首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following resource extraction by surface mining in the oil sands region of northeastern Alberta, sites are reclaimed by reconstructing soils using a variety of salvaged organic and mineral materials, and planted to native tree species. This study assessed the influence of three distinct stand types (Populus tremuloides Michx., Pinus banksiana Lamb., and Picea glauca (Moench) Voss) on forest floor development (thickness, morphology, total carbon and nitrogen contents), soil organic matter composition, and associated soil microbial communities. Forest floor and top mineral soil (0–5 cm) samples were collected from 32 sites reclaimed 16–33 years ago. Soil organic matter composition was measured using ramped-cross-polarization 13C nuclear magnetic resonance, and microbial communities were characterized using phospholipid fatty acid analysis. Morphological characteristics indicated little mesofaunal or fungal activities within the forest floors. Stands dominated by P. tremuloides fostered more rapid forest floor development than the coniferous (P. banksiana and P. glauca) stands, and showed a significant increase in forest floor thickness with time since reclamation. Within the P. tremuloides stands, forest floor development was accompanied by temporal changes in soil organic matter composition that reflected inputs from the canopy. Soil microbial community composition differed among reclamation treatments of the reconstructed soils, specifically as a function of their subsoil mineral textures, when canopy cover was below 30%. Above 30%, significant differences became apparent among stand types. Taken together, our results document how canopy cover and stand type were both important factors for the reestablishment of plant–soil relationships at these sites. Furthermore, achieving a canopy cover of 30% emerged as a critical threshold point during soil reclamation.  相似文献   

2.
The occurrence of aspen (Populus tremuloides Michx.) patches within stands dominated by black spruce (Picea mariana Mill. BSP) has been shown to increase litter decomposition and nutrient cycling rates by improving soil physical and chemical properties. It is well known, however, that these processes are also influenced by the structure of the soil biota, but this factor has received less attention. In this study, relationships between forest floor properties and soil invertebrates were studied along black spruce–trembling aspen gradients in three stands of the eastern boreal forest of Canada. The forest floor layer of 36 plots differing in aspen basal area was sampled and analyzed to determine physical and chemical properties, the rates of decomposition of standard substrates, net N mineralization, as well as microbial basal respiration and metabolic quotient. Soil invertebrates were also collected using funnel-extraction and pitfall trapping methods. Based on redundancy analyses, we found that forest floor properties, the abundance and composition of soil invertebrates, and the rates of belowground processes changed along the spruce–aspen gradient. The increase in aspen basal area was associated with a reduction in forest floor thickness, moisture content and microbial biomass, and with an increase in the concentration of nutrients. It was also accompanied by changes in soil faunal communities, as soil invertebrates were associated with specific soil properties. In general, macroinvertebrates (i.e., Lumbricidae, Formicidae, Carabidae, Staphylinidae and Gastropoda) were related to the nutrient-rich forest floor associated with aspen, whereas microarthropods and Enchytraeidae tended to be negatively related to aspen basal area. According to mixed linear models, decomposition rates of standard substrates and net ammonification significantly increased along the spruce–aspen gradient. Given the functional significance of macroinvertebrates in soils, these results suggest that aspen favours the elaboration of a macrofaunal community, which in turn accelerates the rate of soil processes by having either direct or indirect influence on microbial activity. Moreover, this study shows that the changes in soil processes and in the biodiversity of soil organisms related to the presence of mixed stands can operate only in the immediate surroundings of a given tree species. Therefore, coarse-scale tree species mixing in a forest stand may have a different effect on soil biodiversity and soil processes than fine-scale mixing.  相似文献   

