首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为提高典型黑土区土壤有机质含量的预测精度,结合田间实测数据与遥感影像反射率数学变换数据筛选出最佳特征波段,并建立多种回归模型,对研究区土壤有机质含量预测模型进行优选。结果表明:对影像反射率进行不同的数学变换处理能够扩大数据中对有机质含量变化敏感的细微吸收特征,突出敏感光谱信息。利用标准化模型对处理后的光谱数据贡献率进行量化,结合相关系数筛选最佳特征波段。建模结果显示,支持向量机模型在检验集上的决定系数为0.89,均方根误差为2.81 g·kg-1,模型整体的相对分析误差为2.14,对土壤有机质含量的预测能力极好。研究结果可为黑土区土壤有机质含量的预测模型优选提供参考,也可为中国北部地区耕地的有机质含量监测和有效开发提供基础理论依据。  相似文献   

2.
生物量与产量密切相关,建立生物量无损预测模型对于大豆产量预测及栽培管理均有重要意义。通过分析大豆生物量积累量与冠层光谱反射率及其衍生的比值植被指数(RVI)、归一化植被指数(NDVI)及差值植被指数(DVI)之间的关系,确立大豆生物量积累量的敏感波段及预测模型。结果表明:冠层光谱反射率在560nm时与大豆地上生物量相关系数最大(R=-0.91,P0.05),三个可见光波段(485、560和660nm)和两个近红外波段(830和1 650nm)组成的比值植被指数RVI(830和560nm)与大豆生物量积累量的相关系数显著。通过逐步回归分析确立大豆生物量的预测模型,560nm反射率与大豆地上生物量相关关系的决定指数R2高达0.85,RVI 830_560与大豆地上生物量相关关系的决定指数R2为0.77。  相似文献   

3.
基于最优模型的荒地土壤有机质含量空间反演   总被引:1,自引:0,他引:1  
本研究采用Landsat OLI多光谱遥感影像数据,结合实测土壤有机质含量,利用原始影像反射率(A)、反射率一阶微分(A')、反射率二阶微分(A″)建立单波段和多波段回归模型,估算研究区土壤有机质含量,反演其空间格局。结果显示,经微分处理后的影像反射率,与土壤有机质含量相关系数增大。其中A'处理后的遥感影像反射率与土壤有机质含量的相关系数达到-0.850,比原始的提高了0.401,增强了有机质的光谱信息。多波段回归建模效果优于单波段建模。且A'的多波段回归模型预测精度最好,其建模集R~2为0.80,RMSE为3.66,预测集R~2为0.79,RMSE为3.65,RPD为1.96,表明该模型精度高,误差最小,预测效果最优,可以很好地估算该区域的土壤有机质含量。基于一阶微分的多波段回归模型:SOM=23.12-470.94B3-24.35B4-43.06B6,对研究区的SOM含量空间分布格局进行反演,发现反演结果与实际情况吻合,因此,利用多波段回归模型能很好反演研究区SOM含量空间分布格局,表达其不同有机质含量的土壤空间分布与其对应的空间位置,这为土壤有机质面状参数的获取提供了快速而有效的方法。  相似文献   

4.
基于GF-1土壤有机质含量估测的研究   总被引:1,自引:0,他引:1  
【目的】本试验利用GF-1遥感影像估测土壤有机质含量。【方法】该文对扶余市耕作区土壤进行采样,在实验室化验土壤样品的有机质含量,分析GF-1各波段反射率及其变换形式与土壤有机质含量的相关性,确定有机质的敏感波段,建立土壤有机质含量的单波段与多波段估测模型,旨在通过比较估测模型的精度和稳定性,确定研究区土壤有机质含量的最优估测模型。【结果】F-1各波段反射率与有机质含量均呈显著负相关,且在第3波段达到最大值,其相关系数为-0.805,均方根误差为0.362;将反射率进行幂、指数变换以后可以有效提高与有机质含量的相关性,相关系数分别提高至-0.886和-0.872,均方根误差下降至0.283和0.342;利用前3个波段反射率指数变换建立起的多元估测模型,模型判定系数R~2达到0.851,检验样本的均方根误差降低至0.172,表明此模型的估测精度较高、稳定性较好。【结论】GF-1遥感影像可以作为估测土壤有机质含量的遥感数据源,并为使用GF-1遥感影像估测土壤成分等方面的研究提供参考。  相似文献   

