首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein changes in relation to solubility, Maillard reaction (MR), and protein cross-linking in whole milk powder (WMP), skim milk powder (SMP), and whey protein concentrate (WPC) stored at different relative humidities (RHs) were investigated by chemical and electrophoretic methods. WMP and SMP reached minimum solubility rapidly, while WPC showed no change in solubility. The loss of solubility corresponded with development of high-molecular-weight protein complexes observed by two-dimensional electrophoresis. The maximal MR rate occurred at 66% RH for WMP and SMP (high lactose/protein ratios) and 84% RH for WPC (low lactose/protein ratios) based on the furosine and hydroxymethylfurfural contents. However, browning was greatest at 84% RH in all powders. The minimum solubility corresponded with the casein and fat contents. The retention of solubility and minimal protein cross-linking of WPC compared to casein-containing powders suggest that the casein content and cross-linking strongly influence the decrease in the solubility of milk powder.  相似文献   

2.
This work demonstrated the preparation of protein-stabilized beta-carotene nanodispersions using the solvent displacement technique. The emulsifying performance of sodium caseinate (SC), whey protein concentrate (WPC), whey protein isolate (WPI), and a whey protein hydrolysate (WPH, 18% degree of hydrolysis) was compared in terms of particle size and zeta-potential of the nanodispersions. SC-stabilized nanodispersions exhibited a bimodal particle size distribution: large particles (stabilized by casein micelles) with a mean particle size of 171 nm and small particles (stabilized by casein submicelles) of 13 nm. This was confirmed with transmission electron microscopy analysis. Most of the beta-carotene precipitated (87.6%) was stabilized in the small particles. On the other hand, the nanodispersions stabilized by the whey proteins were polydispersed with larger mean particle sizes. The mean particle size of WPC and WPI was 1730 and 201 nm, respectively. The SC-stabilized nanodispersion was expected to be more stable as indicated by its higher absolute zeta-potential value (-31 mV) compared to that of WPC (-15 mV) and WPI (-16 mV). Partially hydrolyzed whey protein possessed improved emulsifying properties as shown by WPH-stabilized samples. It was interesting to note that increasing the SC concentration from 0.05 to 0.5 wt % increased the particle size of beta-carotene stabilized by casein micelles, while the reverse was true for those stabilized by SC submicelles. Microfluidization at 100 MPa of SC solution dissociated the casein micelles, resulting in a decrease in mean particle size of the casein micelle-stabilized particles when the SC solution was used to prepare nanodispersions. The results from this work showed that protein-stabilized beta-carotene nanodispersions could be prepared using the solvent displacement technique.  相似文献   

3.
The influence of continuous phase composition on the properties of low moisture (<3% water) composite materials consisting of oil droplets dispersed in a protein-carbohydrate-glycerol matrix was investigated. These composites were produced by blending canola oil (62.3%), whey protein concentrate (1.7%, WPC), and corn syrup and glycerol together (36.0% combined) using a high speed mixer equipped with a whisk. The polyol composition was varied by changing the ratio of corn syrup to glycerol in the system while keeping the total concentration of these two polyol components constant. Some composites were analyzed directly after preparation ("unbaked"), while others were analyzed after heating at 176 degrees C for 10 min to simulate baking of a food product ("baked"). The "lightness" of the composites was greater before baking (higher L value), but the color intensity of the composites was greater after baking (higher b value), which was attributed to Maillard browning reactions. The brownness of the baked composites increased with increasing corn syrup concentration, which was attributed to Maillard browning reactions. Squeezing flow viscometry indicated that the consistency and yield stress of the composites increased with baking, which was attributed to whey protein unfolding and aggregation. These rheological parameters also increased with increasing corn syrup concentration, which was attributed to its influence on the continuous phase rheology and on the interactions between the whey proteins. This study shows that the continuous phase composition and thermal history of low moisture composite materials have a large impact on their final physicochemical properties.  相似文献   

