首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different positions within soil macroaggregates, and macroaggregates of different sizes, have different chemical and physical properties which could affect microbial growth and interactions among taxa. The hypothesis that these soil aggregate fractions contain different eubacterial communities was tested using terminal restriction fragment length polymorphism (T-RFLP) of the 16S ribosomal gene. Communities were characterized from two field experiments, located at the Kellogg Biological Station (KBS), MI, USA and the Ohio Agricultural Research and Development Center (OARDC), Wooster, OH, USA. Three soil management regimes at each site were sampled and management was found to significantly affect T-RFLP profiles. The soil aggregate erosion (SAE) method was used to isolate aggregate regions (external and internal regions). Differences between eubacterial T-RFLP profiles of aggregate exteriors and interiors were marginally significant at KBS (accounting for 12.5% of total profile variance), and not significant at OARDC. There were no significant differences among macroaggregate size classes at either site. These results are in general agreement with previous studies using molecular methods to examine microbial communities among different soil macroaggregate size fractions, although further study of communities within different aggregate regions is warranted. Analysis of individual macroaggregates revealed large inter-aggregate variability in community structure. Hence the tertiary components of soil structure, e.g. arrangement of aggregates in relation to shoot residue, roots, macropores, etc., may be more important than aggregate size or intra-aggregate regions in the determination of the types of microbial communities present in aggregates. Direct microscopic counts were also used to examine the bacterial population size in aggregate regions at KBS. The proportion of bacterial cells with biovolumes >0.18 μm3 was higher in aggregate interiors than in exteriors, indicating potentially higher activity in that environment. This proportion was significantly related to percent C of the samples, while total bacterial cell counts were not.  相似文献   

2.
Endogeic earthworm activities can strongly influence soil structure. Although soil microorganisms are thought to be central to earthworm-facilitated aggregate formation, how and where within the soil matrix earthworm-facilitated influences on soil microbial communities are manifested is poorly defined. In this study we used 16S rRNA gene-based terminal restriction fragment polymorphism (T-RFLP) analyses to examine bacterial communities associated with different aggregate size fractions (macroaggregates, microaggregates-within-macroaggregates and inner-microaggregates-within-macroaggregates) of soils incubated for 28 d with and without earthworms. We hypothesized that bacterial communities in different soil aggregate size fractions are differentially influenced by earthworm activities. Our results indicate significantly enhanced aggregate formation (both macroaggregates and microaggregates within macroaggregates) in earthworm-worked soils relative to soils receiving only plant litter. Although significant differences were found between bacterial communities of earthworm and litter-only treatments for all soil fractions, communities associated with earthworm-worked macroaggregate fractions exhibited the least similarity to all other soil fractions regardless of treatment. In addition to differences in terminal restriction fragment (T-RF) size distributions, T-RFLP profiles of earthworm-worked soil macroaggregates had significantly fewer T-RF sizes, further suggesting less species evenness and more extensive alteration of bacterial communities within this fraction. These findings suggest that, due to rapid occlusion of organic materials, microbial communities associated with microaggregates-within-macroaggregates formed during or shortly after passage through the earthworm gut are relatively inactive, and therefore change relatively little over time compared to macroaggregate populations as a whole.  相似文献   

3.
The distinct rhizomorphic mats formed by ectomycorrhizal Piloderma fungi are common features of the organic soil horizons of coniferous forests of the Pacific Northwest. These mats have been found to cover 25-40% of the forest floor in some Douglas-fir stands, and are associated with physical and biochemical properties that distinguish them from the surrounding non-mat soils. In this study, we examined the fungal and bacterial communities associated with Piloderma mat and non-mat soils. Each mat and non-mat area was repeatedly sampled at four times throughout the year. Characterization of the mat activity and community was achieved using a combination of N-acetylglucosaminidase (NAGase) enzyme assays, and molecular analysis of fungal and bacterial communities using T-RFLP profiles, clone libraries, and quantitative PCR. Piloderma mats had consistently greater NAGase activity across all dates, although the magnitude of the difference varied by season. Furthermore, we found distinct fungal and bacterial communities associated with the Piloderma mats, yet the size of the microbial populations differed little between the mat and non-mat soils. Significant temporal variation was seen in the NAGase activity and in the sizes of the fungal and bacterial populations, but the community composition remained stable through time. Our results demonstrate the presence of two distinct microbial communities occupying the forest floor of Douglas-fir stands, whose populations and activities fluctuate seasonally but with little change in composition, which appears to be related to the physiochemical nature of mat and non-mat habitats.  相似文献   

