首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The interaction between the salt marsh plant Spartina patens, arbuscular mycorrhizal fungi (AMF) and bacteria in salt marsh sediment was examined in a long-term arbuscular mycorrhizas (AM) suppression study by applying the systemic fungicide benomyl to field-collected sediment cores with and without S. patens plants. Microbial populations were sampled four times corresponding to major plant phenological stages (dormancy, vegetative growth, reproduction, and senescence) previously linked to changes in microbial populations under field conditions. Benomyl-treatment of soil cores significantly suppressed AM colonization on S. patens, keeping values relatively consistent throughout the growing season (11.5%) whereas plants in non-treated cores experienced seasonal increases and declines in AM colonization (26.6% during vegetative growth to 11.5% during dormancy). Soil physicochemical parameters were not affected by benomyl application. In unvegetated cores, no benomyl- or seasonal effects were displayed by cell numbers and specific biomass of DAPI-stained organisms, members of the domain bacteria and here especially members of the α-, β-, γ- and δ-subdivisions of proteobacteria that were the most abundant bacterial groups. In vegetated cores, the microbial community as well as specific bacterial populations were at least twice as large in terms of number and biomass than in samples from unvegetated cores with significant seasonal changes for DAPI-stained cells, for members of the domain bacteria and for members of the α- and γ-subdivisions of proteobacteria. In benomyl-treated cores, the population of γ-subdivision of proteobacteria was significantly smaller than in non-treated cores, and a positive association was found between this bacterial group and root length colonized by AM suggesting that AM-suppression can affect populations of specific soil bacterial populations in salt marsh sediment. Benomyl-treatment had no effect on the diversity of N-fixing bacteria as evidenced by PCR-RFLP analysis, but seasonal changes were noted in vegetated cores with populations during active plant growth substantially different from populations during dormancy and senescence.  相似文献   

3.
We compare forest floor microbial communities in pure plots of four tree species (Thuja plicata, Tsuga heterophylla, Pseudotsuga menziesii, and Picea sitchensis) replicated at three sites on Vancouver Island. Microbial communities were characterised through community level physiological profiles (CLPP), and profiling of phospholipid fatty acids (PLFA).Microbial communities from cedar forest floors had higher potential C utilisation than the other species. The F layer of the forest floor under cedar contained significantly higher bacterial biomass (PLFA) than the F layer under the other three tree species. There were differences in microbial communities among the three sites: Upper Klanawa had the highest bacterial biomass and potential C utilisation; this site also had the highest N availability in the forest floors. Forest floor H layers under hemlock and Douglas-fir contained greater biomass of Gram positive, Gram negative bacteria and actinomycetes than F layers based on PLFA, and H layers under spruce contained greater biomass of Gram negative bacteria than F layers. There were no significant differences in bacterial biomass between forest floor layers under cedar. Fungal biomass displayed opposite trends to bacteria and actinomycetes, being lowest in cedar forest floors, and highest in the F layer and at the site with lowest N availability. There were also differences in community composition among species and sites, with cedar forest floors having a much lower fungal:bacterial ratio than spruce, hemlock and Douglas-fir. The least fertile Sarita Lake site had a much greater fungal:bacterial ratio than the more fertile San Juan and Upper Klanawa sites. Forest floor layer had the greatest effect on microbial community structure and potential function, followed by site, and tree species. The similarity in trends among measures of N availability and microbial communities is further evidence that these techniques provide information on microbial communities that is relevant to N cycling processes in the forest floor.  相似文献   

4.
Analysis of phospholipid fatty acids (PLFAs) was performed to investigate effects of 2,4,6-trinitrotoluene (TNT) contamination and soil remediation on microbial biomass and community structure. A TNT-contaminated and an uncontaminated soil from a former ammunition plant were analysed before and after a humification/remediation process. TNT contamination reduced microbial biomass but indicated only minor differences in PLFA composition between the contaminated and uncontaminated soils. The humification process increased microbial biomass and altered soil PLFA patterns to a larger degree than did TNT contamination.  相似文献   