4.
Effects of a reducing sugar, fructose, glucose, or xylose, and glass transition on the nonenzymatic browning (NEB) rate in maltodextrin (MD), poly(vinylpyrrolidone) (PVP), and water systems were studied. Glass transition temperatures (T(g)) were determined using DSC. Water contents were determined gravimetrically, and NEB rates were followed at several temperatures spectrophotometrically at 280 and 420 nm. Reducing sugar did not affect water contents, but xylose reduced the T(g) of the solid models. Sugars showed decreasing NEB reactivity in the order xylose > fructose > glucose in every matrix material. The NEB reactivity and temperature dependence of the single sugars varied in different matrices. The NEB rates of the solid models increased at temperatures 10-20 degrees C above the T(g), and nonlinearity was observed in Arrhenius plots in the vicinity of T(g). The temperature dependence of nonenzymatic browning could also be modeled using the WLF equation.  相似文献   

5.
Effects of water contents on nonenzymatic browning (NEB) rates of amorphous, carbohydrate-based food model systems containing L-lysine and D-xylose as reactants were studied at different temperatures (40, 50, 60, 70, 80, and 90 degrees C) applicable to spray drying conditions. Water sorption was determined gravimetrically, and data were modeled using the Brunauer-Emmett-Teller and Guggenheim-Anderson-deBoer equations. Glass transition, Tg was measured by DSC. NEB was followed spectrophotometrically. The rate of browning increased with water content and temperature, but a lower T-Tg was needed for browning at decreasing water content. Water content seemed to affect the activation energy of NEB, and higher water contents decreased the temperature dependence of the NEB. At higher temperatures, the NEB became less water content dependent and enhanced browning in spray-drying. The temperature dependence of nonenzymatic browning could also be modeled using the Williams-Landel-Ferry (WLF) equation, but the WLF constants were dependent on the water content.  相似文献   

6.
Heat-induced aggregation of whey proteins in solutions made from two commercial whey protein concentrates (WPCs), one derived from mineral acid whey (acid WPC) and the other from cheese whey (cheese WPC), was studied using polyacrylamide gel electrophoresis (PAGE), size exclusion chromatography (SEC), and transmission electron microscopy (TEM). Heat treatment (75 degrees C) of acid WPC solutions (12.0%, w/w, pH 6.9) resulted in formation of relatively small "soluble" aggregates that were predominantly disulfide-linked. By contrast, heat treatment of the cheese WPC solutions (under the same conditions) caused formation of relatively large aggregates, containing high proportions of aggregates linked by noncovalent associations. The rate of aggregation of both beta-lactoglobulin and alpha-lactalbumin at 75 degrees C, measured as the loss of native proteins by PAGE, was higher in the cheese WPC solution than in the acid WPC solution. Cross dialysis of the two WPC solutions resulted in alteration of the mineral composition of each WPC solution and reversing their heat-induced aggregation behavior. The results demonstrated that the mineral composition is very important in controlling the aggregation behavior of WPC products.  相似文献   

7.
The stability of ascorbic acid (AA) incorporated in whey protein isolate (WPI) film and the related color changes during storage were studied. No significant loss of AA content was found in any films prepared from pH 2.0 casting solution stored at 30% relative humidity (RH) and 22 °C over 84 days. Total visible color difference (ΔE*(ab)) of all films slowly increased over storage time. The ΔE*(ab) values of pH 3.5 films were significantly higher than those of pH 2.0 films. The stability of AA-WPI films was found to be mainly affected by the pH of the film-forming solution and storage temperature. Oxidative degradation of AA-WPI films followed Arrhenius behavior. Reduction of the casting solution pH to below the pK(a1) (4.04 at 25 °C) of AA effectively maintained AA-WPI storage stability by greatly reducing oxidative degradation, whereas anaerobic and nonenzymatic browning were insignificant. The half-life of pH 2.0 AA-WPI film at 30% RH and 22 °C was 520 days.  相似文献   