5.
奚雪  赵庚星  高鹏  崔昆  李涛 《中国农业科学》2020,53(24):5005-5016
【目的】探究黄河三角洲麦田土壤盐分准确高效的遥感提取方法,掌握土壤盐渍化程度与分布。【方法】以垦利区为研究区,均匀布设冬小麦种植区样点77个,同时设置代表性试验区2个,网格布设样点99个,实测采集麦田土壤表层盐分数据及试验区无人机多光谱图像。筛选红、绿、红边、近红4个波段及SI、NDVI、DVI、RVI、GRVI 5个光谱指数中的敏感光谱参量,采用逐步回归、偏最小二乘法、BP神经网络及SVM支持向量机4种方法建立土壤盐分估测模型,使用波段比值均值法得到Sentinel-2A卫星影像相应波段的修正系数,进而将筛选的土壤盐分估测模型转换为基于卫星影像的反演模型,经麦区实测样点数据验证,得到最佳的麦区土壤盐分反演模型,实现试验区和研究区2个尺度的麦田土壤盐分反演。【结果】无人机4个波段及光谱指数NVDI、RVI、SI与土壤盐分含量相关性显著,4种建模方法的13个模型中,以NDVI、RVI、SI建立的4个指数模型的建模及验证R2均优于其他模型;对4个模型进行升尺度修正及验证,效果最佳的反演模型为偏最小二乘法光谱指数模型:Y=-9.4774×NDVI1+0.4794×RVI1+3.0747×SI1+5.0604,验证R2为0.513,RMSE为1.379;利用该模型反演得到了试验区及整个研究区麦田土壤盐分等级分布图,结合实测插值及调查结果,证明反演模型及空间分布结果准确、可靠。【结论】本研究构建了卫星、无人机一体化的滨海麦区土壤盐分反演模型,对滨海盐渍区农作物的生产管理有积极参考价值。  相似文献   

6.
以博斯腾湖西岸湖滨带为研究区,利用ASD Field Spec 3便携式光谱仪对土壤样品反射率进行测量,结合土壤盐分数据,建立研究区土壤含盐量估算模型,探讨土壤盐分含量和反射率曲线之间关系。结果表明:研究区土壤盐分类型以硫酸盐为主;土壤样品光谱曲线形态特征相似,且基本平行,土壤光谱曲线在400~1 500、1 900~2 100和2 100~2 300nm区域出现明显的吸收带;在350~1 350、1 430~1 750和1 950~2 400nm区域土壤光谱反射率与土壤盐分含量相关系数较其他波段大,曲线平缓,相关系数均值为-0.35,且光谱反射率的一、二阶导数微分均可以增强反射率与土壤盐分含量之间的相关性;由土壤光谱发射率一阶导数微分建立的多元回归模型可以较好地预测土壤盐分含量,相关系数为0.90,均方根误差为0.22。  相似文献   

7.
基于Hyperion数据的耕地土壤有机质含量遥感反演   总被引:2,自引:0,他引:2  
为了探究耕地土壤有机质含量与卫星影像光谱间的关系,确定土壤有机质的光谱特征,构建土壤有机质含量反演模型.利用Hyperion高光谱卫星影像和福建省三明市80个土壤调查样点分析数据,对土壤有机质与光谱指数相关性进行了分析;在提取特征光谱指数的基础上,分别基于敏感波段和特征指数建立线性模型和多元逐步回归模型.结果表明:土壤有机质含量在Hyperion高光谱782.95~813.48 nm波段具有良好的响应能力;反射率的一阶导数所建立的模型拟合效果最优,其R2为0.777,RMSE为5.31,验证模型有机质实测值与预测值的R2为0.809,表明它能够用于区域有机质含量的快速测定.  相似文献   

8.
目的 研究不同维度光谱变换下土壤盐分反演模型及其验证。方法 以博斯腾湖西岸湖滨绿洲为研究区,面向ASD高光谱数据,利用17种一维数学变换光谱和3种二维变换光谱指数,分别与实测土壤盐分进行相关分析,得到0.01显著性检验水平下初步优选的光谱特征参数,基于VIP准则选入最佳自变量实现PLSR模型构建,进行精度验证。结果 研究区干季土壤平均反射率随含盐量的增加而高于湿季土壤平均反射率,尤其体现在590、800、1 810、2 150 nm处;17种一维单波段光谱变换中,对数倒数的一阶微分(1/lgR)变换与土壤盐分含量相关性最好,峰值敏感波段为1 083 nm,相关系数绝对值|r|最高达0.63;3种二维两波段光谱变换中,归一化光谱指数NDSI(R1 780,R1 742)与土壤盐分含量相关性最好,相关分析决定系数R 2最大值为0.57;基于特征归一化光谱指数结合VIP准则进行自变量筛选的PLSR估算模型效果最佳,土壤盐分建模集和验证集的决定系数 R V 2 达0.77,均方根误差RMSEV为0.64 g/kg,相对分析误差RPD为2.11。 结论 利用归一化光谱指数NDSI建立PLSR高光谱模型可有效地对研究区土壤盐分进行定量估算。  相似文献   