5.
To test if native perennial bunchgrasses cultivate the same microbial community composition across a gradient in land-use intensification, soils were sampled in fall, winter and spring in areas under bunchgrasses (‘plant’) and in bare soils (‘removal’) in which plots were cleared of living plants adjacent to native perennial bunchgrasses (Nassella pulchra). The gradient in land-use intensification was represented by a relict perennial grassland, a restored perennial grassland, and a perennial grass agriculture site on the same soil type. An exotic annual grassland site was also included because perennial bunchgrasses often exist within a matrix of annual grasses in California. Differences in soil resource pools between ‘plant’ and ‘removal’ soils were observed mainly in the relict perennial grassland and perennial grass agriculture site. Seasonal responses occurred in all sites. Microbial biomass carbon (C) and dissolved organic C were greater under perennial bunchgrasses in the relict perennial grassland and perennial grass agriculture site when comparing treatment means of ‘plant’ vs. ‘removal’ soil. In general, soil moisture, microbial respiration, and nitrate decreased from fall to spring in ‘plant’ and ‘removal’ soils, while soil ammonium and net mineralizable nitrogen (N) increased only in ‘plant’ soils. A canonical correspondence analysis (CCA) of phospholipid fatty acid (PLFA) profiles from all sites showed that land-use history limits the similarity of microbial community composition as do soil C and N dynamics among sites. When PLFA profiles from individual sites were analyzed by CCA, different microbial PLFA markers were associated with N. pulchra in each site, indicating that the same plant species does not retain a unique microbial fingerprint across the gradient of land-use intensification.  相似文献   

6.
This study was designed to examine whether or not specific tree species (Picea glauca, Picea mariana, Pinus banksiana, Populus tremuloides), their post-fire stand age, or their position in a successional pathway had any significant effect on the functional diversity of associated soil microbial communities in a typical mixed boreal forest ecosystem (Duck Mountain Provincial Forest, Manitoba, Canada). Multivariate analyses designed to identify significant biotic and/or abiotic variables associated with patterns of organic substrate utilization (assessed using the BIOLOG™ System) revealed the overall similarity in substrate utilization by the soil microbial communities. The five clusters identified differed mainly by their substrate-utilization value rather than by specific substrate utilization. Variability in community functional diversity was not strongly associated to tree species or post-fire stand age; however, redundancy analysis indicated a stronger association between substrate utilization and successional pathway and soil pH. For example, microbial communities associated with the relatively high pH soils of the P. tremuloides-P. glauca successional pathway, exhibited a greater degree of substrate utilization than those associated with the P. banksiana-P. mariana successional pathway and more acidic soils. Differences in functional diversity specific to tree species were not observed and this may have reflected the mixed nature of the forest stands and of their heterogeneous forest floor. In a densely treed, mixed boreal forest ecosystem, great overlap in tree and understory species occur making it difficult to assign a definitive microbial community to any particular tree species. The presence of P. tremuloides in all stand types and post fire stand ages has probably contributed to the large amount of overlap in utilization profiles among soil samples.  相似文献   

7.

Purpose

The effect of spiked phthalic acid esters (PAEs) on the dissipation efficiency of Potamogeton crispus L. (P. crispus) in the rhizosphere of surface sediment samples collected from the Haihe River, China, was studied by laboratory-based sediment microcosms. In addition, the PAE dissipation mechanism was investigated according to the microbial biomass and community structure present.

Materials and methods

Dibutyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP), the two most important and abundant PAEs, were selected as target contaminants. Phospholipid fatty acids (PLFA) of sediment samples were also analyzed.

Results and discussion

The results showed that the PAE dissipation efficiency of the P. crispus rhizosphere was greater than that of the non-rhizosphere in the control system (i.e., sediment/plant systems that were not spiked with PAE and the control sediments had weathered PAE residues). However, in contrast to the control system, the PAE dissipation efficiency, especially for DEHP, was lower in the P. crispus rhizosphere than in the non-rhizosphere in the spiked system. The root bioconcentration factor (RCF) and shoot bioconcentration factor (SCF) of the two PAEs in the control system were significantly higher than those in the spiked system. Phospholipid fatty acid (PLFA) data showed that the microbial biomass and diversity index in the rhizosphere of P. crispus were higher than those in the non-rhizosphere of the two systems (spiked system and control system).

