首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 533 毫秒
1.
基于成像高光谱的苹果叶片叶绿素含量估测模型研究   总被引:1,自引:0,他引:1  
以苹果树正常叶片、受红蜘蛛胁迫叶片的高光谱反射率和SPAD值为数据源,在分析SPAD值与原始光谱反射率及其一阶导数、高光谱值相关性的基础上,筛选敏感波段,建立了基于高光谱反射率的叶绿素含量估测模型。结果表明:正常苹果叶片叶绿素含量的敏感波段为513~539、564~585、694、699、720 nm,叶绿素含量的最佳估测模型为线性函数模型SPAD=152.450-1884.851R377;受红蜘蛛胁迫的苹果叶片叶绿素含量的敏感波段为961、972、720 nm,叶绿素含量的最佳估测模型为线性函数模型SPAD=49.371-46428.473 R’972。  相似文献   

2.
以苹果树正常叶片、受红蜘蛛胁迫叶片的高光谱反射率和SPAD值为数据源,在分析SPAD值与原始光谱反射率及其一阶导数、高光谱值相关性的基础上,筛选敏感波段,建立了基于高光谱反射率的叶绿素含量估测模型。结果表明:正常苹果叶片叶绿素含量的敏感波段为513539、564539、564585、694、699、720 nm,叶绿素含量的最佳估测模型为线性函数模型SPAD=152.450-1884.851R377;受红蜘蛛胁迫的苹果叶片叶绿素含量的敏感波段为961、972、720 nm,叶绿素含量的最佳估测模型为线性函数模型SPAD=49.371-46428.473 R’972。  相似文献   

3.
冬小麦冠层水平叶绿素含量的高光谱估测   总被引:1,自引:0,他引:1  
【目的】利用高光谱数据对抽穗期冬小麦冠层叶绿素含量进行估测,旨在为叶绿素含量快速准确估测提供参考。【方法】利用ASD便携式野外光谱仪和SPAD-502叶绿素仪实测了冬小麦抽穗期冠层光谱反射率及叶绿素含量,并对原始光谱反射率及其一阶导数光谱与叶绿素相对含量进行了相关分析,建立了基于敏感波段、红边位置、原始光谱峰度和偏度、一阶导数光谱峰度和偏度的叶绿素估算模型,并进行检验,从中筛选出精度最高的模型。【结果】冬小麦冠层光谱曲线特征与叶绿素含量之间有着密切联系。基于原始光谱一阶导数偏度和峰度的冬小麦(抽穗期)叶绿素含量估算模型拟合精度优于其他4种估算模型,决定系数R2分别为0.847和0.572,均方根误差RMSE分别为0.397和0.697,相对误差RE分别为61.0%和119.0%,拟合精度优于其他4种估算模型。【结论】原始光谱一阶导数的偏度和峰度作为自变量能很好地估测抽穗期小麦冠层叶绿素含量。  相似文献   

4.
针对传统方法测定叶绿素含量存在的不足,采用高光谱技术建立了快速、准确、无损估测葡萄叶片叶绿素含量的方法。以采自泰安万吉山基地的葡萄叶片的高光谱反射率和SPAD值为数据源,在分析SPAD值与原始光谱反射率、原始光谱反射率一阶导数、高光谱特征变量间相关性的基础上,筛选敏感波段,建立了基于高光谱反射率的葡萄叶片叶绿素含量估测模型,即SPAD=59.352+44836.313R'601,其中R'601为601 nm波段原始光谱反射率一阶导数。  相似文献   

5.
基于高光谱的小麦冠层叶绿素(SPAD值)估测模型   总被引:2,自引:0,他引:2  
选择山东省泰安市山东农业大学试验田为研究区,分别采用ASD FieldSpec 3光谱仪和SPAD-502叶绿素仪测量小麦冠层的近地高光谱反射率和SPAD值,通过分析小麦冠层光谱特征,进行光谱反射率及其一阶导数与SPAD值的相关分析,筛选敏感波段,进而分别构建基于敏感波段和植被指数的小麦冠层SPAD值估测模型,并优选确定最佳模型。结果表明,光谱反射率经一阶导数变换能更好突出光谱特征,用来筛选敏感波段,将6个敏感波段分别建立单波段及多波段组合估测模型,进而优选出最佳估测模型为R′_(871),R_(1 349),R_(725),R′_(1 995)多元线性回归模型,决定系数R~2=0.668;基于4种植被指数构建的小麦叶绿素最佳估测模型为NDVI的二次模型,方程为y=61.978 x~2-34.426 x+54.089,决定系数R~2为0.845。基于植被指数的估测模型可较好实现小麦冠层叶绿素信息的无损和快速获取,为小麦生产的实时监测提供了有效手段。  相似文献   