9.
《山东农业科学》2019,(12):120-126
随着人类活动的影响,重金属污染逐渐成为土壤和环境研究的重点。采用遥感技术可以克服传统重金属监测过程中的缺点,做到快速、高效地反映重金属空间分布。本文以克拉玛依市某区域为研究区,利用SVC HR-768光谱仪和Landsat8影像对41块土壤样品进行地物光谱和波段反射率的获取,采用相关性分析和偏最小二乘回归的原理,建立地物光谱与Landsat8数据的土壤铅含量反演模型。结果表明,基于一阶微分变换的地物光谱能更好地反映光谱与重金属铅含量的相关性,建立的模型为最优预测模型;通过波段比值和波段差值方式建立的基于Landsat8波段反射率的反演模型精度较好,能粗略预测土壤重金属铅的含量,并且基于Landsat8影像反演的土壤铅含量空间分布符合土壤样点实测值的空间分布,为今后土壤环境监测土壤重金属含量提供数据支撑。  相似文献   

10.
[目的]建立土壤含水量遥感监测模型。[方法]选取陕西省横山县作为研究区,以野外原位光谱测量数据和实验室内测得的土壤含水量为基础,进行高光谱数据处理,分析土壤含水量的光谱特征;对实测土壤光谱反射率进行倒数、对数、均方根及其一阶导数微分等光谱变化换,计算高光谱指数,并与土壤样本含水量进行相关性分析,筛选对土壤含水量敏感的光谱特征波段,利用多元线性回归分析建立土壤含水量监测模型。[结果]随着土壤含水量的增加,土壤光谱反射率呈减小趋势。土壤含水量与光谱指数的特征波段呈良好的线性关系,所有模型均通过了0.01水平的显著性检验。模型精度验证表明,预测值与实测含水量相关系数较高,特别是反射率倒数一阶微分模型,在0.01显著性水平下,相关系数为0.886。[结论]该研究建立的土壤含水量遥感反演模型可行有效,通过了有效性检验,在一定程度上可以用来反演研究区土壤含水量。  相似文献   

11.
哈尔滨市土壤有机质高光谱模型   总被引:2,自引:0,他引:2  
通过对哈尔滨市土壤样品实测和室内高光谱测定,以土壤光谱反射率(反射率倒数、反射率对数、反射率一阶微分等)的数学变换数据作为自变量,土壤有机质质量分数的对数作为因变量,利用Matlab7.1软件,多元统计分析方法,建立了哈尔滨市土壤有机质质量分数高光谱多元逐步回归分析模型,实现了对哈尔滨地区土壤有机质的快速预测。  相似文献   

12.
基于人工神经网络的大豆叶面积高光谱反演研究   总被引:26,自引:0,他引:26  
【目的】探索不同高光谱模型监测大豆叶面积指数LAI的精度。【方法】实测不同水肥耦合作用下,大豆冠层的高光谱反射率与叶面积指数(Leaf Area Index)数据,对二者进行相关分析;采用敏感波段(801nm,670nm)构建RVI, NDVI, SAVI, OSAVI 和MTVI2植被指数,建立大豆LAI估算模型;最后采用相关系数较大的波段作为神经网络模型的输入变量进行大豆LAI的估算。【结果】大豆LAI与光谱反射率在可见光波段呈负相关、近红外波段呈正相关、红边处相关系数由负变正;微分光谱在三边处与大豆LAI关系密切,在红边处取得最大回归确定性系数(R2 = 0.86)。植被指数可以较为精确反演大豆LAI,确定性系数R2>0.84。人工神经网络模型可以大大提高大豆LAI的估算水平,当隐藏层节点数为2时,R2为0.92,随着隐藏层节点数的增加,R2可高达0.96;在没有黄熟期数据干扰的情况下,神经网络可以进一步提高大豆LAI的反演精度,R2可高达0.99。【结论】与基于植被指数建立的模型相比,神经网络模型可以有效避免因LAI过高而出现的过饱和现象,大大提高了LAI的反演精度。  相似文献   

