首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previously isolated bacterial strains for chlorpyrifos and fenamiphos degradation were used to examine their potential as bioremedial agents in soils and water containing pesticide residues. Both, chlorpyrifos-degrading Enterobacter sp and fenamiphos-degrading consortium rapidly degraded pesticides when inoculated into natural and sterile water and soils. Degradation rate was slower in lower pH soils in comparison with natural and alkaline soils. Soil organic matter had no impact on pesticide degrading ability of isolates. Soil moisture <40% of maximum water-holding capacity slowed down degradation rate. The bacterial isolates were able to rapidly degrade fenamiphos and chlorpyrifos between 15 and 35 °C but their degradation ability was sharply reduced at 5 and 50 °C. Both groups of bacterial systems were also able to remove a range of pesticide degradation. An inoculum density of 104 cells g−1 of soil was required for initiating rapid growth and degradation. Ageing of pesticide in soils prior to inoculation produced contrasting results. Ageing of fenamiphos had no impact on subsequent degradation by the inoculated consortium. However, degradation of chlorpyrifos by Enterobacter sp after aging resulted in persistence of ∼10% of pesticide in soil matrix. Higher Koc value of chlorpyrifos may have resulted in a lack of bioavailability of a smaller percentage of chlorpyrifos to degrading bacteria. Overall, this paper confirms bioremedial potential of a fenamiphos degrading consortium and a chlorpyrifos degrading bacterium under different soil and water characteristics.  相似文献   

2.
This paper reviews the findings of research reported in the currently available literature regarding the occurrence and transformations of pesticides through the composting process and the use of compost. Part I summarizes the composting process, pesticides and mechanisms of pesticide degradation. Part II reviews research studies concerning the occurrence and fate of pesticides during composting. Investigations of pesticide residues in composting feedstocks and finished compost detected few of the target pesticides. The compounds that were found occurred at low concentrations. The majority of the compounds detected were insecticides in the organochlorine category, including chemicals that have been banned from use in the U.S. for many years. Generally, organophosphate and carbamate insecticides and most herbicides were rarely detected. Comparisons of pesticide concentrations before and after composting also showed organochlorine compounds to be most resistant to biodegradation during composting. With some exceptions, pesticides in other categories decomposed moderately well to very well. Studies that followed the mechanisms of degradation indicate that mineralization accounts for only a small portion of pesticide disappearance. Other prominent fates include partial degradation to secondary compounds, adsorption, humification, and volatilization. In general the research results suggest that the pattern of pesticide degradation during composting is similar to the degradation observed in soils. With a few important distinctions, composting can be considered a biologically active soil environment in which degradation is accelerated. However, as some studies noted, composting does not always speed the degradation of all pesticides. The nature of the pesticide, specific composting conditions and procedures, the microbial communities present, and the duration of composting affect the extent and the mechanisms of degradation.  相似文献   

3.
This paper reviews the findings of research reported in the currently available literature regarding the occurrence and transformations of pesticides through the composting process and the use of compost. Part I summarizes the composting process, pesticides and mechanisms of pesticide degradation. Part II reviews research studies concerning the occurrence and fate of pesticides during composting. Investigations of pesticide residues in composting feedstocks and finished compost detected few of the target pesticides. The compounds that were found occurred at low concentrations. The majority of the compounds detected were insecticides in the organochlorine category, including chemicals that have been banned from use in the U.S. for many years. Generally, organophosphate and carbamate insecticides and most herbicides were rarely detected. Comparisons of pesticide concentrations before and after composting also showed organochlorine compounds to be most resistant to biodegradation during composting. With some exceptions, pesticides in other categories decomposed moderately well to very well. Studies that followed the mechanisms of degradation indicate that mineralization accounts for only a small portion of pesticide disappearance. Other prominent fates include partial degradation to secondary compounds, adsorption, humification, and volatilization. In general the research results suggest that the pattern of pesticide degradation during composting is similar to the degradatiion observed in soils. With a few important distinctions, composting can be considered a biologically active soil environment in which degradation is accelerated. However, as some studies noted, composting does not always speed the degradation of all pesticides. The nature of the pesticide, specific composting conditions and procedures, the microbial communities present, and the duration of composting affect the extent and the mechanisms of degradation.  相似文献   