6.
基于成像高光谱的小麦叶片叶绿素含量估测模型研究   总被引:2,自引:0,他引:2  
为了探索小麦叶片的光谱特征和敏感波段,建立小麦叶绿素含量与光谱特征参量间的定量关系模型,以促进高光谱技术在小麦精准施肥以及快速、无损长势监测中的应用。采用相关分析法分析了叶绿素含量与光谱反射率及其一阶导数的关系,建立了叶绿素含量监测模型。经筛选验证确定小麦叶绿素含量的最佳估测模型为SPAD=36.75+188.168R387和SPAD=2 094.242R'7153+112 646.744R'7152-1.561E7R'715+42.991。这2个模型均可较好地估测小麦叶片的SPAD值,相比较而言,基于波段R387建立的SPAD估测模型精确度更高。  相似文献   

7.
通过测定毛竹林的林分光谱数据与相应的叶绿素含量,选用原始光谱反射率、导数变换光谱与"三边"参数3种光谱形式,研究不同形式的光谱信息与相应叶绿素含量的相关关系,揭示毛竹林分光谱特征在叶片—冠层尺度的差异。结果表明,叶片尺度上,原始光谱反射率对叶绿素的敏感波段在可见光区域的543~580nm,导数光谱的敏感区域在532~543nm、599~607nm以及728~736nm,"三边"参数的敏感参数为黄边面积参数(SDy);冠层尺度上,原始光谱在可见光区域及近红外区域对叶绿素的响应程度未达到显著性水平,导数光谱的敏感响应波段在近红外区域的816~819nm,"三边"参数中各参数与叶绿素含量均没有良好的相关性。叶片—冠层尺度上,某些波段的导数光谱比原始光谱对叶绿素具有更好的响应,并且"三边"参数的黄边区域参数对叶绿素的敏感性均高于其他参数,但冠层尺度与叶片尺度光谱对叶绿素的敏感区间不存在重叠。  相似文献   

8.
苹果叶片高光谱特性与叶绿素含量和SPAD值的关系   总被引:13,自引:1,他引:12  
以礼富一号和嘎啦苹果为材料,分别测量了叶片的光谱反射率、SPAD值和叶绿素含量,分析了叶片的SPAD值和叶绿素含量与微分光谱之间的相关性。结果表明,苹果叶片的叶绿素含量与SPAD值呈线性相关,品种间的SPAD值和光谱反射率都存在差异。苹果叶片叶绿素含量的敏感波段位于694 nm。基于敏感波段的微分数值,建立了一阶微分光谱值与苹果叶片SPAD值和叶绿素含量的回归模型,确定系数分别达到0.781 8和0.589 9,为利用高光谱遥感技术反映苹果生长状况的叶绿素信息提供了依据。  相似文献   

9.
基于高光谱遥感的棉花叶片叶绿素含量估算   总被引:2,自引:0,他引:2  
为提高高光谱植被指数对棉花叶绿素含量的估算精度,以陕西省关中地区棉花花铃期叶片高光谱反射率为数据源,分析了13种植被指数与棉花叶片叶绿素相对含量(SPAD)的相关关系;同时采用降精细采样法,详细分析400~2 000nm波段范围内原始光谱反射率的任意两两波段组合而成的优化光谱指数RSI与SPAD值的定量关系,构建线性及非线性回归监测模型,并对模型进行验证。结果表明:1)所提取的13种植被指数中NIR/NIR与SPAD值的相关系数最大(r=0.914),并且基于NIR/NIR(R780/R740)构建的回归方程模型优于其他植被指数,其构建的二次曲线方程回归模型建模与验模R2分别为0.900和0.785,RMSE为4.762,RE为7.86%,为基于提取的12种植被指数构建SPAD值估算模型中最佳模型;2)优化后的比值光谱指数RSI(Ration spectral index)的敏感波段为500和563nm,RSI(500,563)与SPAD值的相关系数r=0.999,与棉花叶片SPAD含量在0.01水平下呈显著相关,其构建的二次曲线方程模型效果最优,建模和验模R2分别为0.912和1.000,RMSE为2.848,RE为4.38%。与提取的13种植被指数相比,基于RSI指数二次曲线回归模型为估算叶绿素含量的最佳模型,并且模型预测值和实测值之间的符合度较高R2=0.843,表明基于波段优化算法的优化光谱指数RSI能更好的预测棉花叶片叶绿素含量。  相似文献   