4.
Soil micro-organisms play a vital role in grassland ecosystem functioning but little is known about the effects of grassland management on spatial patterns of soil microbial communities. We compared plant species composition with terminal restriction fragment length polymorphism (T-RFLP) fingerprints of soil bacterial and fungal communities in unimproved, restored and improved wet grasslands. We assessed community composition of soil micro-organisms at distances ranging from 0.01 m to 100 m and determined taxa–area relationships from field- to landscape level. We show that land management type influenced bacterial but not fungal community composition. However, extensive grassland management to restore aboveground diversity affected spatial patterns of soil fungi. We found distinct distance–decay and small-scale aggregation of fungal populations in extensively managed grasslands restored from former arable use. There were no clear spatial patterns in bacterial communities at the field-scale. However, at the landscape level there was a moderate increase in bacterial taxa and a strong increase in fungal taxa with the number of sites sampled. Our results suggest that grassland management affects soil microbial communities at multiple scales; the observed small-scale variation may facilitate plant species coexistence and should be taken into account in field studies of soil microbial communities.  相似文献   

5.
An 8 year study to investigate the effects of Zn-spiked sewage sludge additions on the microbial community structure and microbial processes was carried out in a field soil under pasture. The microbial community structure was evaluated using a combination of multiplex-terminal restriction fragment length polymorphism (M-TRFLP) and T-RFLP fingerprinting approaches. Soil respiration, microbial biomass and enzymatic activities were measured as indicators of soil microbial processes. Changes in the microbial community structure, with Zn additions were evident in all the microbial groups investigated (bacteria, fungi, archaea, actinobacteria and rhizobia/agrobacteria). The fungal community showed the greatest response to Zn additions compared to the other microbial communities measured. The relative abundance of several fungal terminal restriction fragments (TRFs) significantly increased in high Zn treated treatments, at the expense of others, some of which were lost from T-RFLP profiles completely. These results indicate that metal-spiked sludge application can have long-lasting impacts on the composition of the microbial community in pasture soils. Despite notable changes in community structure there was no significant long-term impact of Zn-spiked sludge applications on microbial respiration, biomass or enzyme activities.  相似文献   

6.

Purpose

Genetic modifications (GM) of commercial crops offer many benefits. However, microbial-mediated decomposition might be affected by GM crop residues in agricultural ecosystems. The objective of this study was to assess the possible impacts of cry1Ab gene transformation of rice on soil microbial community composition associated with residue decomposition in the paddy field under intensive rice cultivation.

Materials and methods

A 276-day field trial was set up as a completely randomized design for two types of rice residues, KMD (Bt) and Xiushui 11 (non-Bt parental variety) in triplicate by conventional intensive rice cropping system. The litterbag method was used in the rice residue decomposition and a total of 120 straw and root litterbags were either placed on the soil surface or buried at 10 cm depth in the field on Dec. 24, 2005. The litterbags were sampled periodically and their soil bacterial and fungal communities were determined by terminal restriction fragment length polymorphism (T-RFLP). The additive main effects with multiplicative interaction (AMMI) model were performed for the analysis of T-RFLP on binary variables of peak presence (presence/absence). The analysis of variance and linear regressions were performed for analysis of AMMI data.

Results and discussion

Total AMMI model analysis revealed that microbial community composition in the litterbags was affected by temporal and spatial factors. Compared with the non-Bt rice residue treatment, Bt rice straw had no significant effects on the soil bacterial and fungal community composition during the study period, regardless of the litterbags being placed on the surface or buried in the soil. There were no significant differences in the bacterial community composition profiles in root decomposition between Bt transgenic and non-Bt varieties. However, significant differences in soil fungal community composition between the buried Bt and non-Bt rice roots were observed in soils sampled on days 31, 68, and 137, indicating that Bt roots incorporated into paddy soil may affect soil fungal community during the initial stage of their decomposition.

