown in southern Patagonian Nothofagus pumilio forests. The objectives of this study were to: (i) define a baseline of understory plant diversity in old-growth forests along a site quality gradient and under canopy gaps; (ii) evaluate stands with three different variable retention treatments compared to old-growth forests; and (iii) assess temporal changes during 4 years after harvesting (YAH). A 61 ha N. pumilio forest was selected. Understory plant (Dicotyledonae, Monocotyledonae and Pteridophyta) richness, cover (including woody debris and bare forest floor) and aboveground dry biomass were characterized in summer for 5 years. Before harvesting, baseline samples were conducted along a site quality gradient and outside/inside canopy gaps. Analyzed treatments include a control of old-growth forest (OGF) and three different harvesting treatments with variable retention: (i) dispersed retention (DR) of 30 m2 ha−1 (20-30% retention); (ii) aggregated retention (AR) with one aggregate per hectare and clear-cuts (28% retention); and (iii) combined dispersed and aggregated retention (DAR) with one aggregate per hectare and dispersed retention of 10-15 m2 ha−1 (40-50% retention). Data analyses included parametric and permutational ANOVAs, multivariate classification and ordinations.Before harvesting, 31 plant species were found, where richness, cover and biomass were directly related to site quality. The presence of canopy gaps did not have a significant impact on the measured variables. After harvesting, 20 new species appeared from adjacent associated environments (two from N. antarctica forests and 18 from grasslands and peatlands). At the stand level, understory values were higher in AR > DR > DAR > OGF. Most (81-95%) plant richness at baseline conditions was conserved in all treatments, where inside the aggregates understory remained similar to OGF. Combination of aggregated and dispersed retention (DAR) better limited exotic species introduction and protected sensitive species, improving conservation in harvested stands. Changes in understory variables were observed after the first YAH in all treatments; greater changes were observed in the harvested areas than in aggregates. Changes stabilized at the fourth YAH. As a conclusion, the location of retention aggregates should be selected to preserve species understory diversity of more speciose and diverse habitats or particularly uncommon stands. Implementation of different kinds (patterns and levels) of retention for improvement of biodiversity conservation in harvested forests should be included in timber and forest management planning.  相似文献   

13.
In some areas of the Mediterranean basin where the understory stratum represents a critical fire hazard, managing the canopy cover to control the understory shrubby vegetation is an ecological alternative to the current mechanical management techniques. In this study, we determine the relationship between the overstory basal area and the cover of the understory shrubby vegetation for different dominant canopy species (Pinaceae and Fagaceae species) along a wide altitudinal gradient in the province of Catalonia (Spain). Analyses were conducted using data from the Spanish National Forest Inventory. At the regional scale, when all stands are analysed together, a strong negative relationship between mean shrub cover and site elevation was found. Among the Pinaceae species, we found fairly good relationships between stand basal area and the maximum development of the shrub stratum for species located at intermediate elevations (Pinus nigra, Pinus sylvestris). However, at the extremes of the elevation-climatic gradient (Pinus halepensis and Pinus uncinata stands), stand basal area explained very little of the shrub cover variation probably because microsite and topographic factors override its effect. Among the Fagaceae species, a negative relationship between basal area and the maximum development of the shrub stratum was found in Quercus humilis and Fagus sylvatica dominated stands but not in Quercus ilex. This can be due to the particular canopy structure and management history of Q. ilex stands. In conclusion, our study revealed a marked effect of the tree layer composition and the environment on the relationship between the development of the understory and overstory tree structure. More fine-grained studies are needed to provide forest managers with more detailed information about the relationship between these two forest strata.  相似文献   

