首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To describe the clinicopathologic characteristics of dogs with hyperadrenocorticism and concurrent pituitary and adrenal tumors. DESIGN: Retrospective study. ANIMALS: 17 client-owned dogs. PROCEDURE: Signalment, response to treatment, and results of CBC, serum biochemical analysis, urinalysis, endocrine testing, and histologic examinations were obtained from medical records of dogs with hyperadrenocorticism and concurrent adrenal and chromophobe pituitary tumors. RESULTS: On the basis of results of adrenal function tests and histologic examination of tissue specimens collected during surgery and necropsy, concurrent pituitary and adrenal tumors were identified in 17 of approximately 1,500 dogs with hyperadrenocorticism. Twelve were neutered females, 5 were males (3 sexually intact, 2 neutered); and median age was 12 years (range, 7 to 16 years). Hyperadrenocorticism had been diagnosed by use of low-dose dexamethasone suppression tests and ACTH stimulation tests. During high-dose dexamethasone suppression testing of 16 dogs, serum cortisol concentrations remained high in 11 dogs but decreased in 5 dogs. Plasma concentrations of endogenous ACTH were either high or within the higher limits of the reference range (12/16 dogs), within the lower limits of the reference range (2/16), or low (2/16). Adrenal lesions identified by histologic examination included unilateral cortical adenoma with contralateral hyperplasia (10/17), bilateral cortical adenomas (4/17), and unilateral carcinoma with contralateral hyperplasia (3/17). Pituitary lesions included a chromophobe microadenoma (12/17), macroadenoma (4/17), and carcinoma (1/17). CLINICAL IMPLICATIONS: Pituitary and adrenal tumors can coexist in dogs with hyperadrenocorticism, resulting in a confusing mixture of test results that may complicate diagnosis and treatment of hyperadrenocorticism.  相似文献   

2.
OBJECTIVE: To assess serum 17-alpha-hydroxyprogesterone (17OHP) and corticosterone concentrations in dogs with nonadrenal neoplasia and dogs being screened for hyperadrenocorticism. DESIGN: Prospective study. ANIMALS: 16 clinically normal dogs, 35 dogs with nonadrenal neoplasia, and 127 dogs with suspected hyperadrenocorticism. PROCEDURE: ACTH stimulation tests were performed in all dogs. Baseline serum cortisol and corticosterone concentrations were measured in the healthy dogs; baseline serum cortisol concentration and ACTH-stimulated cortisol, corticosterone, and 17OHP concentrations were measured in all dogs. Endogenous plasma ACTH concentration was also measured before administration of ACTH in dogs with neoplasia. RESULTS: In 35 dogs with neoplasia, 31.4% had high serum 17OHP concentration and 22.9% had high serum corticosterone concentration. Of the 127 dogs with suspected hyperadrenocorticism, 59 (46.5%) had high ACTH-stimulated cortisol concentrations; of those, 42 of 59 (71.2%) and 32 of 53 (60.4%) had high serum 17OHP and corticosterone concentrations, respectively. Of dogs with serum cortisol concentration within reference range after ACTH administration, 9 of 68 (13.2%) and 7 of 67 (10.4%) had high serum 17OHP and corticosterone concentrations, respectively. In the dogs with neoplasia and dogs suspected of having hyperadrenocorticism, post-ACTH serum hormone concentrations were significantly correlated. CONCLUSIONS AND CLINICAL RELEVANCE: Serum concentrations of 17OHP or corticosterone after administration of ACTH may be high in dogs with nonadrenal neoplasia and no evidence of hyperadrenocorticism. Changes in serum 17OHP or corticosterone concentrations after administration of ACTH are proportionate with changes in cortisol concentration.  相似文献   