3.
Climate warming is projected to increase the frequency and severity of wildfires in boreal forests, and increased wildfire activity may alter the large soil carbon (C) stocks in boreal forests. Changes in boreal soil C stocks that result from increased wildfire activity will be regulated in part by the response of microbial decomposition to fire, but post-fire changes in microbial decomposition are poorly understood. Here, we investigate the response of microbial decomposition to a boreal forest fire in interior Alaska and test the mechanisms that control post-fire changes in microbial decomposition. We used a reciprocal transplant between a recently burned boreal forest stand and a late successional boreal forest stand to test how post-fire changes in abiotic conditions, soil organic matter (SOM) composition, and soil microbial communities influence microbial decomposition. We found that SOM decomposing at the burned site lost 30.9% less mass over two years than SOM decomposing at the unburned site, indicating that post-fire changes in abiotic conditions suppress microbial decomposition. Our results suggest that moisture availability is one abiotic factor that constrains microbial decomposition in recently burned forests. In addition, we observed that burned SOM decomposed more slowly than unburned SOM, but the exact nature of SOM changes in the recently burned stand are unclear. Finally, we found no evidence that post-fire changes in soil microbial community composition significantly affect decomposition. Taken together, our study has demonstrated that boreal forest fires can suppress microbial decomposition due to post-fire changes in abiotic factors and the composition of SOM. Models that predict the consequences of increased wildfires for C storage in boreal forests may increase their predictive power by incorporating the observed negative response of microbial decomposition to boreal wildfires.  相似文献   

4.
We compare forest floor microbial communities in pure plots of four tree species (Thuja plicata, Tsuga heterophylla, Pseudotsuga menziesii, and Picea sitchensis) replicated at three sites on Vancouver Island. Microbial communities were characterised through community level physiological profiles (CLPP), and profiling of phospholipid fatty acids (PLFA).Microbial communities from cedar forest floors had higher potential C utilisation than the other species. The F layer of the forest floor under cedar contained significantly higher bacterial biomass (PLFA) than the F layer under the other three tree species. There were differences in microbial communities among the three sites: Upper Klanawa had the highest bacterial biomass and potential C utilisation; this site also had the highest N availability in the forest floors. Forest floor H layers under hemlock and Douglas-fir contained greater biomass of Gram positive, Gram negative bacteria and actinomycetes than F layers based on PLFA, and H layers under spruce contained greater biomass of Gram negative bacteria than F layers. There were no significant differences in bacterial biomass between forest floor layers under cedar. Fungal biomass displayed opposite trends to bacteria and actinomycetes, being lowest in cedar forest floors, and highest in the F layer and at the site with lowest N availability. There were also differences in community composition among species and sites, with cedar forest floors having a much lower fungal:bacterial ratio than spruce, hemlock and Douglas-fir. The least fertile Sarita Lake site had a much greater fungal:bacterial ratio than the more fertile San Juan and Upper Klanawa sites. Forest floor layer had the greatest effect on microbial community structure and potential function, followed by site, and tree species. The similarity in trends among measures of N availability and microbial communities is further evidence that these techniques provide information on microbial communities that is relevant to N cycling processes in the forest floor.  相似文献   

5.
Microbial composition is known, on similar soil types, to vary based on differing organic matter inputs, or stand composition. Fine-textured luvisolic soils, which dominate the upland boreal forests of Western Canada, support a canopy cover of aspen (Populus tremuloides Michx.), white spruce (Picea glauca (Moench) Voss) or a mixture of the two. These soils then reflect different belowground biogeochemical processing of organic matter. Novel, anthropogenic soils formed from a combination of peat litter and fine textured mineral soil, are now also a part of the landscape in the western boreal. This study set out to determine if a simple labeled compound (13C glucose) was processed differently by soils from the two dominant stand types (aspen and spruce) and from an anthropogenic (newly reclaimed) site. Results indicate that while all three soils rapidly incorporated and respired the labeled carbon, each maintained a distinct microbial community structure (as evidenced by phospholipid fatty acid analysis) throughout the 300 hour experiment. Therefore soils with different microbial communities from varied organic matter inputs decompose organic carbon by different processes, even in the case of simple labile compounds.  相似文献   