Conclusions

There were some significant differences in fungal community composition between Bt rice root and non-Bt root treatments at the early stage of root decomposition in the paddy field. It is important that, before Bt rice is released for commercial production, more research should be conducted to evaluate the ecological effects of the Bt rice residues returned to paddy field upon grain harvesting.  相似文献   

7.
ABSTRACT

The effects of straw retention on soil bacterial community structure, microbial function, and biochemical properties were assessed. Terminal restriction fragment length polymorphism (T-RFLP) and community-level physiological profile (CLPP) assays were used to assess the bacteria community structure and microbial function respectively. Treatments included straw removal with conventional tillage (CT), straw retention with conventional tillage (SRCT) and straw retention with no tillage (SRNT). SRCT and SRNT significantly (p < 0.05) increased soil organic carbon by 8.9% and 9.7%, and microbial biomass carbon by 44.7% and 330.8%, respectively, compared with CT. T-RFLP analysis indicated that straw retention had no favourable effect on soil bacterial diversity, and SRCT significantly (p < 0.05) decreased bacterial diversity compared to CT. Among the three treatments, SRNT had the highest activity of urease, invertase, cellulase, and β-glucosidase. SRCT significantly (p < 0.05) increased the activity of invertase and β-glucosidase compared to CT treatment. CLPP analysis showed that microbial functional diversity was significantly (p < 0.05) increased by straw retention. Enzyme activity and microbial functional diversity were not correlated with bacterial diversity. Therefore, according to this study, SRNT is a better farming practice because it improves soil fertility and biological quality.  相似文献   

8.
There is global concern about the environmental consequences associated with transgenic crops. Their effects on the soil ecosystem are of special interest when assessing ecological safety and integrity. Although many efforts have been made to develop crops genetically modified to have resistance to protoporphyrin oxidase (PPO)-inhibiting herbicides, little is known about their influence on soil microbial communities. We conducted a 2-year field study and an analysis via terminal restriction fragment length polymorphism (T-RFLP) to assess the impacts of PPO-transgenic rice on bacterial and fungal communities. In the first year we sampled the rhizosphere and surrounding bulk soil, while in the second year we sampled rhizosphere soil only. No differences were observed in the diversity indices and community composition of microbial communities between transgenic rice and its parental non-transgenic counterpart (cultivar Dongjin). Instead, community variation was strongly dependent on growth stage and year. Therefore, we observed no adverse effects by these crops of modified rice on the microbial community composition in paddy soils.  相似文献   

9.
长期施肥对农田土壤真菌的影响   总被引:4,自引:0,他引:4  
不合理施肥所引发的土壤环境问题逐渐成为制约我国农业可持续发展的重要因素之一,而土壤真菌作为一类重要的土壤微生物,研究施肥措施对真菌群落的影响对促进农业生产具有重要意义。本研究以有20年历史的长期定位试验田为研究对象,利用末端限制性片段长度多态性分析技术,对长期定位施肥农田生态系统中不同施肥方式对土壤真菌群落的影响以及时间变化规律进行了系统研究。长期施肥定位试验包括EM堆肥(EM)、传统堆肥(OF)、化肥(CF)和不施肥(CK)处理。主要研究结果如下:在0~20 cm土层,施肥处理对土壤真菌多样性有显著影响,Shannon-Weiner多样性指数为2.64~3.53,Simpson集中性指数为0.03~0.08;EM和OF处理的Shannon-Weiner多样性指数均显著高于CF和CK;在3月、6月和10月,EM和OF处理与CF和CK处理相比,有较高的真菌多样性;Simpson集中性指数最高的是3月的CK处理,最低的是10月的EM和OF处理。冗余分析结果表明,土壤pH、有机质、总氮、有效磷和有效钾等对真菌影响显著。因此,长期施用有机肥与化肥相比可以提高土壤真菌多样性,改变其群落结构;与化肥处理相比,施用EM堆肥,不仅可以保持土壤可持续利用性,同时改善0~20 cm土层土壤真菌的生存环境;3种施肥处理对土壤真菌群落结构影响程度由强到弱:EMOFCF。  相似文献   