3.
The purpose of this study was to determine steroid hormone concentration profiles in healthy intact and neutered male and female dogs. Seventeen intact female dogs, 20 intact male dogs, 30 spayed female dogs, and 30 castrated male dogs were used in this study. Serum samples were collected before and 1h after cosyntropin administration, and serum concentrations were determined for cortisol, progesterone, 17-OH progesterone (17-OHP), dehydroepiandrosterone sulfate (DHEAS), androstenedione, testosterone, and estradiol. Intact male dogs had greater concentrations of DHEAS, androstenedione, and testosterone. Intact female dogs had greater concentrations of progesterone. There was no significant difference in estradiol concentration among the four groups. Intact male dogs had lower concentrations of cortisol post-stimulation. DHEAS and testosterone did not increase in response to ACTH in intact males, and estradiol concentrations did not increase in response to ACTH in any group. Results from this study will enhance interpretation of suspected adrenal and/or gonadal disorders of dogs. Because estradiol concentrations were similar in all groups of dogs, measuring estradiol may not be a useful diagnostic test. Cortisol concentrations for intact male dogs with hyperadrenocorticism may be lower than those of female or neutered dogs.  相似文献   

4.
A number of dogs are seen with clinical signs consistent with hyperadrenocorticism (HAC), supporting CBC and biochemical findings, but the disease cannot be confirmed with either the ACTH stimulation test or the low-dose dexamethasone suppression test (LDDST). Therefore, another screening test is required to aid diagnosis in these atypical cases of HAC. The aim of this study was to investigate whether measuring 17-hydroxyprogesterone (OHP) concentrations could be used in this role. Plasma cortisol and OHP concentrations were measured in dogs with clinical signs suggestive of HAC before and after administration of exogenous ACTH. In dogs with HAC, plasma OHP showed an exaggerated response to ACTH stimulation. This was seen in both typical cases of HAC with a positive cortisol response to ACTH administration and in atypical cases with negative screening test results. The test can be performed on plasma already taken for a conventional ACTH stimulation test. Post-ACTH OHP concentrations decreased after treatment with mitotane or adrenalectomy. These results suggest that OHP measurements can be used as an aid to diagnose and manage canine HAC.  相似文献   

5.
OBJECTIVE: To evaluate the effect of trilostane on serum concentrations of aldosterone, cortisol, and potassium in dogs with pituitary-dependent hyperadrenocorticism (PDH), compare the degree of reduction of aldosterone with that of cortisol, and compare aldosterone concentrations of healthy dogs with those of dogs with PDH. ANIMALS: 17 dogs with PDH and 12 healthy dogs. PROCEDURE: For dogs with PDH, the initial dose of trilostane was selected in accordance with body weight. A CBC count, serum biochemical analyses, and ACTH stimulation tests were performed in each dog. Dogs were evaluated 1, 3 to 4, 6 to 8, and 10 to 12 weeks after initiation of treatment. Healthy dogs were evaluated only once. RESULTS: Serum aldosterone concentrations before ACTH stimulation did not change significantly after initiation of treatment with trilostane. At each evaluation after initiation of treatment, serum aldosterone concentrations after ACTH stimulation were significantly lower than corresponding concentrations before initiation of treatment. The overall effect of trilostane on serum aldosterone concentration was less pronounced than the effect on serum cortisol concentration. Median potassium concentrations increased slightly after initiation of treatment with trilostane. Dogs with PDH had significantly higher serum aldo sterone concentrations before and after ACTH stimulation than healthy dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Treatment with trilostane resulted in a reduction in serum cortisol and aldosterone concentrations in dogs with PDH, although the decrease for serum aldosterone concentration was smaller than that for serum cortisol concentration. There was no correlation between serum concentrations of aldosterone and potassium during treatment.  相似文献   

6.
OBJECTIVE: To evaluate adrenal sex hormone concentrations in response to ACTH stimulation in healthy dogs, dogs with adrenal tumors, and dogs with pituitary-dependent hyperadrenocorticism (PDH). DESIGN: Prospective study. ANIMALS: 11 healthy control dogs, 9 dogs with adrenal-dependent hyperadrenocorticism (adenocarcinoma [ACA] or other tumor); 11 dogs with PDH, and 6 dogs with noncortisol-secreting adrenal tumors (ATs). PROCEDURE: Hyperadrenocorticism was diagnosed on the basis of clinical signs; physical examination findings; and results of ACTH stimulation test, low-dose dexamethasone suppression test, or both. Dogs with noncortisol-secreting ATs did not have hyperadrenocorticism but had ultrasonographic evidence of an AT. Concentrations of cortisol, androstenedione, estradiol, progesterone, testosterone, and 17-hydroxyprogesterone were measured before and 1 hour after i.m. administration of 0.25 mg of synthetic ACTH. RESULTS: All dogs with ACA, 10 dogs with PDH, and 4 dogs with ATs had 1 or more sex hormone concentrations greater than the reference range after ACTH stimulation. The absolute difference for progesterone, 17-hydroxyprogesterone, and testosterone concentrations (value obtained after ACTH administration minus value obtained before ACTH administration) was significantly greater for dogs with ACA, compared with the other 3 groups. The absolute difference for androstenedione was significantly greater for dogs with ACA, compared with dogs with AT and healthy control dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Dogs with ACA secrete increased concentrations of adrenal sex hormones, compared with dogs with PDH, noncortisol-secreting ATs, and healthy dogs. Dogs with noncortisol-secreting ATs also have increased concentrations of sex hormones. There is great interdog variability in sex hormone concentrations in dogs with ACA after stimulation with ACTH.  相似文献   