6.
《Applied soil ecology》2007,35(3):635-647
Previous studies have shown that forest floors from stands dominated by trembling aspen (ASPEN; Populus tremuloides Michx.) tend to support a greater microbial biomass with a different microbial community structure than forest floors from stands dominated by white spruce (SPRUCE; Picea glauca (Moench) Voss). A reciprocal transfer experiment, in concert with coarse and fine mesh bags that allowed or excluded fine root in-growth, was used to examine how the composition of these forest floor microbial communities respond to changes in belowground inputs from fine roots, aboveground inputs (e.g. from litter and through-fall) and soil microclimatic conditions over 1 year. Neither the microbial biomass nor the microbial community structure (assessed using phospholipid fatty acid analyses and substrate-induced respiration techniques) of forest floors of ASPEN or SPRUCE origin were altered by reciprocal transfer to SPRUCE or ASPEN stands, with or without fine root inputs. Despite the lack of changes in microbial community structure, the stand type during incubation had a strong effect on forest floor moisture content and concentrations of nitrate, while mesh size had a significant effect on forest floor pH and the abundance of mesofauna. Thus, changes in microbial community structure did not co-occur with changes in other characteristics of these forest floors. The resistance of the forest floor microbial communities to change may be a function of the high C contents of these soils. Further treatment effects may have been detected if the study had been extended beyond 1 year. Reciprocal transfer studies using coarse and fine mesh bags allow transferred soils to respond to fluctuations in microclimate, organic inputs and soil biota and, therefore, hold considerable promise for studies examining the influence of disturbances on soil properties.  相似文献   

7.
The composition of arbuscular mycorrhizal fungi (AMF) communities found in agricultural systems has been found to be very different to that of forest. The implications of this, if any, for the restoration of indigenous forest on ex-agricultural land is poorly understood. This study investigated the effect that AMF communities isolated from ex-agricultural and forest soils have on the growth of an indigenous New Zealand tree species (Podocarpus cunninghamii). The forest AMF community was isolated from a remnant stand of P. cunninghamii forest and the ex-agricultural AMF from a retired grazing grassland. In addition, the study examined how the two AMF communities affected the competitiveness of P. cunninghamii when grown in competition with an invasive grass species (Agrostis capillaris), which is frequently dominant on ex-agricultural land in New Zealand. P. cunninghamii growth was significantly decreased by inoculation with ex-agricultural AMF compared to forest AMF. Furthermore, the forest AMF community was able to significantly increase P. cunninghamii root production when in competition with A. capillaris. The findings suggest that when attempting to restore indigenous forest on ex-agricultural land, inoculation of tree seedlings with appropriate forest AMF may improve their growth and survival.  相似文献   

8.
With the growing interest in silvicultural techniques that more closely emulate natural disturbance regimes, there is a need to better understand how partial harvesting affects the soil microbial community in stands with varying ecological characteristics, e.g., tree species composition. Four and a half and 5.5 years post-harvest, we used phospholipid fatty acid (PLFA) and substrate-induced respiration (SIR) analyses to compare the microbial biomass and microbial community structure of forest floors from stands dominated by white spruce (Picea glauca; SPRUCE) or by trembling aspen (Populus tremuloides; ASPEN) and from mixed-species (MIXED) stands in northern Alberta, Canada, that had been clearcut, partial-cut with 20% retention, partial-cut with 50% retention or left uncut (controls). PLFA and SIR analyses revealed that ASPEN forest floors supported a larger microbial biomass with a very different community structure than MIXED or SPRUCE forest floors. The microbial community structure of these soils appeared to be strongly affected by the presence of white spruce and the composition of the understory vegetation. There were no effects of timber harvesting detected within or across stand types on any of the variables measured, with the exception of the PLFA 16:1ω5, which was relatively more abundant in the clearcuts and 50% retention treatments than in the uncut controls, perhaps in response to an increased forest floor pH and grass cover in the disturbed areas. The resilience to timber harvesting of the forest floors from these stands may be the result of efforts to minimize soil disturbance during harvesting and to allow vegetation to regenerate naturally. From the perspective of the forest floor microbial community, partial harvesting does not appear to have any benefit over clearcut harvesting at these boreal forest sites.  相似文献   