8.
Modification of the functionality of whey proteins using microbial transglutaminase (TGase) has been the subject of recent studies. However, changes in rheological properties of whey proteins as affected by extensive cross-linking with TGase are not well studied. The factors affecting cross-linking of whey protein isolate (WPI) using both soluble and immobilized TGase were examined, and the rheological properties of the modified proteins were characterized. The enzyme was immobilized on aminopropyl glass beads (CPG-3000) by selective adsorption of the biotinylated enzyme on avidin that had been previously immobilized. WPI (4 and 8% w/w) in deionized water, pH 7.5, containing 10 mM dithiothreitol was cross-linked using enzyme/substrate ratios of 0.12-10 units of activity/g WPI. The reaction was carried out in a jacketed bioreactor for 8 h at 40 degrees C with continuous circulation. The gel point temperature of WPI solutions treated with 0.12 unit of immobilized TGase/g was slightly decreased, but the gel strength was unaffected. However, increasing the enzyme/substrate ratio resulted in extensive cross-linking of WPI that was manifested by increases in apparent viscosity and changes in the gelation properties. For example, using 10 units of soluble TGase/g resulted in extensive cross-linking of alpha-lactalbumin and beta-lactoglobulin in WPI, as evidenced by SDS-PAGE and Western blotting results. Interestingly, the gelling point of WPI solutions increased from 68 to 94 degrees C after a 4-h reaction, and the gel strength was drastically decreased (lower storage modulus, G'). Thus, extensive intra- and interchain cross-linking probably caused formation of polymers that were too large for effective network development. These results suggest that a process could be developed to produce heat-stable whey proteins for various food applications.  相似文献   

9.
The solubility and chemical changes due to the Maillard reaction were investigated in milk protein concentrate powder containing 80% protein (MPC80) during storage at temperatures and relative humidities in the ranges of 25-40 °C and 44-84%, respectively. The Maillard reaction was studied by measuring furosine (a product of lactosylated protein after digestion with acid) and free hydroxymethylfurfural (HMF) contents by HPLC and L*, a*, b* values with a color-meter. Furosine, free HMF, and browning in MPC80 increased during storage, whereas the solubility decreased. The correlation between the Maillard reaction and solubility loss was explored in modified MPC80 to which glucose was added to enhance the rate of the Maillard reaction. More furosine and brown pigments were observed in the glucose-containing MPC80 than in MPC80 with added lactose. The opposite trend occurred for solubility, suggesting that the Maillard reaction may be a cause of solubility loss in MPC powder.  相似文献   

10.
The purpose of this study was to create water-in-oil (W/O) and water-in-oil-in-water (W/O/W) emulsions containing gelled internal water droplets. Twenty weight percent W/O emulsions stabilized by a nonionic surfactant (6.4 wt % polyglycerol polyricinoleate, PGPR) were prepared that contained either 0 or 15 wt % whey protein isolate (WPI) in the aqueous phase, with the WPI-containing emulsions being either unheated or heated (80 degrees C for 20 min) to gel the protein. Optical microscopy and sedimentation tests did not indicate any significant changes in droplet characteristics of the W/O emulsions depending on WPI content (0 or 15%), shearing (0-7 min at constant shear), thermal processing (30-90 degrees C for 30 min), or storage at room temperature (up to 3 weeks). W/O/W emulsions were produced by homogenizing the W/O emulsions with an aqueous Tween 20 solution using either a membrane homogenizer (MH) or a high-pressure valve homogenizer (HPVH). For the MH the mean oil droplet size decreased with increasing number of passes, whereas for the HPVH it decreased with increasing number of passes and increasing homogenization pressure. The HPVH produced smaller droplets than the MH, but the MH produced a narrower particle size distribution. All W/O/W emulsions had a high retention of water droplets (>95%) within the larger oil droplets after homogenization. This study shows that W/O/W emulsions containing oil droplets with gelled water droplets inside can be produced by using MH or HPVH.  相似文献   

11.
The conjugation reaction between whey protein isolate (WPI) and dextran in aqueous solutions via the initial stage of the Maillard reaction was studied. The covalent attachment of dextran to WPI was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with both protein and carbohydrate staining. The formation of WPI-dextran conjugates was monitored by a maximum absorbance peak at approximately 304 nm using difference UV spectroscopy. The impact of various processing conditions on the formation of WPI-dextran conjugates was investigated. The conjugation reaction was promoted by raising the temperature from 40 to 60 degrees C, the WPI concentration from 2.5 to 10%, and the dextran concentration from 10 to 30% and lowering the pH from 8.5 to 6.5. The optimal conjugation conditions chosen from the experiments were 10% WPI-30% dextran and pH 6.5 at 60 degrees C for 24 h. WPI-dextran conjugates were stable under the conditions studied.  相似文献   