7.
A 5-year-old female dog with hyperadrenocorticism was determined to have pituitary-dependent hyperadrenocorticism even though plasma cortisol concentrations were not suppressed after high-dosage dexamethasone administration. The diagnosis was based on a supranormal response of plasma cortisol to ACTH administration and a lack of suppression of plasma cortisol concentration after administration of 0.1 mg of dexamethasone/kg. Although a higher dosage of dexamethasone (1 mg/kg) did not cause suppression of plasma cortisol, plasma ACTH concentrations in the dog were increased above those in clinically normal dogs, supporting a diagnosis of pituitary-dependent hyperadrenocorticism. During treatment with mitotane, the dog became unconscious and died. Necropsy revealed a pituitary tumor that had compressed and displaced the hypothalamus. Although high-dosage dexamethasone suppression tests often are useful in the differential diagnosis of hyperadrenocorticism, a lack of suppression of plasma cortisol does not necessarily exclude pituitary-dependent hyperadrenocorticism.  相似文献   

8.
A study was designed to evaluate the response of blood cortisol content in dogs tentatively diagnosed as having hyperadrenocorticism by using the combined dexamethasone suppression/ACTH stimulation test procedure. Four groups of abnormal responses were identified in 54 dogs. In group I (14.8% of the dogs with abnormal responses), the only abnormality was partial suppression with dexamethasone (clinically normal dogs suppressed to less than 10 ng/ml). In group II (29.6%), 2 abnormalities were found: partial suppression with dexamethasone and hyperreactivity to the ACTH stimulation test. In group III (typical pituitary-dependent hypercortisolism, 48.1%), 3 abnormalities were found: base-line hypercortisolemia, partial suppression with dexamethasone, and hyperreactivity to the ACTH stimulation test. In group IV (7.4%), 2 abnormalities were found: base-line hypercortisolemia and partial suppression with dexamethasone. Base-line blood cortisol content was normal in 44.4% of the adrenopathic dogs. A normal response to ACTH stimulation was seen in 25.9% of the dogs, and 74.1% of the dogs hyperreacted to the ACTH stimulation test. All of the adrenopathic dogs were found to suppress partially with dexamethasone. Failure to suppress the adrenal gland completely (less than 10 ng/ml) with dexamethasone was the most consistent finding in adrenopathic dogs when using the combined dexamethasone suppression/ACTH stimulation test procedure. It was concluded that the test procedure is feasible, flexible, and convenient for clinical situations. Also, these results suggested that there may be several stages in the negative feedback failure associated with hyperadrenocorticism in dogs.  相似文献   

9.
OBJECTIVE: To compare adrenal gland stimulation achieved following administration of cosyntropin (5 microg/kg [2.3 microg/lb]) IM versus IV in healthy dogs and dogs with hyperadrenocorticism. DESIGN: Clinical trial. Animals-9 healthy dogs and 9 dogs with hyperadrenocorticism. PROCEDURES: In both groups, ACTH stimulation was performed twice. Healthy dogs were randomly assigned to receive cosyntropin IM or IV first, but all dogs with hyperadrenocorticism received cosyntropin IV first. In healthy dogs, serum cortisol concentration was measured before (baseline) and 30, 60, 90, and 120 minutes after cosyntropin administration. In dogs with hyperadrenocorticism, serum cortisol concentration was measured before and 60 minutes after cosyntropin administration. RESULTS: In the healthy dogs, serum cortisol concentration increased significantly after administration of cosyntropin, regardless of route of administration, and serum cortisol concentrations after IM administration were not significantly different from concentrations after IV administration. For both routes of administration, serum cortisol concentration peaked 60 or 90 minutes after cosyntropin administration. In dogs with hyperadrenocorticism, serum cortisol concentration was significantly increased 60 minutes after cosyntropin administration, compared with baseline concentration, and concentrations after IM administration were not significantly different from concentrations after IV administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that in healthy dogs and dogs with hyperadrenocorticism, administration of cosyntropin at a dose of 5 microg/kg, IV or IM, resulted in equivalent adrenal gland stimulation.  相似文献   