14.
Southwestern USA ponderosa pine (Pinus ponderosa C. Lawson var. scopulorum Engelm.) forests evolved with frequent surface fires and have changed dramatically over the last century. Overstory tree density has sharply increased while abundance of understory vegetation has declined primarily due to the near cessation of fires. We examined effects of varying prescribed fire-return intervals (1, 2, 4, 6, 8, and 10 years, plus unburned) on the abundance and composition of understory vegetation in 2007 and 2008 after 30+ years of fall prescribed burning at two ponderosa pine sites. We found that after 30 years, overstory canopy cover remained high, while understory plant canopy cover was low, averaging <12% on all burn intervals. We attributed the weak understory response to a few factors – the most important of which was the high overstory cover at both sites. Graminoid cover and cover of the major grass species, Elymus elymoides (squirreltail), increased on shorter fire-return intervals compared to unburned plots, but only at one site. Community composition differed significantly between shorter fire-return intervals and unburned plots at one site, but not the other. For several response variables, precipitation levels appeared to have a stronger effect than treatments. Our findings suggest that low-severity burn treatments in southwestern ponderosa pine forests, especially those that do not decrease overstory cover, are minimally effective in increasing understory plant cover. Thinning of these dense forests along with prescribed burning is necessary to increase cover of understory vegetation.  相似文献   

15.

Key message

Static site indices determined from stands’ top height are derived from different forest inventory sources with height and age information and thus enable comparisons and modeling of a species’ productivity encompassing large environmental gradients.

Context

Estimating forest site productivity under changing climate requires models that cover a wide range of site conditions. To exploit different inventory sources, we need harmonized measures and procedures for the productive potential. Static site indices (SI) appear to be a good choice.

Aims

We propose a method to derive static site indices for different inventory designs and apply it to six tree species of the German and French National Forest Inventory (NFI). For Norway spruce and European beech, the climate dependency of SI is modeled in order to estimate trends in productivity due to climate change.

Methods

Height and age measures are determined from the top diameters of a species at a given site. The SI is determined for a reference age of 100 years.

Results

The top height proves as a stable height measure that can be derived harmoniously from German and French NFI. The boundaries of the age-height frame are well described by the Chapman-Richards function. For spruce and beech, generalized additive models of the SI against simple climate variables lead to stable and plausible model behavior.

Conclusion

The introduced methodology permits a harmonized quantification of forest site productivity by static site indices. Predicting productivity in dependence on climate illustrates the benefits of combined datasets.
  相似文献   

16.
A stratified random sampling approach was employed to quantify total biomass across prevalent non-commercial forest understory species found in six counties of northwest Florida, USA. The moisture content (wet basis) and calorific values of these species were also measured. Total green biomass from forest understory species was estimated to be around 12 million metric tons, mostly comprised of Cliftonia monophylla (titi, buckwheat tree) and Cyrilla racemiflora (white titi, swamp titi). This understory forest biomass would be sufficient to generate about 28.8 million GJ of electricity or 1589.25 million liters of ethanol. A need was identified to determine the inventory of forest understory biomass at the state level and assess the overall sustainability of utilizing forest understory biomass for bioenergy.  相似文献   

17.
Eleven seral, postfire forest stands in southern Yukon (Canada) were sampled to determine where western white spruce (Picea albertiana ssp. albertiana) seedlings occurred with respect to distance to the nearest lodgepole pine (Pinus contorta var. latifolia) tree. Seedling-to-nearest tree distances were assessed at 10-cm increments up to 220?cm. On average, seedlings occurred 54?cm from the nearest pine (n?=?490), but peak frequencies were 20–50?cm away, compared to a potential separation distance of 103?cm. Greatest average seedling density occurred 10–20?cm from pine (0.81?m?2), with values between 10 and 120?cm decreasing logarithmatically with increasing distance from pine (r?=?0.994, p?n?=?11). Spruce seedling densities were <0.02?m?2 beyond 120?cm. The differences in frequency, which represented moderately strong aggregation (Clark-Evans Index 0.34–0.52), and density suggest greater spruce recruitment near lodgepole pine was facilitated by more favorable ecological conditions than further away, for example, greater nutrient availability. The bias in seedling-to-nearest tree distances occurred regardless of stand age (57–165 years), pine density (1599–5935 stems?ha?1), or understory vegetation type, although the bias may be weakened by the abundant presence of feathermosses (Hylocomium splendens) on the forest floor.  相似文献   

18.

??Context

It is assumed that climate change will favour European beech (Fagus sylvatica L.) to Norway spruce (Picea abies [L.] Karst.) at its northern range margins due to climate change and induced disturbance events.