10.
棉花冠层叶片叶绿素含量与高光谱参数的相关性   总被引:1,自引:0,他引:1  
【目的】研究棉花冠层叶片叶绿素含量与高光谱参数的相关性,建立叶绿素含量估算模型。【方法】2014年,以鲁棉研28号为研究对象,测定不同施氮水平和生育期棉花冠层叶片叶绿素含量及350~2 500nm光谱反射率,以棉花冠层高光谱反射率与冠层叶片叶绿素含量为数据源,在分析叶绿素含量与原始高光谱反射率(R)、一阶导数光谱反射率(DR)、光谱提取变量和植被指数相关性的基础上,采用一元线性与多元逐步回归的方法构建了叶绿素含量估算模型,并对从中筛选的6种棉花冠层叶片叶绿素含量估算模型进行精度对比。【结果】1)棉花冠层叶片叶绿素含量在反射光谱766nm处相关系数达到最大值,相关系数r=0.836;对于一阶导数光谱,叶绿素含量的敏感波段发生在753nm处,r=0.878;2)以9种光谱提取变量与8种植被指数为自变量,建立叶绿素含量的估算模型,筛选出的特征变量为红边面积(SDr)、绿峰与红谷的归一化值((Rg-Rr)/(Rg+Rr))、绿峰幅值(Rg),仅采用8种常用植被指数建立估算模型,筛选出的变量为比值植被指数(RVI);3)所建立的6种模型中以基于一阶导数光谱反射率建立的多元逐步回归估算模型精度最高,均方根误差(RMSE)为1.075,相对误差(RE)为2.22%,相关系数(r)为0.952。【结论】采用原始光谱、一阶导数光谱、光谱提取变量及植被指数均可对棉花叶绿素含量进行监测,其中基于一阶导数光谱的多元逐步回归模型对叶绿素含量的估算效果最优。  相似文献   

11.
冬小麦条锈病生理变化及其遥感机理   总被引:9,自引:0,他引:9  
对不同处理条件下的冬小麦条锈病进行 (病情指数 ) (DI)调查 ,并进行同步的光谱测定及田间取样 ,在室内测试了对病情指数有重要影响的几个参数因子 ,叶绿素含量及上叶含水量 ,并且将其与光谱反射率进行统计分析。研究结果表明 ,这些参数因子与反射率数据在 5 5 0~ 70 0和 70 0~ 1160nm范围内与DI有着相似的高相关性 ,说明条锈病害的DI变化可以通过叶绿素含量、上叶含水量参数直接的变化在光谱上得到响应 ,从而证明遥感监测DI是可行的 ,同时解释了遥感监测机理。选出与叶绿素含量、上叶含水量相关性最强的波段与DI作多元回归 ,建立的模型能很好地反演冬小麦条锈病的病情指数 ,正确率达到 75 %以上  相似文献   