10.
OBJECTIVE: To determine whether low doses of synthetic ACTH could induce a maximal cortisol response in clinically normal dogs and to compare a low-dose ACTH stimulation protocol to a standard high-dose ACTH stimulation protocol in dogs with hyperadrenocorticism. DESIGN: Cohort study. ANIMALS: 6 clinically normal dogs and 7 dogs with hyperadrenocorticism. PROCEDURE: Each clinically normal dog was given 1 of 3 doses of cosyntropin (1, 5, or 10 micrograms/kg [0.45, 2.3, or 4.5 micrograms/lb] of body weight, i.v.) in random order at 2-week intervals. Samples for determination of plasma cortisol and ACTH concentrations were obtained before and 30, 60, 90, and 120 minutes after ACTH administration. Each dog with hyperadrenocorticism was given 2 doses of cosyntropin (5 micrograms/kg or 250 micrograms/dog) in random order at 2-week intervals. In these dogs, samples for determination of plasma cortisol concentrations were obtained before and 60 minutes after ACTH administration. RESULTS: In the clinically normal dogs, peak cortisol concentration and area under the plasma cortisol response curve did not differ significantly among the 3 doses. However, mean plasma cortisol concentration in dogs given 1 microgram/kg peaked at 60 minutes, whereas dogs given doses of 5 or 10 micrograms/kg had peak cortisol values at 90 minutes. In dogs with hyperadrenocorticism, significant differences were not detected between cortisol concentrations after administration of the low or high dose of cosyntropin. CLINICAL IMPLICATIONS: Administration of cosyntropin at a rate of 5 micrograms/kg resulted in maximal stimulation of the adrenal cortex in clinically normal dogs and dogs with hyperadrenocorticism.  相似文献   

11.
A 7-year-old 7-kg (16-lb) neutered male Himalayan cat had nonpruritic progressive alopecia of 9 months' duration. The cat had hyperglycemia and glucosuria. Physical examination revealed complete alopecia along the abdomen, inguinal area, medial and caudal areas of the thighs, ventral area of the thorax, and axilla. Clinical signs were consistent with endocrine-induced alopecia and hyperadrenocorticism, however, results of diagnostic tests (ACTH stimulation and low-dose dexamethasone suppression) were not supportive of hyperadrenocorticism. Abdominal ultrasonography revealed a mass cranial to the left kidney. Blood samples were obtained before and after ACTH stimulation to measure sex hormone concentrations. Analysis revealed markedly high blood progesterone concentrations before and after ACTH stimulation. An adrenalectomy was performed and histologic examination of the mass revealed a well-differentiated adrenocortical carcinoma. The right adrenal gland could not be viewed during surgery and was assumed to be atrophic. Following surgery, the hyperglycemia and glucosuria resolved. Within 4 months of surgery, the hyperprogesteronemia had resolved, and at 12 months the cat's coat quality appeared normal. Findings suggest that cats with signs of hyperadrenocorticism should be evaluated not only for abnormal cortisol concentrations, but also for sex hormone abnormalities.  相似文献   