??Aims

An old-growth mixed forest of spruce and beech, situated near the northern beech margin, was studied to reveal effects of disturbances and response processes on natural forest dynamics, focussing on the understory.

??Methods

We carried out analyses on understory dynamics of beech and spruce in relation to overstory release. This was done based on a sequence of stand and tree vitality inventories after a series of abiotic and biotic disturbances.

??Results

It became apparent that beech (understory) has a larger adaptive capacity to disturbance impacts and overstory release (68 % standing volume loss) than spruce. Understory dynamics can play a key role for forest succession from spruce to beech-dominated forests. Disturbances display an acceleration effect on forest succession in the face of climate change.

??Conclusion

Beech is poised strategically to replace spruce as the dominant tree species at the study area. Due to an increasing productivity and a lower risk of stand failure, beech may raise into the focus of forestry in southern Sweden.  相似文献   

19.
An important goal of forest restoration is to increase native plant diversity and abundance. Thinning and burning treatments are a common method of reducing fire risk while simultaneously promoting understory production in ponderosa pine (Pinus ponderosa) forests. In this study we examine the magnitude and direction of understory plant community recovery after thinning and burning restoration treatments in a ponderosa pine forest. Our objective was to determine if the post-treatment community was a diverse, abundant, and persistent assemblage of native species or if ecological restoration treatments resulted in nonnative species invasion. This project was initiated at the Grand Canyon-Parashant National Monument, Arizona, USA in 1997. We established four replicated blocks that spanned a gradient of soil types. Each block contained a control and a treated unit. Treated units were thinned to emulate pre-1870 forest stand conditions and prescribed-burned to reintroduce fire to a system that has not burned since ∼1870. We measured plant cover using the point-line intercept method and recorded species richness and composition on 0.05 ha belt transects. We examined the magnitude of treatment responses using Cohen's d effect size analysis. Changes in community composition were analyzed using nonmetric multidimensional scaling (NMS). Native plant species cover and richness increased in the thinned and burned areas compared to the controls. By the last year of the study, annual species comprised nearly 60% of the understory cover in the treatment units. Cheatgrass (Bromus tectorum), a nonnative annual grass, spread into large areas of the treated units and became the dominant understory species on the study site. The ecological restoration treatments did promote a more diverse and abundant understory community in ponderosa pine forests. The disturbances generated by such treatments also promoted an invasion by an undesirable nonnative species. Our results demonstrate the need to minimize disturbances generated by restoration treatments and argue for the need to proactively facilitate the recovery of native species after treatment.  相似文献   

20.
Novel fire mitigation treatments that chip harvested biomass on site are increasingly prescribed to reduce the density of small-diameter trees, yet the ecological effects of these treatments are unknown. Our objective was to investigate the impacts of mechanical thinning and whole tree chipping on Pinus ponderosa (ponderosa pine) regeneration and understory plant communities to guide applications of these new fuel disposal methods. We sampled in three treatments: (1) unthinned forests (control), (2) thinned forests with harvested biomass removed (thin-only), and (3) thinned forests with harvested biomass chipped and broadcast on site (thin + chip). Plots were located in a ponderosa pine forest of Colorado and vegetation was sampled three to five growing seasons following treatment. Forest litter depth, augmented with chipped biomass, had a negative relationship with cover of understory plant species. In situ chipping often produces a mosaic of chipped patches tens of meters in size, creating a range of woodchip depths including areas lacking woodchip cover within thinned and chipped forest stands. Thin-only and thin + chip treatments had similar overall abundance and species richness of understory plants at the stand scale, but at smaller spatial scales, areas within thin + chip treatments that were free of woodchip cover had an increased abundance of understory vegetation compared to all other areas sampled. Relative cover of non-native plant species was significantly higher in the thin-only treatments compared to control and thin + chip areas. Thin + chip treated forests also had a significantly different understory plant community composition compared to control or thin-only treatments, including an increased richness of rhizomatous plant species. We suggest that thinning followed by either chipping or removing the harvested biomass could alter understory plant species composition in ponderosa pine forests of Colorado. When considering post-treatment responses, managers should be particularly aware of both the depth and the distribution of chipped biomass that is left in forested landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号