10.
Land-use change can have significant impacts on soil conditions and microbial communities are likely to respond to these changes. However, such responses are poorly characterized as few studies have examined how specific changes in edaphic characteristics do, or do not, influence the composition of soil bacterial and fungal communities across land-use types. Soil samples were collected from four replicated (n = 3) land-use types (hardwood and pine forests, cultivated and livestock pasture lands) in the southeastern US to assess the effects of land-use change on microbial community structure and distribution. We used quantitative PCR to estimate bacterial–fungal ratios and clone libraries targeting small-subunit rRNA genes to independently characterize the bacterial and fungal communities. Although some soil properties (soil texture and nutrient status) did significantly differ across land-use types, other edaphic factors (e.g., pH) did not vary consistently with land-use. Bacterial–fungal ratios were not significantly different across the land-uses and distinct land-use types did not necessarily harbor distinct soil fungal or bacterial communities. Rather, the composition of bacterial and fungal communities was most strongly correlated with specific soil properties. Soil pH was the best predictor of bacterial community composition across this landscape while fungal community composition was most closely associated with changes in soil nutrient status. Together these results suggest that specific changes in edaphic properties, not necessarily land-use type itself, may best predict shifts in microbial community composition across a given landscape. In addition, our results demonstrate the utility of using sequence-based approaches to concurrently analyze bacterial and fungal communities as such analyses provide detailed phylogenetic information on individual communities and permit the robust assessment of the biogeographical patterns exhibited by soil microbial communities.  相似文献   

11.
Copper (Cu) is accumulating in agricultural soils worldwide creating concern for adverse impacts on soil microbial communities and associated ecosystem services. In order to evaluate the structural and functional resilience of soil microbial communities to increasing Cu levels, we compared a Cu-adapted and a corresponding non-adapted soil microbial community for their abilities to resist experimental Cu pollution. Laboratory soil microcosms were set-up with either High-Cu soil from Cu-amended field plots (63 g Cu m−2) or with Low-Cu control soil from the same five-year field experiment. Laboratory treatments consisted of Cu amendments in the presence or absence of pig manure. Microbial activities (soil respiration, substrate-induced respiration, [3H]leucine incorporation), bacterial community structure (terminal restriction fragment length polymorphism, T-RFLP), community-level physiological profiles, and pollution-induced bacterial community tolerance (PICT detected using the [3H]leucine incorporation technique) were monitored for 12 weeks. The High-Cu and Low-Cu soil microbial communities initially exhibited almost identical structure and function and could only be distinguished from each other by their differential Cu tolerance. Experimental Cu pollution inhibited microbial activities, affected bacterial community structure, and induced further bacterial community tolerance to Cu. However, Low-Cu and High-Cu soil microbial communities showed essentially identical responses. Manure amendment did not protect against Cu toxicity and slightly increased Cu bioavailability as measured by a Cu-specific whole-cell bacterial biosensor. Our results indicate convergence of bacterial community structure and function in the High-Cu and Low-Cu soils during the five-year field experiment. We conclude that soil bacterial communities can exhibit structural and functional resilience to a five-year Cu exposure by virtue of their ability to develop Cu tolerance without affecting overall community structure. The observed increased Cu tolerance may involve phenotypic adaptation or selection at the micro-diversity level, for example an increased proportion of Cu-resistant strains within each bacterial species, which go undetected by T-RFLP community fingerprinting. Finally, our results indicate that Cu-dissolved organic matter complexes contribute to microbial toxicity in manure-amended soils implying that free Cu may comprise a poor predictor of metal toxicity.  相似文献   