13.
以兴国县稻田土高光谱反射率为研究对象,对比分析了同一种光谱反射率变换形式下土壤全钾、速效钾与高光谱反射率的相关性,提取了全钾和速效钾的高光谱敏感波段,建立了基于反射光谱特征的南方丘陵稻田土全钾、速效钾高光谱反演模型.经分析可知,在355~620 nm波段,土壤全钾、速效钾含量与光谱反射率相关性同增同减,而在621~2 250 nm波段内,土壤全钾含量与光谱反射率相关性要大于土壤速效钾;通过分析兴国县稻田土全钾、速效钾含量与光谱反射率18种数学变换的相关系数,提取全钾的敏感波段为602、804 nm,速效钾的敏感波段为602、1 058、1 638、2 214 nm;采用偏最小二乘回归,利用高光谱指数构建的反演模型能较好地预测全钾、速效钾含量,模型建模的相关系数和验证系数都较高,基于速效钾含量建立的南方丘陵稻田土高光谱反演模型预测能力较好.  相似文献   

14.
该文基于地貌类型分析土壤有机质含量与多光谱遥感影像光谱波段之间相关关系,并构建不同地貌类型区有机质含量反演模型.结果表明,各波段光谱反射率与土壤有机质含量均呈负相关关系;利用SPSS软件对所有波段进行剔除变量(remove)线性回归分析,当全部波段参与构建反演模型时,一次反演模型拟合效果较好.分地貌类型区构建土壤有机质反演模型精度高于整个区域反演模型精度,与实际值对比,当允许误差为7%时,土壤有机质含量识别度为91.65%.基于地貌类型构建土壤有机质含量反演模型提取研究区土壤有机质含量是切实可行的,且精度较高.  相似文献   

15.
该文基于地貌类型分析土壤有机质含量与多光谱遥感影像光谱波段之间相关关系,并构建不同地貌类型区有机质含量反演模型。结果表明,各波段光谱反射率与土壤有机质含量均呈负相关关系;利用SPSS软件对所有波段进行剔除变量(remove)线性回归分析,当全部波段参与构建反演模型时,一次反演模型拟合效果较好。分地貌类型区构建土壤有机质反演模型精度高于整个区域反演模型精度,与实际值对比,当允许误差为7%时,土壤有机质含量识别度为91.65%。基于地貌类型构建土壤有机质含量反演模型提取研究区土壤有机质含量是切实可行的,且精度较高。  相似文献   

16.
利用花生生物物理参数和冠层高光谱数据,基于光谱一阶微分技术,选取对生物量敏感的波段组成高光谱植被指数,建立花生叶鲜生物量的高光谱遥感估算模型。结果表明,花生叶鲜生物量在绿峰525~556 nm、红谷645~689 nm和近红外710~900 nm波段范围反射光谱与花生叶鲜生物量有极显著相关关系。高光谱反射率与叶鲜生物量在大部分可见光区和近红外波段呈显著相关,并且在可见光红光波段呈负相关,在近红外波段呈极显著正相关。花生光谱反射率与花生叶鲜生物量相关的近红外、红光波段的敏感波段分别为770、673 nm,用这2个波段构建植被指数,组成高光谱归一化植被指数(NDVI)、比值植被指数(RVI)、差值植被指数(DVI)和再次归一化植被指数(RDVI),并构建生物量反演模型;相对于NDVI、DVI、RDVI建立的简单线性函数估测模型,RVI所构建的花生叶鲜生物量估测模型的预测精度较高。  相似文献   

17.
定量分析了北京顺义、通州区土壤高光谱反射特征,利用资源三号、高分一号、高分二号传感器的光谱响应函数,结合高光谱数据生成相应宽波段模拟数据;将土壤光谱数据、拟合宽波段数据分别与实测土壤有机质含量开展相关性分析,提取并筛选敏感波段,利用偏最小二乘法建立基于高光谱数据的土壤有机质含量预测模型;依据宽波段模拟数据和实测土壤有机质含量的相关性,提取并筛选敏感波段,建立土壤有机质含量预测模型。结果表明,在基于土壤高光谱数据建立的土壤有机质含量预测模型中,以对数的一阶微分为最优,其R和RMSE分别为0.697和0.195,偏最小二乘法得到的反演土壤有机质含量的模型是可靠的;在基于模拟宽波段构建的土壤有机质含量估测模型中,以高分一号的拟合精度最高,R和RMSE分别为0.334和0.240;受室外不可控因素的影响,模拟宽波段数据在估测北方地区土壤有机质含量方面仍需进一步研究。  相似文献   