12.
Hyperadrenocorticism in ferrets is usually associated with unaltered plasma concentrations of cortisol and adrenocorticotropic hormone (ACTH), although the urinary corticoid/creatinine ratio (UCCR) is commonly elevated. In this study the urinary glucocorticoid excretion was investigated in healthy ferrets and in ferrets with hyperadrenocorticism under different circumstances. In healthy ferrets and in one ferret with hyperadrenocorticism, approximately 10% of plasma cortisol and its metabolites was excreted in the urine. High-performance liquid chromatography (HPLC) revealed one third of the urinary corticoids to be unconjugated cortisol; the other peaks mainly represented cortisol conjugates and metabolites. In 21 healthy sexually intact ferrets, the UCCR started to increase by the end of March and declined to initial values halfway the breeding season (June). In healthy neutered ferrets there was no significant seasonal influence on the UCCR. In two neutered ferrets with hyperadrenocorticism the UCCR was increased, primarily during the breeding season. In 27 of 31 privately owned ferrets with hyperadrenocorticism, the UCCR was higher than the upper limit of the reference range (2.1 x 10(-6)). In 12 of 14 healthy neutered ferrets dexamethasone administration decreased the UCCR by more than 50%, whereas in only 1 of the 28 hyperadrenocorticoid ferrets did the UCCR decrease by more than 50%. We conclude that the UCCR in ferrets primarily reflects cortisol excretion. In healthy sexually intact ferrets and in ferrets with hyperadrenocorticism the UCCR increases during the breeding season. The increased UCCR in hyperadrenocorticoid ferrets is resistant to suppression by dexamethasone, indicating ACTH-independent cortisol production.  相似文献   

13.
The results of adrenocorticotropin (ACTH) stimulation and low-dose dexamethasone suppression tests (LDDST) were evaluated retrospectively in eight dogs with clinical signs of hyperadrenocorticism arising from functional adrenocortical tumours, and compared with the results from 12 dogs with confirmed pituitary-dependent hyperadrenocorticism (PDH). The post-ACTH cortisol concentration in the dogs with adrenocortical tumours ranged from 61 to 345-6 nmol/litre (median 251.5 nmol/litre) and they were within the reference range (150 to 450 nmol/litre) in five and unexpectedly low (< 150 nmol/litre) in three dogs. Both the basal and post-ACTH cortisol concentrations were significantly lower in the dogs with adrenocortical neoplasia than in the dogs with PDH. Eight hours after the LDDST, only two of six dogs with adrenocortical tumours had a cortisol concentration above 30 nmol/litre, and the median resting, three, and eight-hour cortisol concentrations were 31.5, 23.0, and 22.7 nmol/litre respectively. There was no significant cortisol suppression during the LDDST, although interpretation was complicated by the low cortisol concentrations, but two dogs showed a pattern of apparent suppression. Two dogs with adrenal tumours showed a diagnostically significant increase in 17-OH-progesterone concentration in response to ACTH although their cortisol concentrations did not increase greatly. These results differ from previous reports of the response of functional adrenal tumours to dynamic endocrine tests.  相似文献   

14.
OBJECTIVE: To determine plasma concentrations of adrenocorticotrophic hormone (ACTH) and alpha-melanocyte stimulating-hormone (alpha-MSH) in healthy ferrets and ferrets with hyperadrenocorticism. ANIMALS: 16 healthy, neutered, privately owned ferrets, 28 healthy laboratory ferrets (21 sexually intact and 7 neutered), and 28 ferrets with hyperadrenocorticism. PROCEDURES: Healthy ferrets were used for determination of reference plasma concentrations of ACTH and a-MSH. Diagnosis of hyperadrenocorticism was made on the basis of history, clinical signs, urinary corticoid-to-creatinine ratios, ultrasonography of the adrenal glands, and macroscopic or microscopic evaluation of the adrenal glands. Blood samples were collected during isoflurane anesthesia. Plasma concentrations of ACTH and alpha-MSH were measured by radioimmunoassay. RESULTS: Plasma concentrations of ACTH in 23 healthy neutered ferrets during the breeding season ranged from 4 to 145 ng/L (median, 50 ng/L). Plasma concentrations of alpha-MSH in 44 healthy neutered or sexually intact ferrets during the breeding season ranged from < 5 to 617 ng/L (median, 37 ng/L). Reference values (the central 95% of the values) for ACTH and alpha-MSH were 13 to 100 ng/L and 8 to 180 ng/L, respectively. Plasma concentrations of ACTH and alpha-MSH in ferrets with hyperadrenocorticism ranged from 1 to 265 ng/L (median, 45 ng/L) and 10 to 148 ng/L (median, 46 ng/L), respectively. These values were not significantly different from those of healthy ferrets. Plasma ACTH concentrations of sexually intact female ferrets in estrus were significantly higher than those of neutered females. CONCLUSIONS AND CLINICAL RELEVANCE: Ferrets with hyperadrenocorticism did not have detectable abnormalities in plasma concentrations of ACTH or alpha-MSH. The findings suggest that hyperadrenocorticism in ferrets is an ACTH and alpha-MSH-independent condition.  相似文献   

15.