12.
【目的】寻找快速、无损地诊断冠层含水量的方法,对冬小麦长势监测、旱情评估及变量灌溉提供技术支持。【方法】基于田间变量灌溉试验,分析生育期、灌溉量对冬小麦冠层含水量的影响,解析冠层光谱对不同灌溉处理下冠层含水量的响应规律,以冠层等效水厚度(EWTc)为表征指标,基于连续小波变换(CWT)技术,构建冬小麦冠层等效水厚度光谱诊断模型,利用独立样本验证模型精度。【结果】冬小麦冠层等效水厚度在生育后期均随着灌溉量的增多而增加,并随着生育进程的推进而减少;冬小麦冠层光谱反射率随着生育进程的推进而降低,在近红外和中红外波段冠层光谱反射率均表现为1水>0.5水>0水;与原始冠层光谱反射率相比,经连续小波变换后的小波系数与冠层等效水厚度相关性在第1、2、3、5、6、7分解尺度均有不同程度的提高,提高幅度在8.40%—26.20%;以第6尺度2 400 nm、第2尺度1 596 nm和第7尺度2 397 nm构建的冠层等效水厚度光谱诊断模型稳定性和精度较好,验证样本决定系数R 2为0.5411,RMSE为0.0127 cm。【结论】冬小麦冠层含水量随着灌溉时间与灌溉量发生规律性变化,在水分敏感波段范围内呈现明显的光谱响应特征,连续小波变换技术可以有效提高冠层光谱特征参量与冠层等效水厚度的相关性,实现冬小麦冠层含水量光谱诊断,可以为冬小麦田间变量灌溉决策提供技术支持。  相似文献   

13.
基于冠层反射光谱的冬小麦干物质积累量的估测研究   总被引:2,自引:0,他引:2  
[目的]分析了小麦光谱特征与干物质积累量的相关关系。[方法]通过对冬小麦不同品种的干物质积累量、叶面积等参数和冬小麦冠层光谱反射率、光谱一阶微分和光谱比值植被指数(RVI)的相关分析,确立了冬小麦干物质积累量的敏感波段,并建立了预测模型。[结果]开花期350~700 nm和1 420~1 520 nm冠层光谱反射率和灌浆期350~1 750 nm冠层光谱反射率分别与干物质积累量显著相关;比值植被指数RVI(560,1220)与干物质积累量的相关性较好;确立的冬小麦干物质积累量预测模型为:干物质积累量=-186.94×RVI(560,1220)-2 242.2(R2=0.713 8),说明通过遥感手段监测冬小麦的群体质量是可行的。[结论]该研究为高光谱遥感技术在监测小麦的群体质量的应用提供参考依据。  相似文献   

14.
利用高光谱技术估测小麦叶片氮量和土壤供氮水平   总被引:1,自引:0,他引:1       下载免费PDF全文
有效的监测作物氮素营养水平及土壤供氮能力可以为合理施用氮肥提供重要依据。本文以2 年3 点不同氮素水平下不同小麦品种的田间试验数据为基础,运用植被指数和偏最小二乘回归法,比较和分析小麦冠层光谱与叶片氮含量及土壤氮含量的关系。结果表明:小麦冠层光谱与叶片氮含量的相关性分析在可见光波段存在显著负相关,在近红外波段呈显著正相关,而与土壤氮含量的相关性呈相反趋势。基于光谱参数ND705 和GNDVI所建叶片氮含量估算模型的决定系数分别达到0.827 和0.826。基于光谱参数VOG2 所建土壤氮含量估算模型的决定系数达到0.646;与植被指数所建模型相比,综合350~1350 nm光谱波段反射率分别与小麦叶片氮含量、土壤氮含量建立偏最小二乘回归模型的预测精 度均有所提高,决定系数分别达到0.842 和0.654。本研究结果可为小麦氮素营养及土壤供氮水平的诊断监测与合理施肥管理提供了理论依据和技术支持。  相似文献   

15.
基于高光谱的冬小麦叶面积指数估算方法   总被引:3,自引:0,他引:3  
夏天  吴文斌  周清波  周勇  于雷 《中国农业科学》2012,45(10):2085-2092
【目的】冬小麦叶面积指数是评价其长势和预测产量的重要农学参数,高光谱技术监测叶面积指数的方法能够实现快速无损的监测管理。本文旨在将田间监测和高光谱遥感相结合,探索研究中国南方江汉平原地区冬小麦的最佳波段、光谱参数及监测模型。【方法】研究选取江汉平原的湖北省潜江市后湖管理区,利用ASD地物光谱仪和SunScan冠层分析系统在田间对冬小麦的冠层光谱及叶面积指数的变化进行监测,并探讨高光谱植被指数与冬小麦叶面积指数之间的定量关系。通过相关性分析、回归分析等方法构建6种植被指数与冬小麦叶面积指数的反演模型。【结果】冬小麦冠层光谱反射率中近红外波段870 nm,红光波谷670 nm,绿光波峰550 nm,蓝光450 nm波段对叶面积指数变化最为敏感,通过构建植被指数与叶面积指数模型,相关性均较好,决定系数(R2)为0.675-0.757,其中NDVI反演模型的R2最高为0.757。【结论】经模型精度检验,NDVI植被指数反演模型的精度较其它模型好,较适合对研究样区的冬小麦进行叶面积指数反演。  相似文献   