12.
Role of phosphate and carboxylate ions in maillard browning   总被引:4,自引:0,他引:4  
The Maillard reaction of carbohydrates and amino acids is the underlying chemical basis for flavor and color formation in many processed foods. Phosphate and other polyatomic anions will accelerate the rate of Maillard browning, and this effect has been explained by invoking enhanced proton abstraction from intermediate Amadori compounds. In this work, the effect of phosphate and carboxylate ions on browning was measured for a series of reducing sugars with and without the presence of beta-alanine. Significant browning was observed for sugars alone suggesting that polyatomic anions contribute to Maillard browning by providing reactive intermediates directly from sugars. A mechanism is proposed for decomposition of sugars by polyatomic anions and efforts to trap reactive species using o-phenylenediamine (OPD) are described. The results of this study suggest how complications may arise from the popular usage of phosphate buffers in the study of Maillard reaction kinetics. In addition, the results imply how phosphates may be useful for enhancing browning during food processing.  相似文献   

13.
Dairy ingredients are added to bakery products to increase nutritional and functional properties. Sodium caseinate (SC) and whey protein concentrate (WPC) were incorporated into frozen dough. WPC was subjected to heat treatment (WPCHT) to eliminate undesirable weakening of the gluten network. 2% SC or 4% SC decreased proof time, increased loaf volume, and improved texture. Effects of adding 4% SC on baking quality were similar to adding ascorbic acid (AA) and diacetyl tartaric acid esters of monoglycerides (DATEM). WPC increased proof time, decreased volume, and negatively affected texture. Heat treatment of WPC improved baking performance. Bread with WPCHT had volume similar to that of the control without dairy ingredients. Adding 4% SC decreased resistance to extension (R5cm measured with the extensigraph), while adding 4% WPC increased extensibility. Dynamic oscillation testing determined the effects of the ingredients on fundamental rheological properties. WPC decreased storage modulus (G′) and loss modulus (G″), while heat treatment of WPC increased G′ and G″. Confocal laser scanning microscopy (CLSM) showed that milk proteins affect frozen dough ultrastructure. Frozen doughs with SC had an enhanced gluten network compared with the control, while untreated WPC appeared to interfere with the gluten network.  相似文献   

14.
A formulation for the whey protein isolate film or coating incorporating ascorbic acid (AA-WPI film or coating) was developed. Tensile and oxygen-barrier properties of the AA-WPI film were measured. Antioxidant effects of the AA-WPI coating on roasted peanuts were studied by comparing the values of peroxide (PO), thiobarbituric acid reactive substance (TBARS), and free-radical-scavenging activity, determined with noncoated peanuts and peanuts coated with WPI with and without ascorbic acid during storage at 21% relative humidity (RH) and 23, 35, and 50 degrees C. The incorporation of AA reduced elongation of WPI films. The oxygen-barrier property of the WPI film was significantly improved by incorporation of AA. The AA-WPI coating retarded lipid oxidation in peanuts significantly at 23, 35, and 50 degrees C. The AA-WPI coated peanuts were more red than noncoated peanuts at all storage temperatures.  相似文献   

15.
The kinetics of sucrose crystallization in whey protein isolate (WPI) films was studied at 25 degrees C in four different relative humidity environments: 23, 33, 44, and 53%. The effects of protein matrix, crystallization inhibitors, and storage environment on the rate constants of sucrose crystallization were determined using the Avrami model of crystallization. It was found that a cross-linked, denatured whey protein (WP) matrix more effectively hindered sucrose crystallization than a protein matrix of native WP. The crystallization inhibitors tested were lactose, raffinose, modified starch (Purity 69), and polyvinylpyrrolidone (Plasdone C15). Raffinose and modified starch were determined to be the more effective inhibitors of sucrose crystallization. At lower relative humidities (23, 33, and 44%), the cross-linked protein matrix played a more important role in sucrose crystallization than the inhibitors. As relative humidity increased (53%), the crystallization inhibitors were more central to controlling sucrose crystallization in WPI films.  相似文献   