Background

Studies in humans identified the synthesis and secretion of inhibin from adrenocortical tumors, but not pheochromocytoma (PHEO). Inhibin has not been examined in dogs as a serum biomarker for adrenal gland tumors.

Objective

To determine serum inhibin concentration in dogs with adrenal gland disease and in healthy dogs.

Animals

Forty‐eight neutered dogs with adrenal disease including pituitary‐dependent hyperadrenocorticism (PDH, 17), adrenocortical tumor (18), and PHEO (13), and 41 healthy intact or neutered dogs.

Methods

Prospective observational study. Dogs were diagnosed with PDH, adrenocortical tumor (hyperadrenocorticism or noncortisol secreting), or PHEO based on clinical signs, endocrine function tests, abdominal ultrasound examination, and histopathology. Inhibin concentration was measured by radioimmunoassay in serum before and after ACTH stimulation, and before and after treatment.

Results

In neutered dogs, median inhibin concentration was significantly higher in dogs with adrenocortical tumors (0.82 ng/mL) and PDH (0.16 ng/mL) than in dogs with PHEO and healthy dogs (both undetectable). Median inhibin concentration was significantly higher in dogs with adrenocortical tumors than in those with PDH and decreased after adrenalectomy. Median inhibin concentration was significantly higher in intact than in neutered healthy dogs and was similar in pre‐ and post‐ACTH stimulation. Sensitivity, specificity, and accuracy of serum inhibin concentration for identifying an adrenal tumor as a PHEO were 100, 88.9, and 93.6%, respectively.

Conclusions and Clinical Importance

Adrenocortical tumors and PDH but not PHEOs are associated with increased serum inhibin concentration; undetectable inhibin is highly supportive of PHEO in neutered dogs with adrenal tumors.  相似文献   

16.
Many dogs with chronic illness have serum biochemical abnormalities consistent with hyperadrenocorticism (HAC). Lymphoma (LSA) is a chronic disease of dogs. The purpose of this study was to evaluate adrenocortical screening test results in dogs with LSA to evaluate their specificity. Criteria for inclusion in the study included a diagnosis of LSA, an expected survival time of 16-56 weeks, no glucocorticoid treatment beyond 4 weeks after the initiation of chemotherapy, no evidence of HAC, and owner consent. Post-ACTH stimulation plasma cortisol concentrations (PACs), urine cortisol : creatinine (UC : Cr) ratios, and maximal left adrenal width measurements were performed at the time of LSA diagnosis before the initiation of chemotherapy and at 16, 24, 32, 40, and 52 weeks or until the loss of remission or the development of another disease. Ten dogs met the criteria for inclusion. Forty-two PACs were performed; 1 abnormal, 2 borderline, and 39 normal values were detected. Thirty-five maximal left adrenal width measurements were obtained; 0 abnormal, 5 borderline, and 30 normal measurements were detected. Thirty-six UC : Cr ratios were obtained, with 26 abnormal, 4 borderline, and 6 normal values detected and 9 of 10 dogs having at least 1 abnormal value. These data suggest that in dogs with LSA, the UC : Cr ratio frequently is abnormal and may not be a specific test for HAC, or it may be the most sensitive test for increases in cortisol secretion due to chronic illness. Maximal left adrenal width measurements and PACs were almost always normal and may be more specific for HAC or less sensitive for demonstrating chronic increases in cortisol secretion.  相似文献   

17.
OBJECTIVE: To evaluate adrenal sex hormone concentrations in neutered dogs with hypercortisolemia. DESIGN: Case series. ANIMALS: 11 neutered dogs with hypercortisolemia. PROCEDURE: Serum samples obtained before and 1 hour after administration of ACTH were evaluated for concentrations of cortisol, progesterone, testosterone, dehydroepiandrosterone sulfate or androstenedione or both, and 17-hydroxyprogesterone. RESULTS: For all dogs, concentrations of 1 or more adrenal sex hormones were substantially greater than reference range values before or after administration of ACTH. Testosterone concentration was not greater than reference range values in any of the dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Results emphasize the importance of ruling out hypercortisolemia before measuring adrenal sex hormone concentrations as a means of diagnosing adrenal hyperplasia syndrome (alopecia X) in dogs.  相似文献   