12.
Response of soil microbial communities to compost amendments   总被引:1,自引:0,他引:1  
Soil organic matter is considered as a major component of soil quality because it contributes directly or indirectly to many physical, chemical and biological properties. Thus, soil amendment with composts is an agricultural practice commonly used to improve soil quality and also to manage organic wastes. We evaluated in laboratory scale experiments the response of the soilborne microflora to the newly created soil environments resulting from the addition of three different composts in two different agricultural soils under controlled conditions. At a global level, total microbial densities were determined by classical plate count methods and global microbial activities were assessed by measuring basal respiration and substrate induced respiration (SIR). Soil suppressiveness to Rhizoctonia solani diseases was measured through bioassays performed in greenhouses. At a community level, the modifications of the metabolic and molecular structures of bacterial and fungal communities were assessed. Bacterial community level physiological profiles (CLPP) were determined using Biolog™ GN microtiter plates. Bacterial and fungal community structures were investigated using terminal restriction fragment length polymorphism (T-RFLP) fingerprinting. Data sets were analyzed using analysis of variance and ordination methods of multivariate data. The impact of organic amendments on soil characteristics differed with the nature of the composts and the soil types. French and English spent mushroom composts altered all the biological parameters evaluated in the clayey soil and/or in the sandy silty clay soil, while green waste compost did not modify either bacterial and fungal densities, SIR values nor soil suppressiveness in any of the soils. The changes in bacterial T-RFLP fingerprints caused by compost amendments were not related to the changes in CLPP, suggesting the functional redundancy of soil microorganisms. Assessing the density, the activity and the structure of the soil microflora allowed us not only to detect the impact of compost amendment on soil microorganisms, but also to evaluate its effect at a functional level through the variation of soil disease suppressiveness. Differences in disease suppressiveness were related to differences in chemical composition, in availability of nutrients at short term and in microbial composition due to both incorporation and stimulation of microorganisms by the compost amendments.  相似文献   

13.

Purpose

Long-term fertilization can influence soil biological properties and relevant soil ecological processes with implications for sustainable agriculture. This study determined the effects of long-term (>25 years) no fertilizer (CK), chemical fertilizers (NPK) and NPK combined with rice straw residues (NPKS) on soil bacterial and fungal community structures and corresponding changes in soil quality.

Materials and methods

Soil samples were collected from a long-term field site in Wangcheng County established in 1981 in subtropical China between mid summer and early autumn of 2009. Terminal restriction fragment length polymorphism (T-RFLP) and the real-time quantitative polymerase chain reaction (real-time qPCR) of bacterial and fungal community and microbial biomass (MB-C, -N and -P) were analyzed.

Results and discussion

Redundancy analysis of the T-RFLP data indicated that fertilization management modified and selected microbial populations. Of the measured soil physiochemical properties, soil organic carbon was the most dominant factors influencing bacterial and fungal communities. The bacterial and fungal diversity and abundance all showed increasing trends over time (>25 years) coupling with the increasing in SOC, total N, available N, total P, and Olsen P in the fertilized soils. Compared to chemical fertilizer, NPKS resulted in the greater richness and biodiversity of the total microbial community, soil organic C, total N, MB-C, -N and -P. The high biodiversity of microbial populations in NPKS was a clear indication of good soil quality, and also indicated higher substrate use efficiency and better soil nutrient supplementation. Otherwise, unfertilized treatment may have a soil P limitation as indicated by the high soil microbial biomass N: P ratio.

Conclusion

Our results suggest that NPKS could be recommended as a method of increasing the sustainability of paddy soil ecosystems.  相似文献   