16.
Inclusion of liposoluble bioactive compounds in fortified foods represents a complex challenge due to the labile nature of such compounds and the instability of oil-in-water emulsion-based delivery systems. In the present study, dispersions prepared with 10% (w/w) sunflower oil (SO) or hydrogenated palm kernel oil (HPKO) containing 0.05% (w/w) β-carotene were stabilized by various concentrations of whey protein isolate (WPI) or sodium caseinate (NaCas) (0.1 to 2.0% w/w) in 30% (w/w) sucrose aqueous solutions. Physicochemical characterization of emulsions was done considering the particle size, the particle surface protein coverage, and the physical state of continuous and dispersed phases. Physical stability of the systems and their protection properties on β-carotene were compared. The lipid carrier type and interfacial structure were investigated as the two key factors which regulate the stability of labile lipophilic bioactive molecules in food model systems. Our results showed high β-carotene stability when O/W systems were stable (protein concentration ≥0.8% w/w.) A (partially) solid lipid carrier (HPKO) enhanced protection compared to the liquid carrier (SO) as the bioactive molecules were entrapped in isolated domains within the solid lattice and kept apart from reactive species in the surroundings. NaCas provided a better barrier than WPI due to the different amino acid composition and interface structure which significantly reduced β-carotene degradation rate.  相似文献   

17.
An environmentally friendly protein fractionation process using supercritical carbon dioxide (SCO(2)) as an acid was developed to produce enriched α-lactalbumin (α-LA) and β-lactoglobulin (β-LG) fractions from whey protein isolate solutions containing from 2 to 10% WPI. This study investigated the effects of pH, temperature, WPI concentration, and residence time on the precipitation kinetics and recovery yields of individual whey proteins and the relative enrichment and composition of both protein fractions. At 5.5-34 MPa and 60-65 °C, solubilized SCO(2) decreased solution pH and induced the formation and precipitation of α-LA aggregates. Gel electrophoresis and HPLC of the enriched fractions demonstrated the production of ≥ 60% pure α-LA, and ≥ 70% pure β-LG, under various operating conditions, from WPI containing ~57% β-LG and 21% α-LA. The enriched fractions are ready-to-use food ingredients with neutral pH, untainted by acids and contaminants.  相似文献   

18.
The effects of whey protein hydrolysis on film oxygen permeability (OP) and mechanical properties at several glycerol-plasticizer levels were studied. Both 5.5% and 10% degree of hydrolysis (DH) whey protein isolate (WPI) had significant effect (p 0.05) occurred for film OP between unhydrolyzed WPI, 5.5% DH WPI, and 10% DH WPI films at the same glycerol content. Hydrolyzed WPI films of mechanical properties similar to those of WPI films had better oxygen barrier. Therefore, use of hydrolyzed WPI allowed achievement of desired film flexibility with less glycerol and with smaller increase in OP.  相似文献   

19.
The progress of the Maillard reaction and the effect of Maillard reaction products (MRPs) on lipid oxidation in preheated model systems containing pregelatinized starch, glucose, lysine, and soybean oil have been studied during storage. The samples, either containing all components or excluding one or more of them, were heated at 100 degrees C for 90 min and then stored for up to 180 days at 25 degrees C. Browning indices and lipid oxidation were measured, and the results showed that, in samples containing oil, the Maillard reaction had a significant rate also at room temperature and confirmed the ability of MRPs to retard peroxide formation. Under the conditions adopted the rate of the Maillard reaction was increased by the presence of the oil and its oxidation products. The antioxidant action of the MRPs was also evaluated using a peroxide scavenging test based on crocin bleaching. The results demonstrated that antioxidant activity developed with increased browning of the samples.  相似文献   

20.
To obtain a better understanding of how the interfacial region of emulsion droplets influences lipid oxidation, the oxidative stability of salmon oil-in-water emulsions stabilized by whey protein isolate (WPI), sweet whey (SW), beta-lactoglobulin (beta-Lg), or alpha-lactalbumin (alpha-La) was evaluated. Studies on the influence of pH on lipid oxidation in WPI-stabilized emulsions showed that formation of lipid hydroperoxides and headspace propanal was much lower at pH values below the protein's isoelectric point (pI), at which the emulsion droplets were positively charged, compared to that at pH values above the pI, at which the emulsion droplets were negatively charged. This effect was likely due to the ability of positively charged emulsion droplets to repel cationic iron. In a comparison of lipid oxidation rates of WPI-, SW-, beta-Lg-, and alpha-La-stabilized emulsions at pH 3, the oxidative stability was in the order of beta-Lg > or = SW > alpha-La > or = WPI. The result indicated that it was possible to engineer emulsions with greater oxidative stability by using proteins as emulsifier, thereby reducing or eliminating the need for exogenous food antioxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号