Conclusions

P. crispus is responsible for the movement of PAEs into the root zone, especially in spiked systems. The PAE removal from the rhizosphere sediments was related not only to microbial community structure but also to microbial biomass. This suggested that microbial community structure is the main factor affecting the enhancement of PAE biodegradation in the rhizosphere. Furthermore, for the same microbial community structure, microbial biomass is also important.  相似文献   

8.
This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes β-glucosidase, β-xylosidase, N-acetyl-β-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (Corg, Nt, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G to a more G+, and from a fungal to a more bacteria-dominated community. Rhizosphere β-xylosidase, N-acetyl-β-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, β-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G, G+/G). The activities of β-glucosidase, β-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microflora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply.  相似文献   

9.

Background, aim, and scope

Bahía Blanca estuary is characterized by the occurrence of large intertidal areas, including both naked tidal flats and salt marshes densely vegetated with Spartina alterniflora. The estuary is strongly affected by human activities, including industrial and municipal discharges, harbor maintenance, cargo vessels and boat navigation, oil storage and processing, etc. Even numerous studies have reported the occurrence and distribution of heavy metals in sediments and biota from this estuary, although the function of the halophyte vegetation on metals distribution was at present not studied. The main objective of the present study was to understand the potential role of the salt marshes as a sink or source of metals to the estuary, considering both the obtained data on metal levels within sediments and plants from the studied areas at naked tidal as well as vegetated flats.

Materials and methods

The selected study area, named Villa del Mar, was located in the middle estuary coast. The sampling was carried out under low tide conditions, and the sampling area was divided into two parts: A (close to Villa del Mar) and B (north-westerly of Villa del Mar). In each part, two integrated samples of S. alterniflora (the first in the medium-salt marsh and the second in the higher one) were collected. Also sediments associated with the roots of S. alterniflora were taken at the same locations, in addition to another sediment sample from the naked zones of the tidal flats (without any vegetation). After corresponding treatment at the laboratory, plant and sediment samples were mineralized according to Marcovecchio and Ferrer, J Coast Res 21:826–834, 2005), in order to measure their metal concentrations by atomic absorption spectroscopy (AAS). Analytical quality (AQ) was checked against certified reference materials from NIES, Tsukuba (Japan).

Results

Most of the Spartina samples have shown highest Cd and Mn concentrations in the aerated parts of the plants, indicating an allocation process from the roots up to the leaves. Most of the samples have presented non-detectable Pb and Cr values. Cu, Fe, Ni, and Zn have presented highest concentrations in the underground parts of the plant, suggesting an accumulation process in the roots and rhizomes. In the case of sediments, samples from those sites located far away from Villa del Mar have presented greater concentrations on the sediments associated with underground parts of Spartina than those from the naked tidal flat, for almost all of the metals studied. Unlike this, the samples from the site close to Villa del Mar have shown the higher concentrations in sediments from the naked tidal flat.

Discussion

Marsh plants are known to absorb and accumulate metals from contaminated sediment, and this is one reason that allows wetlands to be used for wastewater treatment. It was observed that those sets of samples from the same salt marsh levels (e.g., A.1 and B.1, or A.3 and B.3) have shown similar heavy metal distribution trends, although even their corresponding concentrations could be different. Thus, the concentrations of Cu, Zn, Ni, and Fe in the medium-salt marshes were higher in the underground tissues (roots plus rhizomes), with the exception of Mn, which was seen to be higher in the aboveground parts. The same tendency occurs at high-salt marshes for these heavy metals, with the exception of Ni. This fact was sustained regarding the fact that the levels mentioned (medium-salt marsh and high-salt marshes) must have the same exposition to heavy metal sources, similar physical-chemical conditions regulating metal distribution within the compartments on the salt marshes or, simultaneously, both mentioned processes. Moreover, metals in this macrophyte can remain after the leaves have died and turned into detritus. The metals present in the detritus can be passed on to consumers (Quan et al., Mar Environ Res 64:21–37, 2007)). Keeping in mind that Bahía Blanca estuary’s salt marshes are inundated twice each day by tidal water for 3–4 h, macrophytes may act as a conduit for the movement of metals from the sediment to the estuarine body and near-coastal system.