9.
The ability of soil microbial communities to withstand punctual disturbance or chronic stress is important for the stability of ecosystem processes. Factors controlling microbial community composition or soil resource availability should be regarded as potential determinants of this stability. Here, we explored the effects of three stand types (jack pine, aspen and mixed-wood) and two geologic parent materials (clay and till), on the stability of the microbial biomass in the forest floor. We hypothesised that microbial communities in mixed-wood stands or on the clay soil would show greater resistance to, and resilience from, a dry-wet disturbance, and a higher tolerance to incremental additions of HCl or Cu, than microbial communities in mono-specific stands or on the till soil. We also surveyed the understory vegetation, and measured chemical properties and microbial phospholipid fatty acid profiles in the forest floor, so as to gain insights into the factors regulating microbial stability. Microbial resistance to disturbance was found to be higher in mixed-wood than in mono-specific stands. Microbial communities from mixed-wood stands also showed a high tolerance to HCl and Cu stress over both geologic parent materials, as opposed to those in mono-specific stands that showed a high tolerance to stress on only one type of parent material. Some forest floor properties in mixed-wood stands (e.g. Ca on clay, mineralisable N and C/N ratio on till) were more similar to the more productive aspen, than to jack pine stands. Other properties (understory plant communities, pH, actinomycete and arbuscular mycorrhizae) of mixed-wood stands were transitional between those in aspen and jack pine stands, suggesting that both tree species contribute in structuring the forest floor microbial pool in mixed-wood stands. We put forward that this may provide a more diverse capability to resist disturbance and tolerate stress than in mono-specific stands. We found no effect of stand type on microbial resilience to disturbance, but resilience was higher on clay than on till plots. This could be due to a higher fungal/bacterial ratio on till plots, as slower fungal growth rates may hinder resilience, or to lower carbon and nutrient availability limiting the growth rate of resistant microbial cells. We conclude that plant diversity and site productivity are important drivers of forest floor microbial stability in the southern boreal forest of eastern Canada.  相似文献   

10.
In boreal forests ericaceous shrubs often dominate the forest floor vegetation. Nitrogen enrichment has been shown to decrease shrub abundance and in this study we explored whether it also affects the root associated fungal communities. Fine roots of Vaccinium myrtillus were collected in a Norway spruce dominated forest and of Vaccinium vitis-idaea in a Scots pine dominated forest. In both forests, nitrogen enrichment was experimentally induced by adding 12.5 and 50 kg N ha−1 yr−1 for 12 (spruce forest) and four (pine forest) years. Based on terminal restriction fragment length polymorphisms, subcloning and sequencing analyses, the root associated fungal communities were examined. We found 93 fungal species including Asco-, Basidio- and Zygo-mycota. In general, the Rhizoscyphus ericae aggregate was the most dominant and this was followed by Herpotrichiellaceae and Sebacina. Ordination analysis revealed that nitrogen enrichment did not change species composition of the fungal communities in neither the spruce nor the pine forest, while fungal community structures were clearly discriminated between the dominant shrub species in each forest. Similarly, no fungal species showed a significant response to nitrogen enrichment. Therefore, nitrogen enrichment appears to have no effect on root associated fungi of understorey dwarf shrubs in boreal forests, while it is clear that spruce and pine forests harbor distinctive communities of these fungi.  相似文献   

11.
The habitat requirements and effects of forest management on insects belonging to higher trophic levels are relatively unknown in forest ecosystems. We tested the effect of forest successional stage and dead wood characteristics on the saproxylic parasitoid (Hymenoptera, Ichneumonoidea) assemblage in boreal spruce-dominated forests in northern Sweden. Within each of nine areas, we selected three sites with different management histories: (1) a clear-cut (2) a mature managed forest and (3) an old-growth forest. Parasitoids were collected in 2003 using eclector traps mounted on fresh logs, which were either untreated (control), burned, inoculated with fungi, or naturally shaded, and on artificially-created snags.Both forest type and dead wood characteristics had a significant effect on parasitoid assemblages. Grouped idiobionts and some species, such as Bracon obscurator and Ontsira antica, preferred clear-cuts, while others, such as Cosmophorus regius (Hym., Braconidae) and other koinobionts, were associated with older successional forest stages. No single dead wood substrate was sufficient to support the entire community of parasitoids in any forest type, even when the regular host was present. In particular, snags hosted a different assemblage of species from other types of dead wood, with parasitoids of Tetropium spp. such as Rhimphoctona spp. (Hym., Ichneumonidae) and Helconidea dentator (Hym., Braconidae) being abundant. These results indicate that a diversity of dead wood habitats is necessary to support complete assemblages of beetle-associated parasitoids from early successional stages of dead wood and that parasitoids may be more sensitive to habitat change than their hosts.  相似文献   