4.
Summary Studies were conducted to determine whether soils that showed enhanced biodegradation of organophosphate insecticides had significantly different enzyme activities from those in the same soils with no previous exposure to the insecticides. Twenty-one pairs of soils were collected from farms in the Midwest where chlorpyrifos, terbufos, fonofos, or phorate had failed to protect corn (Zea mays L) from corn rootworm (Diabrotica sp). Each soil was analyzed for acid and alkaline phosphatase, phosphodiesterase, phosphotriesterase, and dehydrogenase activities. Over 40% of the insecticide-treated soils had higher acid phosphatase activity than the fence row soils which had no previous exposure to the insecticide. Over twothirds of the soils treated with fonofos had higher acid phosphatase and phosphotriesterase activity than the fence row soils. If these enzymes are not directly involved in the biodegradation of the insecticitde, they may be indicative of enhanced biodegradation and may be used to predict which soils may be prone to insecticide failure.Contribution from the Soil-Microbial Systems Laboratory, Natural Resources Institute, USDA-ARS, Beltsville, MD 20705, USA  相似文献   

5.
利用微生物消除农药污染是一项安全、经济、有效的方法,降解动力学模型的构建有助于理解污染物的生物降解行为和估测系统中特征污染物的浓度变化,菌株对高浓度污染物的降解效果是降解菌在受污染水体中实际应用的关键。本研究采用基础培养基中定量添加毒死蜱和定时取样分析毒死蜱残留浓度的方法,探讨两株蜡状芽孢杆菌(HY-1和HY-2)的接种体培养时间、接种量和降解菌对毒死蜱的降解动力学,同时研究了降解菌对高浓度毒死蜱的降解率。结果表明:HY-1和HY-2最适接种体培养时间分别为10 h和19 h,接种体培养时间对菌株降解毒死蜱的影响较大。两菌株最适接菌量为8%(v/v),接种量从4%增至8%时,接种量对HY-1降解毒死蜱的影响大于HY-2。当毒死蜱的初始浓度为40 mg.L 1、80 mg.L 1、100 mg.L 1和120 mg.L 1时,一级动力学方程ln(C0/Ct)=kt可以用来拟合两菌株对毒死蜱的降解动力学及确定降解动力学参数,当毒死蜱初始浓度再次增加时,仅HY-2对毒死蜱的降解符合一级动力学方程。当毒死蜱初始浓度为40~120 mg.L 1时,菌株HY-1对毒死蜱的降解速率常数分布在0.013 5~0.015 7;当毒死蜱初始浓度为40~200 mg.L 1时,菌株HY-2的降解速率常数分布在0.008 0~0.015 3。菌株HY-2比HY-1可以在较高的毒死蜱浓度下发挥降解作用,且降解率较高。因此,两菌株在毒死蜱污染水体的净化去毒方面具有重要意义。  相似文献   

6.
海藻酸钠固定化细菌对毒死蜱的降解特性   总被引:2,自引:0,他引:2  
毒死蜱的生产和使用日趋广泛,由其造成的环境污染和危害不容忽视。微生物是影响有机磷农药在环境中降解的最主要因素,也被认为是降解有机磷农药最可靠而高效的途径。固定化技术是提高微生物降解农药效率的有效方法之一。本研究以海藻酸钠为载体,采用注射器滴定法将蜡状芽孢杆菌(Bacillus cer-eus)HY-1用海藻酸钠溶胶包埋,研究了反应时间、固定化菌接入量、pH和毒死蜱初始浓度对毒死蜱降解的影响以及固定化菌的重复使用效果。结果表明:海藻酸钠固定化菌能够高效降解基础培养基中的毒死蜱,制备固定化小球海藻酸钠溶胶的最适浓度为2.5%(w/v),小球的平均粒径为3 mm。在培养时间为60 h时,固定化菌对100 mg·L-1毒死蜱的降解率达到最大。固定化小球接入量为160 g·L-1时,对100 mg·L-1毒死蜱的降解率最高。固定化菌对毒死蜱的降解有着较宽泛的pH适应范围,碱性环境更有利于其对毒死蜱的有效降解。当毒死蜱初始浓度为80 mg·L-1和100 mg·L-1时,固定化菌对毒死蜱的降解率较高,达90%左右。固定化菌可重复利用降解毒死蜱,当利用4次后,固定化小球虽已发生崩解,但对100 mg·L-1毒死蜱的降解率仍高达47%。因此,海藻酸钠固定化蜡状芽孢杆菌对水体中毒死蜱的降解率较高,环境适应性较强,固定化菌可在毒死蜱污染的净化去毒方面发挥重要作用。  相似文献   