14.
《Applied soil ecology》2007,37(2-3):147-155
A number of studies have reported species specific selection of microbial communities in the rhizosphere by plants. It is hypothesised that plants influence microbial community structure in the rhizosphere through rhizodeposition. We examined to what extent the structure of bacterial and fungal communities in the rhizosphere of grasses is determined by the plant species and different soil types. Three grass species were planted in soil from one site, to identify plant-specific influences on rhizosphere microbial communities. To quantify the soil-specific effects on rhizosphere microbial community structure, we planted one grass species (Lolium perenne L.) into soils from three contrasting sites. Rhizosphere, non-rhizosphere (bulk) and control (non-planted) soil samples were collected at regular intervals, to examine the temporal changes in soil microbial communities. Rhizosphere soil samples were collected from both root bases and root tips, to investigate root associated spatial influences. Both fungal and bacterial communities were analysed by terminal restriction fragment length polymorphism (TRFLP). Both bacterial and fungal communities were influenced by the plant growth but there was no evidence for plant species selection of the soil microbial communities in the rhizosphere of the different grass species. For both fungal and bacterial communities, the major determinant of community structure in rhizospheres was soil type. This observation was confirmed by cloning and sequencing analysis of bacterial communities. In control soils, bacterial composition was dominated by Firmicutes and Actinobacteria but in the rhizosphere samples, the majority of bacteria belonged to Proteobacteria and Acidobacteria. Bacterial community compositions of rhizosphere soils from different plants were similar, indicating only a weak influence of plant species on rhizosphere microbial community structure.  相似文献   

15.
Arctic soil microorganisms remain active at ecologically relevant rates in frozen soils. We used bromodeoxyuridine (BrdU) labeling and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA gene amplicons to examine active bacterial communities in two Alaskan tundra soils collected in summer and winter of 2005. Active community T-RFLP profiles were compared to total community profiles to determine if active bacteria were a subset of the total community. In shrub soils, active bacteria communities differed in composition between summer and winter, and winter-active bacterial taxa were not detected in the total community, suggesting that they are likely rare within the overall community. In contrast, tussock tundra soil contained more bacterial taxa that were active in both summer and winter and also represented a large portion of the total community. Using in silico digest of a sequence library from this site, we attempted to identify the dominant organisms in our samples. Our previous research suggested that the total microbial community was stable throughout the year, but this new study suggests that the active community is more dynamic seasonally. In general, only a subset of the total community was growing at a given time. This temporal niche partitioning may contribute to the high diversity of microbial communities in soils. Understanding which taxa contribute to microbial function under different conditions is the next frontier in microbial ecology and linking composition to biogeochemical cycling.  相似文献   

16.
Variations in temperature and moisture play an important role in soil organic matter (SOM) decomposition. However, relationships between changes in microbial community composition induced by increasing temperature and SOM decomposition are still unclear. The present study was conducted to investigate the effects of temperature and moisture levels on soil respiration and microbial communities involved in straw decomposition and elucidate the impact of microbial communities on straw mass loss. A 120-d litterbag experiment was conducted using wheat and maize straw at three levels of soil moisture (40%, 70%, and 90% of water-holding capacity) and temperature (15, 25, and 35°C). The microbial communities were then assessed by phospholipid fatty acid (PLFA) analysis. With the exception of fungal PLFAs in maize straw at day 120, the PLFAs indicative of Gram-negative bacteria and fungi decreased with increasing temperatures. Temperature and straw C/N ratio significantly affected the microbial PLFA composition at the early stage, while soil microbial biomass carbon (C) had a stronger effect than straw C/N ratio at the later stage. Soil moisture levels exhibited no significant effect on microbial PLFA composition. Total PLFAs significantly influenced straw mass loss at the early stage of decomposition, but not at the later stage. In addition, the ratio of Gram-negative and Gram-positive bacterial PLFAs was negatively correlated with the straw mass loss. These results indicated that shifts in microbial PLFA composition induced by temperature, straw quality, and microbial C sources could lead to changes in straw decomposition.  相似文献   