12.
Many fast growing tree species have been introduced to promote biodiversity rehabilitation on degraded tropical lands. Although it has been shown that plant productivity and stability are dependent on the composition and functionalities of soil microbial communities, more particularly on the abundance and diversity of soil symbiotic micro-organisms (mycorrhizal fungi and rhizobia), the impact of tree introduction on soil microbiota has been scarcely studied. This research has been carried in a field plantation of Acacia holosericea (Australian Acacia species) inoculated or not with an ectomycorrhizal fungus isolate, Pisolithus albus IR100. After 7 year's plantation, the diversity and the symbiotic properties of Bradyrhizobia isolated from the plantation soil or from the surrounding area (Faidherbia albida (Del.) a. Chev. parkland) and able to nodulate F. albida, a native Sahelian Acacia species, have been studied. Results clearly showed that A. holosericea modified the structure of Bradyrhizobia populations and their effectiveness on F. albida growth. This negative effect was counterbalanced by the introduction of an ectomycorrhizal fungus, P. albus, on A. holosericea root systems.In conclusion, this study shows that exotic plant species can drastically affect genotypic and symbiotic effectiveness of native Bradyrhizobia populations that could limit the natural regeneration of endemic plant species such as F. albida. This effect could be counterbalanced by controlled ectomycorrhization with P. albus. These results have to be considered when exotic tree species are used in afforestation programs that target preservation of native plants and soil ecosystem rehabilitation.  相似文献   

13.
In forest ecosystems where infrequent, severe fires have been an important process in shaping ecosystem structure, understanding the effects of introduced livestock on post-fire recovery of the vegetation is essential for effective forest resource management and preservation. In Nahuel Huapi National Park in northwestern Patagonia, we studied the effects of livestock on the post-fire recovery of a Nothofagus dombeyi-Austrocedrus chilensis forest that was burned in 1999. We experimentally excluded cattle by fencing plots and compared the vegetation characteristics of fenced and unfenced control plots over a 5-year period. Although cattle did not significantly reduce total plant cover or total species richness, they did reduce maximum heights of woody species including the dominant tree species. Chusquea culeou, a tall understory bamboo, can impede establishment and height growth of the dominant tree species. Although C. culeou accounts for the largest percentage of cattle diet, its mean cover and mean maximum height were not strongly affected by cattle. The reduction in the height growth of seedlings of N. dombeyi and Austrocedrus in the unfenced areas implies that presence of cattle in the recently burned areas may contribute to a post-fire transition from tall forest to bamboo-dominated shrubland that is already widespread in this landscape. Thus, these results provide support for the fencing of recently burned Nothofagus and Austrocedrus forests in the national parks for periods long enough to allow the dominant tree species to grow to heights at which they are no longer severely inhibited by cattle browsing.  相似文献   

14.
The oribatid mites Oppiella nova, Tectocepheus velatus and Nothrus silvestris and the enchytraeid worm Cognettia sphagnetorum are four common animal species in boreal forest soils. According to the literature, they respond differently to clear-cutting of forest stands. O. nova responds with population decreases, T. velatus and N. silvestris with small changes and C. sphagnetorum with population increases. We hypothesised that the presence/absence of ectomycorrhizal (EM) fungi is a major factor in explaining these reactions. The population responses of these soil animals to inoculation of five species of EM fungi growing in symbiosis with their host tree (Pinus sylvestris L.) and one saprotrophic fungus, Hypholoma capnoides, growing on wood were tested in pot microcosms with artificial soil (peat and vermiculite) for 70-84 days. Additionally, plants without inoculation of EM fungi, plants growing in forest soil (FS) and plant-free peat and vermiculite (PV) were included. O. nova increased significantly in abundance in the treatments with the EM fungi Suillus variegatus and Paxillus involutus, but not in the other treatments. T. velatus increased significantly in abundance in FS, but declined in most of the other treatments, and N. silvestris showed a similar, albeit not significant, response. C. sphagnetorum did not increase in abundance in any of the treatments with EM fungi but increased its abundance four times in both FS and PV. The results show that the fungivore O. nova preferentially feeds on certain EM fungi, especially S. variegatus, whereas the EM fungus Piloderma fallax and the saprotrophic H. capnoides are not preferred. In contrast, C. sphagnetorum is restricted in its population growth by the EM fungi studied, and this dominant microbi-detritivore is clearly favoured by the absence of EM fungi.  相似文献   