7.
The degradation of mixed (DDT and chlorpyrifos) insecticides by mixed insecticide enriched cultures was investigated. The mixed fungal population was isolated from mixed insecticide acclimatized sewage sludge over a period of 90 days. Gas chromatography was used to detect the concentration of mixed insecticides and calculate the degradation efficiency. The results showed that the degradation capability of the mixed microbial culture was higher in low concentrations than in high concentrations of the mixed insecticides. After 12 weeks of incubation, mixed pesticide enriched cultures were able to degrade 79.5-94.4% of DDT and 73.6-85.9% of chlorpyrifos in facultative cometabolic conditions. The fungal strains isolated from the mixed microbial consortium were identified as Fusarium sp. isolates GFSM-4 (ITCC 6841) and GFSM-5 (ITCC 6842). The fungal culture GFSM-4 could not utilize mixed insecticides as source of carbon and nitrogen, probably due to high combined toxicity of the mixed insecticides. Liquid media deficient in carbon (1% mannitol) and nitrogen (0.1% sodium nitrate) source increased the degradation efficiency of DDT and chlorpyrifos to 69 and 45%, respectively. The media with normal carbon and deficient nitrogen (0.1% sodium nitrate) sources extensively increased the degradation efficiencies of DDT (94%) and chlorpyrifos (69.2%). Traces of p,p'-dichlorobenzophenone and desdiethylchlorpyrifos were observed in the liquid medium, which did not accumulate probably due to further rapid degradation. This fungal isolate (GFSM-4) was able to degrade simultaneously DDT (26.94%) and chlorpyrifos (24.94%) in sterile contaminated (50 mg of each insecticide kg(-1)) soil in aerobic conditions.  相似文献   

8.
The organophosphorus insecticide, chlorpyrifos, has been widely applied in agriculture; in veterinary, against household pests; and in subterranean termite control. Due to its slow rate of degradation in soil, it can persist for extended periods in soil with a significant threat to environment and public health. The mixed and pure fungi were isolated from three soils by enrichment technique. The enriched mixed fungal cultures were capable of biodegrading chlorpyrifos (300 mg L−1) when cultivated in Czapek Dox medium. The identified pure fungal strain, Acremonium sp., utilized chlorpyrifos as a source of carbon and nitrogen. The highest chlorpyrifos degradation (83.9%) by Acremonium sp. strain GFRC-1 was found when cultivated in the nutrient medium with full nutrients. Desdiethyl chlorpyrifos was detected as a major biodegradation product of chlorpyrifos. The isolated fungal strain will be used for developing bioremediation strategy for chlorpyrifos-polluted soils.  相似文献   

9.
Nontarget effects of pesticides may occur when the active ingredients have a long persistence in the environment. The half-lives of six insecticides commonly used in Thai fruit orchards under tropical field conditions were determined. A mixture of endosulfan-alpha and -beta, chlorpyrifos, malathion, dimethoate, and mevinphos was applied five times in 10-day intervals onto an Ultisol (lychee plantation ground-covered with grass vegetation, northwestern Thailand). On days 1, 3, 5, 7, and 10 after each application, composite samples of the topsoil (0-10 cm) were collected and exhaustively extracted. Fitting a first-order model to the datasets revealed rapid initial dissipation [half-lives from 2.2 +/- 0.4 (malathion) to 5.4 +/- 1.3 days (chlorpyrifos)]. Volatilization appeared to be a major process of pesticide dissipation, especially for malathion and mevinphos. Because 8% of the applied endosulfan-alpha and -beta had been converted to the sulfate metabolite within 1 day after the first application, also microbial degradation contributed significantly to pesticide dissipation. Nevertheless, no trend in half-lives over the five application cycles could be observed, indicating that accelerated microbial degradation did not occur for these insecticides following the five applications. Precipitation and soil moisture were key parameters of dissipation, but dissipation processes were too complex to be generalized for all substances studied. Despite their short half-lives, all pesticides except mevinphos accumulated in soil (up to 656%; endosulfan-alpha), and this accumulation correlated significantly with the hydrophobicity of the substances (r = 0.88). This was interpreted as an aging process, and it was concluded that pesticide aging must be considered relevant also in tropical environments, where it has received very limited attention so far.  相似文献   

