首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of balancing the foot and shoeing (B&S) on the kinematics of five Quarter Horses with navicular disease were evaluated using computerized gait analysis. Kinematic measurements of the right forelimb and head were made before and after palmar digital nerve block (PDNB) and before and after B&S of the forelimb feet. Carpal and fetlock joint angle, foot displacement, and temporal gait measurements were made for at least five strides in each horse trotting on a treadmill. Kinematic measurements were compared before and after PDNB and before and after B&S by analysis of variance with an α=0.05. The most significant kinematic changes seen after PDNB were in the vertical head movement parameters studied. Total vertical head excursion and measures of head height asymmetry between right and left forelimb stance phases decreased after PDNB. After B&S mean carpal flexion and maximum hoof height during the swing phase of the stride increased, but none of the head movement parameters significantly changed. Results of this study indicate that the ability of treadmill kinematic gait analysis to evaluate for improvement in lameness by monitoring vertical head movement parameters is not significantly affected in horses with navicular disease three weeks after balancing and shoeing the forelimb feet.  相似文献   

2.
OBJECTIVE: To determine whether kinematic changes induced by heel pressure in horses differ from those induced by toe pressure. ANIMALS: 10 adult Quarter Horses. PROCEDURE: A shoe that applied pressure on the cuneus ungulae (frog) or on the toe was used. Kinematic analyses were performed before and after 2 levels of frog pressure and after 1 level of toe pressure. Values for stride displacement and time and joint angles were determined from horses trotting on a treadmill. RESULTS: The first level of frog pressure caused decreases in metacarpophalangeal (fetlock) joint extension during stance and increases in head vertical movement and asymmetry. The second level of frog pressure caused these changes but also caused decreases in stride duration and carpal joint extension during stance as well as increases in relative stance duration. Toe pressure caused changes in these same variables but also caused maximum extension of the fetlock joint to occur before midstance, maximum hoof height to be closer to midswing, and forelimb protraction to increase. CONCLUSION AND CLINICAL RELEVANCE: Decreased fetlock joint extension during stance and increased head vertical movement and asymmetry are sensitive indicators of forelimb lameness. Decreased stride duration, increased relative stance duration, and decreased carpal joint extension during stance are general but insensitive indicators of forelimb lameness. Increased forelimb protraction, hoof flight pattern with maximum hoof height near midswing, and maximum fetlock joint extension in cranial stance may be specific indicators of lameness in the toe region. Observation of forelimb movement may enable clinicians to differentiate lameness of the heel from lameness of the toe.  相似文献   

3.
Using a system for motion analysis, linear correlation of speed and forelimb lameness was measured in 16 horses trotting on a treadmill at a minimum of three different trotting speeds. Forelimb lameness was determined as asymmetry of vertical head motion during left and right forelimb stance.In seven horses with a moderate forelimb lameness (head motion asymmetry >40%), lameness increased significantly with trotting speed. In a further seven horses with mild or subclinical forelimb lameness (head motion asymmetry <40%) and in two horses with a moderate forelimb lameness, no significant correlation between speed and motion asymmetry was found.The results indicate that moderate forelimb lameness measured as head motion asymmetry depends on the speed at which the measurements are taken. If head motion asymmetry is measured at two trotting speeds, it can be standardized to any speed within the trotting speed range.  相似文献   

4.
AIMS: To determine the frontal plane position of the ground reaction force vector at its centre of pressure under the hoof of walking horses, and its projection through the distal limb joints, and to relate this to hoof geometric measurements.

METHODS: Reflective markers were glued to the forelimb hooves and skin of 26 horses, over palpable landmarks representing centres of the coffin, fetlock and carpal joints, and the dorsal toe at its most distal point. A 4-camera kinematic system recorded the position of these markers as the horse walked in hand across a force platform, to generate a frontal plane representation of the ground reaction force vector passing between the markers at the joints. The position of the vector was calculated as the relative distance between the lateral (0%) and medial (100%) markers at each joint. Digital photos were taken of the hoof in frontal and sagittal views to determine hoof geometric measurements. Associations between these and the position of the force vector at each joint were examined using Pearson correlation coefficients.