Conclusions and recommendations

Considering the comments on the previous paragraphs, salt marshes from Bahía Blanca estuary are sources or sinks for metals? It can be sustained that both are the case, even if it is often stated that wetlands serve as sinks for pollutants, reducing contamination of surrounding ecosystems (Weis and Weis, Environ Int 30:685–700, 2004)). In the present study case, the sediments (which tend to be anoxic and reduced) act as sinks, while the salt marshes can become a source of metal contaminants. This is very important for this system because the macrophytes have been shown to retain the majority of metals in the underground tissues, and particularly in their associated sediments. This fact agreed well with previous reports, such as that from Leendertse et al., Environ Pollut 94:19–29, 1996) who found that about 50% of the absorbed metals were retained in salt marshes and 50% was exported. Thus, keeping in mind the large spreading of S. alterniflora salt marshes within Bahía Blanca estuary, it must be carefully considered as a re-distributor of metals within the system.  相似文献   

10.
The aim of this study was to investigate the potentials and limitations in restoring soil suppressiveness in disturbed soils. Soils from three sites in UK and Switzerland (STC, REC, THE) differing in their level of suppressiveness to soil-borne and air-borne diseases were γ-irradiated and this soil matrix was re-inoculated with 1% (w/w) of either parent native soil or native soil from the other sites (‘soil inoculum’). Suppressiveness to air-borne and soil-borne diseases was quantified by means of the host-pathogen systems Lepidium sativum (cress)-Pythium ultimum, an oomycete causing root rot and seedling damping-off, and Arabidopsis thaliana-Hyaloperonospora parasitica, an oomycete causing downy mildew. Soil microbial biomass, activity and community structure, as determined by phospholipid fatty acid (PLFA) profiles, were measured in native, γ-irradiated, and re-inoculated soils. Both, L. sativum and A. thaliana were highly susceptible to the pathogens if grown on γ-irradiated soils. Re-inoculation completely restored suppressiveness of soils to the foliar pathogen H. parasitica, independently of soil matrix or soil inoculum, whereas suppressiveness to P. ultimum depended on the soil matrix and, to a lesser extent, on the soil inoculum. However, the soil with the highest inherent suppressiveness did not reach the initial level of suppressiveness after re-inoculation. In addition, native microbial populations as defined by microbial biomass, activity and community structure, could not be fully restored in re-inoculated soils. As for suppressiveness to P. ultimum, the soil matrix, rather than the source of soil inoculum was identified as the key factor for re-establishing the microbial community structure. Our data show that soils do not or only slowly fully recover from sterilisation by γ-irradiation, indicating that agricultural soil management practices such as soil fumigation or heat treatments frequently used in vegetable cropping should be avoided.  相似文献   

11.
孙婷婷  徐磊  周静  樊剑波  陈晏 《土壤》2016,48(5):946-953
针对江西贵溪Cu、Cd重金属污染土壤,通过田间试验,比较无机生物材料羟基磷灰石及3种植物(海州香薷、巨菌草、伴矿景天)与羟基磷灰石联合修复对土壤总Cu、Cd的吸收及对活性Cu、Cd的钝化吸收能力差异。采用磷脂脂肪酸(PLFA)分析法,比较不同修复模式对土壤微生物群落结构的影响,以评估土壤微生态环境对不同修复措施的响应。研究结果表明:羟基磷灰石的施加可显著提高土壤pH,并有效钝化土壤活性Cu、Cd含量,但对土壤总Cu、Cd的含量影响较小。植物与羟基磷灰石的联合修复在显著降低土壤活性Cu、Cd(P0.05)的同时,减少了植物根际土壤总Cu、Cd的含量(P0.05)。不同修复措施对土壤微生物群落组成影响差异明显。单独施加羟基磷灰石与土壤真菌群落呈显著正相关,使土壤真菌生物量提高,从而引起真菌/细菌(F/B)的升高。植物与羟基磷灰石的联合修复可有效缓解土壤真菌化的趋势,其中巨菌草与羟基磷灰石的联合修复可有效提高土壤革兰氏阳性、革兰氏阴性细菌生物量及多样性,降低F/B值,从而降低土壤真菌病害的风险。不同植物根系活性代谢引起有机质的积累促进植物与羟基磷灰石处理中根际有机碳含量显著提高。聚类增强树(Aggregated boosted tree,ABT)分析结果表明:不同修复模式是影响土壤微生物群落的重要因素,其次土壤pH和Cu的含量及活性也是改变重金属污染区域微生物群落的因子。该研究从微生物群落结构角度解释了植物与羟基磷灰石联合修复对土壤微生态体系的作用,为开展Cu、Cd等重金属污染地植物与无机生物材料的联合修复方式的筛选及实施提供可靠的理论依据。  相似文献   