10.
Summary The persistence of parathion, methyl parathion and fenitrothion in five tropical soils of varying physicochemical characteristics was compared under flooded and non-flooded conditions. The degradation of all the three insecticides was more rapid under flooded conditions than under non-flooded conditions in four out of five soils. Degradation of these insecticides proceeded by hydrolysis under non-flooded conditions and essentially by nitro group reduction and to a minor extent by hydrolysis under flooded conditions. Kinetic analysis indicated that degradation of the three insecticides followed a first-order reaction irrespective of the soil and water regime. The degradation of these organophosphorus insecticides was accelerated after repeated applications to flooded alluvial soil. Nitro group reduction was the major pathway of degradation for all the three insecticides after the first addition while the rate of hydrolysis increased after each successive addition.  相似文献   

11.
Buenos Aires Province (República Argentina) has undergone, in the last years, a great increase in agricultural activities based on the incorporation of new technologies and reduction of diversity to meet the increasing food demand. The increase of intensive agricultural systems in Argentina involves the use of fertilizers and pesticides such as herbicides, insecticides, and fungicides. Chlorpyrifos is one of the insecticides most widely used in these crops and constitutes a risk for human health, birds, and aquatic biota such as macroinvertebrates and fishes. In order to assess the possible contamination that the use of this product may represent for the environment, it is necessary to study its interaction with the different types of soils because fate and transport of environmental pollutants may be influenced by their interactions with soil particles. The behavior of chlorpyrifos was analyzed through the study of the recoveries from spiked solid environmental matrices. A strong dependence with organic matter content was observed along with an important dependence with the initial concentrations employed. Here, we show that chlorpyrifos behavior on solid matrices not only depends on soil chemical composition. A significant dependence of recovery percentages with initial concentrations of the pesticide was evident in all cases. Recovery percentages decreased with an increase of the initial concentration employed, no matter the variations in matrices of chemical compositions.  相似文献   

12.
Degradation and adsorption of fosthiazate in soil   总被引:3,自引:0,他引:3  
Adsorption and degradation behavior of a pesticide in soil has a strong effect on its environmental fate as well as efficacy for pest control. Fosthiazate is an organophosphate compound that is currently under development as a nonfumigant nematicide. In this study, we evaluated adsorption and degradation kinetics of fosthiazate in three U.S. soils with different properties. Adsorption of fosthiazate in mineral soil was negligibly weak but appeared to increase with soil organic matter (OM) content. The half-life (T(1/2)) of fosthiazate ranged from 0.5 to 1.5 months in nonsterile soils but was prolonged to 1-3 months after sterilization. Degradation of fosthiazate in soil appeared to be caused by both chemical and microbial transformations. The persistence of fosthiazate generally decreased with increasing soil pH, but increased with increasing soil OM and clay contents. This results suggest that fosthiazate may have an enhanced leaching potential in acidic soils with low OM content, and its efficacy in high pH soils may not last as long as in neutral soils because of faster degradation.  相似文献   

13.
小青菜对土壤中毒死蜱吸收移动特征研究   总被引:1,自引:0,他引:1  
以小青菜为供试蔬菜,通过在土壤中添加毒死蜱,进行盆栽试验,研究毒死蜱对小青菜生长的影响、在土壤中的降解速度以及在小青菜中的吸收和转移规律,为蔬菜中农药残留风险评估和蔬菜安全生产提供理论依据。试验结果表明,与对照相比,含有高浓度(>50.0 mg kg-1)毒死蜱土壤对小青菜的生长有显著抑制作用;毒死蜱在不同处理土壤中的半衰期从23.03 d至77.43 d不等;残留于土壤中的毒死蜱能够被种植的小青菜根系吸收并转移至茎叶部分,随着土壤中处理浓度的增加,毒死蜱在小青菜根、茎和叶中的残留量也随之增加,且毒死蜱在小青菜根中的残留量最大,在叶中的残留量最小;土壤中毒死蜱残留量与小青菜根、茎和叶中毒死蜱的含量呈良好的线性关系,线性方程分别为:C根=0.025 1C土壤-0.235 8,C茎=0.012 3C土壤-0.051 7,C叶=0.000 7C土壤+0.011 5。为了实现蔬菜中农药残留从农田到餐桌的全程控制,保证无公害蔬菜的安全生产与供应,首先要对生产基地土壤中的农药残留进行检测,并从源头上进行控制。  相似文献   