18.
This retrospective study identifies parameters that might separate dogs with hyperadrenocorticism caused by adrenocortical tumors from dogs with pituitary-dependent hyperadrenocorticism. Further, an attempt was made to identify factors that could separate dogs with adrenocortical adenomas from dogs with carcinomas. The records of 41 dogs with hyperadrenocorticism caused by adrenocortical neoplasia were reviewed. The history, physical examination, urinalysis, hemogram (CBC), chemistry profile adrenocorticotrophic hormone (ACTH) stimulation and low dose dexamethasone test results were typical of the nonspecific diagnosis of hyperadrenocorticism. The preceding information on the 41 dogs with adrenocortical tumors was compared with that from 44 previously diagnosed pituitary-dependent hyperadrenocorticoid dogs. There was no parameter which aided in separating these two groups of dogs. Thirty dogs with adrenocortical tumors were tested with a high-dose dexamethasone test and none had suppressed plasma cortisol concentrations 8 hours after IV administration of 0.1 mg/kg of dexamethasone. In 29 of the 41 adrenal tumor dogs, plasma endogenous ACTH was not detectable on at least one measurement (less than 20 pg/ml). The remaining 12 dogs from this group had nondiagnostic concentrations (20-45 pg/ml). Thirteen of 22 dogs (59%) with adrenocortical carcinomas had adrenal masses identified on abdominal radiographs and seven of 13 dogs (54%) with adrenocortical adenomas had radiographically visible adrenal masses. Thirteen of 17 adrenocortical carcinomas (76%) and five of eight adenomas (62%) were identified with ultrasonography. Radiographs of the thorax and ultrasonography of the abdomen identified most of the dogs (8 of 11) with metastatic lesions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Pituitary-dependent hyperadrenocorticism in a cat   总被引:1,自引:0,他引:1  
Pituitary-dependent hyperadrenocorticism was diagnosed in a 9-year-old, male castrated cat that had polyuria, polyphagia, pendulous abdomen, truncal hair loss, congestive heart failure, and insulin-resistant diabetes mellitus. Results of pituitary-adrenal function testing revealed inadequate serum cortisol suppression following dexamethasone administration, exaggerated serum cortisol responses after exogenous ACTH stimulation, and high plasma ACTH concentrations. The pathologic findings of bilateral adrenocortical hyperplasia and a pituitary adenoma that immunostained well for ACTH-related peptides confirmed pituitary-dependent hyperadrenocorticism.  相似文献   

20.
The plasma cortisol response to exogenous ACTH (ACTH stimulation test) was evaluated in 22 dogs with hyperadrenocorticism caused by adrenocortical neoplasia. The mean basal cortisol concentration (6.3 microgram/dl) was high, but 7 dogs had basal cortisol concentrations that were within normal range. Administration of exogenous ACTH increased the plasma cortisol concentrations in each dog. Normal post-ACTH cortisol concentrations were found in 9 (41%) of the 22 dogs; 13 (59%) had an exaggerated increase in cortisol concentrations after ACTH administration. In 9 of 13 dogs with carcinoma and in 4 of 9 with adenoma, the cortisol response was exaggerated. The mean post-ACTH cortisol concentration in the dogs with carcinoma was approximately 4 times that of the dogs with adenoma; the 7 dogs with the highest concentrations had carcinoma. Repeat studies were performed in 6 dogs 2 to 8 weeks after initial testing. In 5 of the 6 dogs, repeat testing yielded data of similar diagnostic significance. One dog, however, had an abnormally high post-ACTH cortisol concentration at initial evaluation, but had only a minimal response to ACTH administration, with a normal post-ACTH cortisol concentration, at time of resting. Although ACTH stimulation testing is useful in diagnosing hyperadrenocorticism, it can not reliably separate dogs with hyperfunction adrenocortical tumors from clinically normal dogs or from dogs with pituitary-dependent hyperadrenocorticism (bilateral adrenocortical hyperplasia).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号