18.
以GF-1和Landsat 8遥感影像为数据源,以依安县、拜泉县为研究对象,结合研究区土壤采样的化验数据,比较2种遥感影像在反演土壤有机质含量方面的能力与差异。结果表明,2种遥感影像在可见光与近红外波段的反射率与土壤有机质含量显著相关,且在近红外波段相关性最大,利用GF-1近红外波段建立的指数模型比利用Landsat 8近红外波段建立的幂模型估测效果略好。引入蓝波段(深蓝波段)、红波段建立起来的多元回归模型比单波段模型具有更高的反演精度,尤以对Landsat 8遥感影像的改善效果更明显。与Landsat 8相比,GF-1遥感影像具有更高的空间分辨率和更短的重访周期,在土壤有机质含量的探测方面具有相近的预测能力,可以替代Landsat 8遥感影像。  相似文献   

19.
大豆叶面积的高光谱模型   总被引:4,自引:0,他引:4  
以ASD FieldSpec-Vnir光谱仪实测不同生长季大豆的冠层反射率,同期采集对应大豆LAI,然后逐波段分析冠层光谱反射率、导数光谱与大豆LAI的相关关系;并采用单变量线性回归逐波段分析了冠层光谱反射率、导数光谱与大豆LAI确定性系数随波长的变化趋势,建立了以近红外与可见光波段冠层光谱反射率的比值植被指数RVI与大豆LAI的高光谱遥感估算模型。结果表明,冠层光谱反射率在350 ̄680nm、760 ̄1050nm波谱区与大豆LAI相关性较大,而在红边区680 ̄760nm的相关性变化较大;导数光谱在红边区与大豆LAI相关程度高。通RVI方式建立的遥感估算模型能较为准确估算大豆LAI,通过对红外与蓝波段建立的RVI指数与大豆LAI的回归模型,表明其预测大豆LAI的能力较好,有进一步研究的必要;通过对比发现,神经网络模型可以大大提升高光谱反演大豆LAI的水平,模型的确定系数R2为0.9661,而总均方根误差RMSE仅为0.446m2.m-2。  相似文献   

20.
棉花冠层叶片叶绿素含量与高光谱参数的相关性   总被引:1,自引:0,他引:1  
【目的】研究棉花冠层叶片叶绿素含量与高光谱参数的相关性,建立叶绿素含量估算模型。【方法】2014年,以鲁棉研28号为研究对象,测定不同施氮水平和生育期棉花冠层叶片叶绿素含量及350~2 500nm光谱反射率,以棉花冠层高光谱反射率与冠层叶片叶绿素含量为数据源,在分析叶绿素含量与原始高光谱反射率(R)、一阶导数光谱反射率(DR)、光谱提取变量和植被指数相关性的基础上,采用一元线性与多元逐步回归的方法构建了叶绿素含量估算模型,并对从中筛选的6种棉花冠层叶片叶绿素含量估算模型进行精度对比。【结果】1)棉花冠层叶片叶绿素含量在反射光谱766nm处相关系数达到最大值,相关系数r=0.836;对于一阶导数光谱,叶绿素含量的敏感波段发生在753nm处,r=0.878;2)以9种光谱提取变量与8种植被指数为自变量,建立叶绿素含量的估算模型,筛选出的特征变量为红边面积(SDr)、绿峰与红谷的归一化值((Rg-Rr)/(Rg+Rr))、绿峰幅值(Rg),仅采用8种常用植被指数建立估算模型,筛选出的变量为比值植被指数(RVI);3)所建立的6种模型中以基于一阶导数光谱反射率建立的多元逐步回归估算模型精度最高,均方根误差(RMSE)为1.075,相对误差(RE)为2.22%,相关系数(r)为0.952。【结论】采用原始光谱、一阶导数光谱、光谱提取变量及植被指数均可对棉花叶绿素含量进行监测,其中基于一阶导数光谱的多元逐步回归模型对叶绿素含量的估算效果最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号