14.
The chemical control of crops by organophosphate insecticide treatment is usually limited because the insecticides do not maintain their efficiency for long periods for several reasons, including environmental conditions or rapid degradation of the active ingredient. Chlorpyrifos is an organophosphate insecticide used worldwide to control a variety of soil insects and arthropods in a wide range of crops. It is easily soluble in organic solvents but shows poor water solubility. The inclusion of chrorpyrifos in cyclodextrins (CDs) improves its water solubility, bioavailability, and insecticidal activity and helps prevent overdosing, leading to more cost-effective and more environmentally friendly agricultural practices. Solubility studies of chlorpyrifos in the presence of different types of CDs show G2-beta-CDs to be the most effective CDs in the complexation process, giving 1:2 complexes, with complexation constant (Kc) values of 12.34 +/- 3.1 M(-1) for K1 and 3895 +/- 183 M(-1) for K2. These complexation constant values were corroborated by applying a fluorimetric method.  相似文献   

15.
Rates of degradation of 2-propenyl isothiocyanate (PrITC), benzyl isothiocyanate (BeITC) and 2-phenylethyl isothiocyanate (2-PeITC) in a soil known to biodegrade methyl isothiocyanate (MITC) at an accelerated rate, but never previously exposed to the other ITCs, were higher (persistence in soil increased by 1150, 80 and 100%, respectively,) than in a similar non-degrading soil. The rate of degradation of the same three ITCs was significantly lower in sterilised (autoclaved) soils than in the degrading soil. These results indicate that the three ITCs are susceptible to enhanced cross-biodegradation in soils where enhanced biodegradation of MITC has been induced by use of metham sodium soil fumigant. When Brassica plant tissue containing sinigrin (2-propenyl glucosinolate) as the predominant glucosinolate (GSL) was added to the degrading soil, the amount of PrITC present after 24 h was significantly lower than in the non-degrading soil at the same amendment rates. The toxicity to an insect test organism of the PrITC produced from the biofumigant plant tissue was correlated with the concentration of PrITC measured in the two soils, with 67% more plant tissue required in the degrading soil to cause 100% mortality as in the non-degrading soil (3.0 vs 5.0 mg g−1). The effectiveness of biofumigation using ITC-producing Brassica plants may be diminished in soil suffering from enhanced biodegradation of MITC.  相似文献   

16.
Hydrolysis of an insecticide/nematicide, fenamiphos [ethyl-3-methyl-4-(methylthio)phenyl-(1-methylethyl)phosphoramidate], immobilized through sorption by cetyltrimethylammonium-exchanged montmorillonite (CTMA-clay) by a soil bacterium, Brevibacterium sp., was examined. X-ray diffraction analysis, infrared spectra, and a negative electrophoretic mobility strongly indicated that fenamiphos was intercalated within the bacterially inaccessible interlayer spaces of CTMA-clay. The bacterium hydrolyzed, within 24 h, 82% of the fenamiphos sorbed by the CTMA-clay complex. There was a concomitant accumulation of hydrolysis product, fenamiphos phenol, in nearly stoichiometric amounts. During the same period, in abiotic (uninoculated) controls, 4.6% of the sorbed insecticide was released into the aqueous phase as compared to 6.0% of the sorbed fenamiphos in another abiotic control where activated carbon, a sink for desorbed fenamiphos, was present. Thus, within 24 h, the bacterium hydrolyzed 77% more fenamiphos sorbed by organo clay than the amounts desorbed in abiotic controls. Such rapid degradation of an intercalated pesticide by a bacterium has not been reported before. Evidence indicated that extracellular enzymes produced by the bacterium rapidly hydrolyzed the nondesorbable fenamiphos, even when the enzyme itself was sorbed. Fenamiphos strongly sorbed to an organo clay appears to be readily available for exceptionally rapid degradation by the bacterium.  相似文献   

17.
Stability of chlorpyrifos for termiticidal control in six Australian soils.   总被引:9,自引:0,他引:9  
Chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate] is the most widely used soil-applied termiticide in Australia. It is relatively stable, has low water solubility, is absorbed by organic matter, and has a high affinity for soil with low partitioning potential from soil matter to soil water. The purpose of this degradation study is to determine the effect of soil alkalinity on the longevity of termite protection when chlorpyrifos is applied as a termiticide in a range of Australian soils, particularly high-pH substrates. The study also examines the effects of initial soil concentration on the degradation of chlorpyrifos in the range of soils. At an initial soil concentration of 1000 mg kg(-)(1) for termite control, the degradation rate of chlorpyrifos is very strongly retarded in soils tested when compared with lower soil concentrations of 100 and 10 mg kg(-)(1) in the same soils. The degradation data correlated with a logarithmic model of decay, and it was thus possible to produce half-lives and predict likely periods of termite control. Average half-lives for all soils for the three concentrations were 385, 155, and 41 days, respectively. Soil pH had no effect on the rate of degradation at all concentrations tested.  相似文献   