15.
Fine root (<2 mm) processes contribute to and exhibit control over a large pool of labile carbon (C) in boreal forest ecosystems because of the high proportion of C allocated to fine root net primary production (NPP), and the rapid decomposition of fine roots relative to aboveground counterparts. The objective of this study was to determine the contribution of fine roots to ecosystem biomass and NPP in a mature black spruce (Picea mariana Mill.) (OBS), aspen (Populus tremuloides Michx.) (OA), and jack pine (Pinus banksiana Lamb.) (OJP) stand, and an 11-year-old harvested jack pine (HJP) stand in Saskatchewan. Estimates of fine root biomass and NPP were obtained from nine minirhizotron (MR) tubes at each of the four Boreal Ecosystem Research and Monitoring Sites (BERMS). Fine root data were collected once a month for May–September in 2003 and 2004. Additional C biomass and NPP data for various components of the forest stands were obtained from Gower et al. (1997) and Howard et al. (2004). Annual fine root biomass averaged 3.10 ± 0.89, 1.71 ± 0.49, 1.62 ± 0.32, and 2.96 ± 0.67 Mg C ha−1 (means ± S.D.) at OBS, OA, OJP, and HJP, respectively, comprising between 1 and 6% of total stand biomass. Annual fine root NPP averaged 2.66 ± 0.97, 2.03 ± 0.43, 1.44 ± 0.43, and 2.16 ± 0.81 Mg C ha−1 year−1 (means ± S.D.) at OBS, OA, OJP, and HJP, respectively, constituting between 41 and 71% of total stand NPP. Results of this study indicate that fine roots produce a large amount of C in boreal forests. It is speculated that fine root NPP may control a large amount of labile C-cycling in boreal forests and that fine root responses to environmental and anthropogenic stress may be an early indicator of impaired ecosystem functioning.  相似文献   

16.
The distribution of heterotrophic flagellates, naked amoebae, testate amoebae and ciliates was investigated in habitats created by Scots pine-Paxillus involutus and -Suillus bovinus ectomycorrhizospheres. The protozoa living on plant and fungal surfaces preferred the non-mycorrhizal pine roots over mycorrhizal roots or external mycelium. The testate amoebae were more abundant on external mycelium than on mycorrhizae regardless of the mycorrhizal fungal species. Numbers of protozoa were higher in the different habitats provided by S. bovinus mycorrhizospheres when compared with P. involutus mycorrhizospheres. Interestingly, the quality of the bacterial flora as food for the protozoa was affected by the mycorrhizal fungi even in the soils adjacent to non-mycorrhizal root tips of pine. These results demonstrate that mycorrhizal fungi create habitats differently suitable for protozoa living in boreal forest soil.  相似文献   

17.
Decomposer microorganisms contribute to carbon loss from the forest floor as they metabolize organic substances and respire CO2. In temperate and boreal forest ecosystems, the temperature of the forest floor can fluctuate significantly on a day-to-night or day-to-day basis. In order to estimate total respiratory CO2 loss over even relatively short durations, therefore, we need to know the temperature sensitivity (Q10) of microbial respiration. Temperature sensitivity has been calculated for microbes in different soil horizons, soil fractions, and at different depths, but we would suggest that for some forests, other ecologically relative soil portions should be considered to accurately predict the contribution of soil to respiration under warming. The floor of many forests is heterogeneous, consisting of an organic horizon comprising a few more-or-less distinct layers varying in decomposition status. We therefore determined at various measurement temperatures the respiration rates of litter, F-layer, and H-layer collected from a Pinus resinosa plantation, and calculated Q10 values for each layer. Q10 depended on measurement temperature, and was significantly greater in H-layer than in litter or F-layer between 5 and 17 °C. Our results indicate, therefore, that as the temperature of the forest floor rises, the increase in respiration by the H-layer will be disproportionate to the increase by other layers. However, change in respiration by the H-layer associated with change in temperature may contribute minimally or significantly to changes of total forest floor respiration in response to changes in temperature depending on the depth and thickness of the layer in different forest ecosystems.  相似文献   