12.
Despite an increase in the understanding of the soybean isoflavones involved in root-colonizing symbioses, relatively little is known about their levels in the rhizosphere and their interactions with the soil microbial community. Based on a 13-year experiment of continuous soybean monocultures, in the present study we quantified isoflavones in the soybean rhizosphere and analyzed the soil microbial community structure by examining its phospholipid fatty acid (PLFA) profile. Two isoflavones, daidzein (7, 4′-dihydroxyisoflavone) and genistein (5,7,4′- trihydroxyisoflavone), were detected in the rhizosphere soil of soybean plants, with the concentrations in the field varying with duration of mono-cropping. Genistein concentrations ranged from 0.4 to 1.2 μg g−1 dry soil over different years, while daidzein concentrations rarely exceeded 0.6 μg g−1 dry soil. PLFA profiling showed that the signature lipid biomarkers of bacteria and fungi varied throughout the years of the study, particularly in mono-cropping year 2, and mono-cropping years 6-8. Principal component analysis clearly identified differences in the composition of PLFA during different years under mono-cropping. There was a positive correlation between the daidzein concentrations and soil fungi, whereas the genistein concentration showed a correlation with the total PLFA, fungi, bacteria, Gram (+) bacteria and aerobic bacteria in the soil microbial community. Both isoflavones were easily degraded in soil, resulting in short half-lives. Concentrations as small as 1 μg g−1 dry soil were sufficient to elicit changes in microbial community structure. A discriminant analysis of PLFA patterns showed that changes in microbial community structures were induced by both the addition of daidzein or genistein and incubation time. We conclude that daidzein and genistein released into the soybean rhizosphere may act as allelochemicals in the interactions between root and soil microbial community in a long-term mono-cropped soybean field.  相似文献   

13.
Plants often impact the rate of native soil organic matter turnover through root interactions with soil organisms; however the role of root-microbial interactions in mediation of the “priming effect” is not well understood. We examined the effects of living plant roots and N fertilization on belowground C dynamics in a California annual grassland soil (Haploxeralf) during a two-year greenhouse study. The fate of 13C-labeled belowground C (roots and organic matter) was followed under planted (Avena barbata) and unplanted conditions, and with and without supplemental N (20 kg N ha−1 season−1) over two periods of plant growth, each followed by a dry, fallow period of 120 d. Turnover of belowground 13C SOM was followed using 13C-phospholipid fatty acid (PLFA) biomarkers. Living roots increased the turnover and loss of belowground 13C compared with unplanted soils. Planted soils had 20% less belowground 13C present than in unplanted soils after 2 cycles of planting and fallow. After 2 treatment cycles, unlabeled soil C was 4.8% higher in planted soils than unplanted. The addition of N to soils decreased the turnover of enriched belowground 13C during the first treatment season in both planted and unplanted soils, however no effect of N was observed thereafter. Our findings suggest that A. barbata may increase soil C levels over time because root and exudate C inputs are significant, but that increase will be moderated by an overall faster C mineralization rate of belowground C. N addition may slow soil C losses; however, the effect was minor and transient in this system. The labeled root-derived 13C was initially recovered in gram negative (highest enrichment), gram positive, and fungal biomarkers. With successive growing seasons, the labeled C in the gram negative and fungal markers declined, while gram positive markers continued to accumulate labeled belowground C. The rhizosphere of A. barbata shifted the microbial community composition, resulting in greater abundances of gram negative markers and lower abundances of gram positive, actinobacteria and cyclopropyl PLFA markers compared to unplanted soil. However, the longer-term utilization of labeled belowground C by gram positive bacteria was enhanced in the rhizosphere microbial community compared with unplanted soils. We suggest that the activities of gram positive bacteria may be major controllers of multi-year rhizosphere-related priming of SOM decomposition.  相似文献   

14.
The effects of coloniser plant species on microbial community growth and composition were investigated on recently deglaciated terrain at Glacier Bay, south-east Alaska. Analysis of microbial communities using phospholipids fatty acid analysis (PLFA) revealed that Alnus and Rhacomitrium had the greatest impact on microbial growth, increasing total PLFA by some 6-7 fold relative to bare soil, whereas Equisetum led to a 5.5 fold increase in total PLFA relative to bare soil. These coloniser species also had significant effects on the composition of their associated microbial communities. Rhacomitrium, Alnus, and Equisetum increased bacterial PLFA, a measure of bacterial biomass, relative to bare soil. Rhacomitrium and Alnus also dramatically increased the concentration of the fungal fatty 18:2ω6 in soil relative to bare soil, by 12-fold and 8-fold, respectively. The net effect of the above changes was a significant increase in the ratio of fungal: bacterial fatty acids in soil associated with Alnus and Rhacomitrium, but not Equisetum. Possible reasons for these effects of particular plants on microbial communities are discussed, as is their significance in relation to the development of microbial communities in relatively sterile, recently deglaciated ground.  相似文献   