18.
The impact of two tillage systems, plow tillage (PT) and no-tillage (NT), on microbial activity and the fate of pesticides in the 0–5 cm soil layer were studied. The insecticides carbofuran and diazinon, and the herbicides atrazine and metolachlor were used in the study, which included the incubation and leaching of pesticides from untreated soils and soils in which microorganisms had been inhibited. The mineralization of ring14C labeled pesticides was studied. The study differentiated between biotic and abiotic processes that determine the fate of pesticides in the soil. Higher leaching rates of pesticides from PT soils are explaned by the relative importance of each of these processes. In NT soils, higher microbial populations and activity were associated with higher mineralization rates of atrazine, diazinon and carbofuran. Enhanced transformation rates played an important role in minimizing the leaching of metolachlor and carbofuran from NT soils. The role of abiotic adsorption/retention was important in minimizing the leaching of metolachlor, carbofuran and atrazine from NT soils. The role of fungi and bacteria in the biodegradation process was studied by selective inhibition techniques. Synergistic effects between fungi and bacteria in the degradation of atrazine and diazinon were observed. Carbofuran was also degraded in the soils where fungi were selectively inhibited. Possible mechanisms for enhanced biodegradation and decreased mobility of these pesticides in the upper layer of NT soils are discussed.  相似文献   

19.
Factors influencing degradation of pesticides in soil   总被引:3,自引:0,他引:3  
Degradation and sorption of six acidic pesticides (2,4-D, dicamba, fluroxypyr, fluazifop-P, metsulfuron-methyl, and flupyrsulfuron-methyl) and four basic pesticides (metribuzin, terbutryn, pirimicarb, and fenpropimorph) were determined in nine temperate soils. Results were submitted to statistical analyses against a wide range of soil and pesticide properties to (i) identify any commonalities in factors influencing rate of degradation and (ii) determine whether there was any link between sorption and degradation processes for the compounds and soils studied. There were some marked differences between the soils in their ability to degrade the different pesticides. The parameters selected to explain variations in degradation rates depended on the soil-pesticide combination. The lack of consistent behavior renders a global approach to prediction of degradation unrealistic. The soil organic carbon content generally had a positive influence on degradation. The relationship between pH and degradation rates depended on the dominant mode of degradation for each pesticide. There were positive relationships between sorption and rate of degradation for metsulfuron-methyl, pirimicarb, and all acidic pesticides considered together (all P < 0.001) and for dicamba and all bases considered together (P < 0.05). No relationship between these processes was observed for the remaining seven individual pesticides.  相似文献   

20.
Methods were developed to determine OH reaction rates for medium-weight organophosphorus pesticides in the gas phase. A 57-L chamber was constructed that utilized xenon arc irradiation (>290 nm) to photolyze the OH precursor, methyl nitrite. Experiments were performed at elevated temperatures ranging from 60 to 80 degrees C to minimize wall sorption. Solid-phase microextraction (SPME) sampling of the gas phase was employed to assess the simultaneous rate of loss of the pesticides in relation to the rate of loss of two reference substances with known OH rate constants. An internal gas-phase standard (hexachlorobenzene), relatively stable to hydroxyl radicals, was used to assess other processes, which included dilution and wall sorption. The relative reaction rates of the organophosphorus insecticides, diazinon and chlorpyrifos, when compared to reference compounds, were unaffected by various air temperatures between 60 and 80 degrees C. Although both insecticides were expected to react at similar rates on the basis of structural activity model predictions, diazinon reacted 3 times more rapidly than chlorpyrifos and gave estimated environmental OH half-lives of 0.5 and 1.4 h, respectively. The degree of sorption onto the chamber walls was minimal and similar for each of the compounds examined. Experimental gas-phase determinations at elevated temperatures may provide important information that can be used when in the assessment of the potential of airborne pesticide risks to nontarget and ecologically sensitive areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号