18.
Permafrost thaw is expected to alter biogeochemistry and hydrology, potentially increasing the mobility of soil constituents. Northern latitude boreal forests where permafrost thaw is occurring also experience extreme changes in day length during the growing season. As the effects of photoperiod on plant uptake of soil constituents or interactions with the rhizosphere are unknown, our objective was to determine these interactions with three plant species from different functional groups. A tree, forb, and grass common to military training ranges in this region were grown in soil spiked with or without lead, antimony, or 2,4-dinitrotoluene and grown under 16, 20, or 24 h of light. Plant biomass, soil constituent uptake, and rhizosphere bacterial communities were compared between treatments. Photoperiod had no effect on plant uptake of any soil constituent or on rhizosphere community, indicating that plants and their associated microbial communities adapted to this environment are resilient to extremes in photoperiod. Lead uptake was not significant in any plant species and had no effect on the rhizosphere. Antimony increased the percentage composition of Saprospirales in the rhizospheres of two of the three plants, indicating an interaction between this bacterial order and antimony. Antimony uptake by white spruce (Picea glauca) was considerable, with a mean concentration of 1731 mg kg?1 in roots, while mean shoot concentration was only 155 mg kg?1, indicating its potential to phytostabilize this heavy metal. Although antimony had the strongest impact on the rhizosphere bacterial community, it was also readily accumulated by the grass and tree.  相似文献   

19.
The Maulino forest is a unique temperate ecosystem restricted to a small range of the coast of central Chile. This forest harbors many endemic species, and is threatened due to intensive deforestation and fragmentation. Currently the Maulino forest is composed of a suite of small fragments scattered in a landscape dominated by exotic plantations. The fragmentation of the Maulino forest has resulted in a higher abundance of granivores in small forest fragments compared with continuous forest. In order to determine if fragmentation-induced changes in granivore abundance affects the granivory of different size seeds, we experimentally assessed seed predation of a large-seeded species [Nothofagus glauca (Phil.) Krasser] and a small-seeded species [Nothofagus obliqua (Mirbel) Oersted] in the edges and interior of one continuous (large) forest and three small fragments (∼3 ha) surrounded by plantations of the exotic tree Pinus radiata. To determine what kind of granivores are preying upon seeds, seeds of both species were excluded from and exposed to large and small granivores. Granivory was higher in small fragments than in continuous forest, higher in the edges than in the forest interior, and higher upon large than on small seeds. Rodents, which were more abundant in forest fragments, were the main consumers. Thus, fragmentation indeed affects granivory increasing the consumption of seeds by predators inhabiting the Maulino forest remnants or coming from the matrix. This change may affect the future structure of the tree community in forest fragments.  相似文献   

20.
Tree species influence on the soil mineralization process can regulate overall nutrient cycling in a forest ecosystem, which may occur through their effects on substrate quality, soil physicochemical properties and soil microbial community. We investigated tree species effects on soil enzyme activities in a tropical montane forest on Mt. Kinabalu, Borneo. Specifically, we analyzed C- and P-degrading enzyme activities, as well as the relationships among the enzyme activities, soil physicochemical properties, substrate quality (C, N, and P concentrations), and microbial composition in the top 5 cm soils beneath conifers (Dacrycarpus imbricatus and Dacrydium gracilis) and broadleaves (Lithocarpus clementianus, Palaquium rioence, and Tristaniopsis clementis). Activities of acid phosphatase and β-d-glucosidase were significantly different among the tree species. Soil moisture, total C and N content and microbial lipid abundance (a proxy for microbial composition) could influence the enzyme activities although the relative contributions of microbial composition to the enzyme activities might be smaller. A higher acid phosphatase activity beneath Dacrydium than those beneath the other tree species can compensate for a lower concentration of P in available fractions beneath Dacrydium. This localized mineralization activity could subsequently influence soil nutrient availability in this forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号