15.
Understanding the survival and persistence of Escherichia coli in soil with different microbial composition is essential for the accuracy of water quality assessment and microbial source tracking. This microcosm experiment was conducted to investigate the survival pattern of three E. coli strains (originated from soil, dog feces and human feces, separately) in soil with modified microbial community composition. Bile salt No. 3 (BS3) of progressively increased density (0.05%, 0.15%, 0.30% and 0.50%) was added into sandy loam soils and incubated for 90 days. Laboratory cultured E. coli were then inoculated into soil and incubated for another 150 days to monitor their survival pattern. Change of bacterial community diversity by BS3 was detected by both cultivation based and cultivation independent (PCR-Denaturing Gradient Gel Electrophoresis) methods. In general, progressively increased BS3 concentration resulted in decreased CFU counts both at 10 days and 90 days incubation. DGGE analysis indicated only a slight change in bacterial community composition at 10 days but a significant change at 90 days. Cluster analysis suggested that BS3 treatment grouped separately from controls. Survival of E. coli in soil was significantly influenced by the complexity of the microbial community, as die-off rate of E. coli progressively declined with the reduction of microbial community diversity. Differential survival of E. coli under different soil microbial stress highlights the importance of incorporating biotic factors in predictive models for water quality management and microbial source tracking study.  相似文献   

16.
The relationship between organic matter decomposition and changes in microbial community structure were investigated in Antarctic soils using 13C-labelled plant materials. Soils with and without labelled Deschampsia antarctica (a native Antarctic grass) were incubated for 42 days and sampled at 0, 7, 14, 21, 28 and 42 days. Changes in microbial community structure were assessed using phospholipid fatty acid analysis (PLFA) and an analysis of the fatty acids associated with the neutral lipid fraction (NLFA). These studies showed that there were no significant changes in PLFA or NLFA profiles over time suggesting no change in microbial community structure during residue decomposition. There was a marked increase however, in ergosterol levels in these soils indicative of growth of the fungal biomass. Analysis of this ergosterol using gas chromatography-mass spectrometry confirmed the transformation of the plant residue by showing the incorporation of 13C-plant C into the ergosterol. This incorporation of 13C into the ergosterol increased over the incubation period. Importantly, these changes associated with fungal growth were not evident in the analysis of either the PLFA or NLFA fractions thus questioning the reliability of such approaches for studying changes in microbial communities associated with the decomposition of plant residues.  相似文献   

17.
The behaviour of Rhizobium strains introduced separately into soil from a contaminated site with high concentrations of heavy metals (mainly Zn and Hg), and the role of plasmids in the ecology of these rhizobia strains were studied. Six Rhizobium leguminosarum biovar trifolii strains, from different sources and with different plasmid contents, were selected. Two of them were isolated from nodules of subterranean clover plants (Trifolium subterraneum) grown in the contaminated soil and four were from an uncontaminated soil. After inoculation with approximately 107 cells g−1 soil, of each strain, survival and plasmid stability were assessed over a period of 12-18 months. Differences in survival of Rhizobium strains were only detected more than 12 months after inoculation. After 18 months it was clear that survival in contaminated soil was greatest in the two strains originally isolated from that contaminated soil, and also by two of the strains originally isolated from uncontaminated soil. The latter two strains were also the only ones that showed changes in their plasmid profiles. The remaining isolates had the lowest populations, and their plasmid profiles were unchanged and similar to the parent strains.  相似文献   