17.
Black soils (Mollisols) are one of the most important soil resources for maintaining food security in China, and they are mainly distributed in northeast China. A previous comprehensive study revealed the biogeographical distribution patterns of bacterial communities in the black soil zone. In this study, we used the same soil samples and analyzed the 454 pyrosequencing data for the nuclear ribosomal internal transcribed spacer (ITS) region to examine the fungal communities in these black soils. A total of 220,812 fungal ITS sequences were obtained from 26 soil samples that were collected across the black soil zone. These sequences were classified into at least 5 phyla, 20 classes, greater than 70 orders and over 350 genera, suggesting a high fungal diversity across the black soils. The diversity of fungal communities and distribution of several abundant fungal taxa were significantly related to the soil carbon content. Non-metric multidimensional scaling and canonical correspondence analysis plots indicated that the fungal community composition was most strongly affected by the soil carbon content followed by soil pH. This finding differs from the bacterial community results, which indicated that soil pH was the most important edaphic factor in determining the bacterial community composition of these black soils. A variance partitioning analysis indicated that the geographic distance contributed 20% of the fungal community variation and soil environmental factors that were characterized explained approximately 35%. A pairwise analysis revealed that the diversity of the fungal community was relatively higher at lower latitudes, which is similar to the findings for the bacterial communities in the same region and suggests that a latitudinal gradient of microbial community diversity might occur in the black soil zone. By incorporating our previous findings on the bacterial communities, we can conclude that contemporary factors of soil characteristics are more important than historical factor of geographic distance in shaping the microbial community in the black soil zone of northeast China.  相似文献   

18.
The main objective of this study was to assess the impact of the application of an antagonistic strain of Trichoderma atroviride on the native microbial soil communities. The structures of the fungal and bacterial communities were assessed by T-RFLP (terminal restriction fragment length polymorphism) method, based on T-RFLP analysis of 18S and 16S rRNA genes, respectively. Results showed that the introduction of the strain I-1237 into two soils slightly modified the microbial diversity, only for a short period of time. Nine months post-inoculation resilience took place, resulting in similar structures of the fungal and bacterial communities in the inoculated and control soils.  相似文献   

19.
Soil microbial communities are very sensitive to changes in land use and are often used as indicators of soil fertility. We evaluated the microbial communities in the soils of four types of vegetation (cropland (CP), natural grassland (NG), broadleaf forest (BF) and coniferous forest (CF)) at depths of 0–10 and 10–20 cm on the Loess Plateau in China using phospholipid fatty acid (PLFA) profiling and denaturing gradient gel electrophoresis (DGGE) of DNA amplicons from polymerase chain reactions. The soil microbial communities were affected more by vegetation type than by soil depth. Total organic carbon, total nitrogen, soil-water content, pH, bulk density (BD) and C:N ratio were all significantly associated with the composition of the communities. Total PLFA, bacterial PLFA and fungal PLFA were significantly higher in the BF than the CP. The DGGE analyses showed that NG had the most diverse bacterial and fungal communities. These results confirmed the significant effect of vegetation type on soil microbial communities. BFs and natural grass were better than the CFs for the restoration of vegetation on the Loess Plateau.  相似文献   

20.
This investigation examines the effect of manipulating soil microbial community composition and species richness on the development of soil structure over a seven month period in planted (with or without mycorrhizal fungi) and in unplanted macrocosms. The dilution method effectively resulted in soil communities with consistently contrasting levels of species (TRF) richness. In particular, the 10?6 dilution of field soil resulted in less rich communities in bare unplanted soil than did the 10?1 soil dilution. However, this was not the case in planted soils where root activity was a powerful influence on species richness. After seven months, principal components analysis (PCA) separated bacterial community composition primarily on planting regime; planted mycorrhizal, planted non-mycorrhizal and bare soil treatments all contained different bacterial community compositions. A consistent finding in planted and unplanted soils was that aggregate stability was positively correlated with small pore sizes. Mycorrhizal colonisation decreased plant biomass and also resulted in reduced soil bacterial species richness, lower percentage organic matter and smaller pore sizes relative to planted but non-mycorrhizal soils. However, soil aggregate stability and water repellency were increased in these (mycorrhizal) soils probably due to AMF hyphal activities including enmeshment and/or glomalin production. In contrast, bacterial TRF richness was positively correlated with aggregate stability in the bare and non-mycorrhizal planted soils. Soil organic carbon was an important factor in all treatments, but in the bare soil where there was no additional input of labile C from roots, the percentage C could be directly related to fungal TRF richness. The less species rich bare soil contained more organic C than the more species rich bare soil. This suggests a degree of redundancy with regard to mineralisation of organic matter when additional, more utilisable C sources are unavailable. Understanding the effects of microbial diversity on functional parameters is important for advancing sustainable soil management techniques, but it is clear that soil is a dynamic ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号