16.
The research was conducted to determine the relationships of protein and starch accumulation dynamics in grains of wheat to post-heading leaf SPAD values and canopy spectral reflectance. The results showed that leaf nitrogen accumulation was exponentially related to leaf SPAD values and linearly related to canopy spectral reflectance, and that there was negative linear relationship between leaf nitrogen accumulation and grain protein accumulation, but positive linear relationship between post-heading leaf nitrogen translocation and grain protein accumulation at maturity. In addition, leaf SPAD values were parabolically related with and ratio indices R(1 500,610) and R(1 220,560) were exponentially related with protein and starch accumulation in grains. These results indicate that leaf SPAD values and canopy spectral reflectance should be good indicators of quality formation dynamics in wheat grains.  相似文献   

17.
 研究了不同土壤水氮条件下小麦抽穗后叶片氮素状况和籽粒蛋白质及淀粉积累动态与叶片SPAD值、冠层光谱反射特征的关系。结果表明,小麦抽穗后叶片氮积累量与叶片SPAD值、冠层反射光谱分别呈显著的指数和线性相关;籽粒蛋白质积累量与叶片氮积累量呈显著线性负相关,而成熟期籽粒蛋白质积累量与抽穗后叶片氮转运量呈线性正相关。叶片SPAD值与籽粒蛋白质和淀粉积累量均呈二次抛物线关系;比值指数R(1 500,610)和R(1 220,560)分别与籽粒蛋白质积累量和淀粉积累量呈显著负指数相关。因此,叶片SPAD值和比值指数可以  相似文献   

18.
农作物冠层光谱是植物冠层光谱与周围环境光谱的混合光谱。利用北京小汤山地区的冬小麦在2001年4~5月生长期内的土壤含水量和冬小麦波谱观测数据,以及北京海淀区的夏玉米在2003年7~9月生长期内的LAI和夏玉米波谱观测数据,分析了在不同生育时期条件下,典型农作物(如冬小麦,夏玉米)的波谱数据与主要环境要素之间的相互关系。结果表明:在夏玉米抽丝期前叶面积指数与冠层光谱反射率相关性较差,而在抽丝期后相关性较好;冬小麦的苗期土壤含水量与冠层光谱在近红外波段相关系数较高,并在1 360~1 380 nm拟合得出方程。经检验,在α=0.01水平下是显著的。  相似文献   

19.
基于高光谱的苹果盛果期冠层叶绿素含量监测研究   总被引:9,自引:1,他引:8  
【目的】建立苹果冠层叶绿素含量及冠层光谱特征参量间的定量关系模型,以促进高光谱技术在苹果树精准施肥以及快速、无损长势监测中的应用。【方法】以蒙阴县果园的苹果树为试验材料,连续2年分别测定了苹果冠层光谱反射率和冠层叶绿素(Chl(a+b))含量,分析了冠层叶绿素含量与光谱反射率之间的相关关系,并计算了400—1 000 nm任意两波段组合而成的RVI、DVI、NDVI和RDVI,分析了它们与冠层叶绿素含量的关系,以逐步回归分析做比较,建立了苹果冠层叶绿素含量监测模型。【结果】结果表明,以单变量估算叶绿素含量的最佳光谱指数为NDVI(975,742),相关系数为0.5093。利用多元逐步回归建立的苹果冠层叶绿素含量最佳监测模型为Y=-0.56(log1/R)771-0.48(log1/R)1978 +0.20(log1/R)2407 -0.10(log1/R)2440+4.749。【结论】用多元逐步回归方法建立的模型来监测苹果冠层叶绿素含量效果较好,为利用高光谱技术监测苹果生长状况提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号