18.
We show that Pseudomonas fluorescens strain P13, a plant growth-promoting bacterium, enhanced the growth of corn in uncontaminated soil but not in contaminated soil, perhaps because of its inability to reduce phytotoxicity. Another bacterial strain, Pseudomonas aeruginosa strain SZH16, showed in situ phenol-degrading activity and contained a plasmid loaded with a gene encoding for catechol 2, 3-dioxygenase, an important enzyme in the degradation pathway of aromatic compounds. We implanted this biodegradation ability into strain P13, using horizontal gene transfer techniques using strain SZH16 as the donor and P13 as the recipient, to generate a phenol-degrading transconjugant which obtained the effective plasmid from strain SZH16. Introduction of the transconjugant P13 strain into an artificially phenol-spiked soil promoted the growth of corn and in situ phenol degradation, and the increase in plant biomass correlated with the decrease in soil phenol content. Furthermore, the transconjugant P13 strain was also found to stimulate corn growth and reduce phenol concentration in water containing phenol and in historically contaminated field soils, indicating that the transconjugant strain could promote plant growth in both contaminated and uncontaminated environments. The transconjugant P13 strain was more efficient than either strain P13 or SZH16, and shows how plant growth-promoting bacteria which show no, or only limited, ability to degrade organic pollutants may be modified. This technique is attractive for many environmental remediation and agronomic applications.  相似文献   

19.
Rainfall in Mediterranean climates may affect soil microbial processes and communities differently in agricultural vs. grassland soils. We explored the hypothesis that land use intensification decreases the resistance of microbial community composition and activity to perturbation. Soil carbon (C) and nitrogen (N) dynamics and microbial responses to a simulated Spring rainfall were measured in grassland and agricultural ecosystems. The California ecosystems consisted of two paired sets: annual vegetable crops and annual grassland in Salinas Valley, and perennial grass agriculture and native perennial grassland in Carmel Valley. Soil types of the respective ecosystem pairs were derived from granitic parent material and had sandy loam textures. Intact cores (30 cm deep) were collected in March 1999. After equilibration, dry soil cores (approx. −1 to −2 MPa) were exposed to a simulated Spring rainfall of 2.4 cm, and then were measured at 0, 6, 24, and 120 h after rewetting. Microbial biomass C (MBC) and inorganic N did not respond to rewetting. N2O and CO2 efflux and respiration increased after rewetting in all soils, with larger responses in the grassland than in the agricultural soils. Phospholipid fatty acid (PLFA) profiles indicated that changes in microbial community composition after rewetting were most pronounced in intensive vegetable production, followed by the relict perennial grassland. Changes in specific PLFA markers were not consistent across all sites. There were more similarities among microbial groups associated with PLFA markers in agricultural ecosystems than grassland ecosystems. Differences in responses of microbial communities may be related to the different plant species composition of the grasslands. Agricultural intensification appeared to decrease microbial diversity, as estimated from numbers of individual PLFA identified for each ecosystem, and reduce resistance to change in microbial community composition after rewetting. In the agricultural systems, reductions in both the measures of microbial diversity and the resistance of the microbial community composition to change after a perturbation were associated with lower ecosystem function, i.e. lower microbial responses to increased moisture availability.  相似文献   

20.

Purpose

We investigated the effect of growth strategy (i.e., single or mixed plant types) of two emergent plants (i.e., Phragmites australis and Typha orientalis) on the distribution of phthalic acid esters (PAEs) and their monoester metabolites (PAMs) in the sediments and roots in two adjacent shallow lakes in Tianjin, China, as well as the removal of PAEs from the sediments.

Materials and methods

Dibutyl phthalate (DBP), di-2-ethylhexyl phthalate (DEHP), and their PAMs were measured in sediments and roots sampled on 18th May 2010. PAE-degrading bacteria and phospholipid fatty acid (PLFA) of the sediment samples were also analyzed.

Results and discussion

The results showed that DBP, DEHP, and their PAMs were detected in nearly all of the samples, and the PAE concentrations were 1 to 2 orders of magnitude higher than those of their corresponding monoester metabolites. The PAE distribution patterns in sediments from the two lakes were different and influenced by plant growth strategy. Phytoavailability of PAEs was also affected by plant growth strategy.

Conclusions

Compared with the non-rhizosphere sediments, the total organic carbon-normalized PAE concentration in the rhizosphere sediments decreased in the presence of the emergent plants. The PAE removal from the rhizosphere sediments was related not only to plant species but also to growth strategy, which was consistent with the findings of PLFA. The enhancement of PAE biodegradation in the rhizosphere was mainly the result of changes in the microbial community structure for different plant species and in microbial biomass for the same plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号