RESULTS: Mean vector position for both forelimbs at the toe, coffin, fetlock and carpal joint was 50.1 (SD 8.9), 53.0 (SD 9.2), 54.6 (SD 11.4) and 50.5 (SD17.3)%, respectively, of the distance between the lateral and medial sides of the joint in the frontal plane. Across all four joints, the vector position was slightly more medial (2–4%) for the right than left limb (p>0.05). Medial hoof wall angle was correlated (p<0.05) with force vector position at the fetlock (r=?0.402) and carpal (r=?0.317) joints; lateral hoof wall angle with vector position at the toe (r=0.288) and carpal (r=?0.34) joint, and medial hoof wall height with vector position at the fetlock (r=?0.306) and carpal (r=?0.303) joints.

CONCLUSION: The position of the two-dimensional frontal plane ground reaction force vector at the toe, and at the fetlock and carpal joints was associated with hoof shape. Mediolateral hoof balance has been shown in vitro to affect articular forces, which may be a factor in development of joint disease. The effect of hoof shape needs to be evaluated at faster gaits to determine the potential for joint injury in the presence of larger forces.  相似文献   

5.
OBJECTIVE: To investigate continuous wavelet transformation and neural network classification of gait data for detecting forelimb lameness in horses. ANIMALS: 12 adult horses with mild forelimb lameness. PROCEDURE: Position of the head and right forelimb foot, metacarpophalangeal (ie, fetlock), carpal, and elbow joints was determined by use of kinematic analysis before and after palmar digital nerve blocks. We obtained 8 recordings from horses without lameness, 8 with right forelimb lameness, and 8 with left forelimb lameness. Vertical and horizontal position of the head and vertical position of the foot, fetlock, carpal, and elbow joints were processed by continuous wavelet transformation. Feature vectors were created from the transformed signals and a neural network trained with data from 6 horses, which was then tested on the remaining 2 horses for each category until each horse was used twice for training and testing. Correct classification percentage (CCP) was calculated for each combination of gait signals tested. RESULTS: Wavelet-transformed vertical position of the head and right forelimb foot had greater CCP (85%) than untransformed data (21%). Adding data from the fetlock, carpal, or elbow joints did not improve CCP over that for the head and foot alone. CONCLUSIONS AND CLINICAL RELEVANCE: Wavelet transformation of gait data extracts information that is important for the detection and differentiation of forelimb lameness of horses. All of the necessary information to detect lameness and differentiate the side of lameness can be obtained by observation of vertical head movement in concert with movement of the foot of 1 forelimb.  相似文献   

6.
Directionality of limb and facial asymmetries in nonelite equine populations has been previously reported with results indicating strong similarities to those reported in racehorses. This investigation aimed to consider the relationship between the magnitude of the asymmetries presented within the general equine population, and their previously reported directionality. Direct measurements of 15 bilateral traits (four facial and 11 limb) were captured from a mixed population of 100 horses and ponies. The pooled (whole) population was considered further as horse (withers height >148 cm) and pony (withers height ≤148 cm) groupings. Each of the three groups was further subdivided for each trait, into individuals presenting with larger left or larger right sides. Asymmetries were compared as mean asymmetries and as percentages of the trait size at each grouping level. Asymmetry magnitudes were largely reflective of the directional asymmetries previously recorded. Both the horse and pony groups presented with significantly longer right side third metacarpal (P ≤ .001) and third metatarsal (P ≤ .05 and P ≤ .001) bones, whereas in the horse group, the left fore proximal phalanx was both longer and wider than the right (P ≤ .001 and P ≤ .05). This pattern is reflective of the biomechanical preference for left lead anticlockwise canter, previously only observed in racehorses. The proximal phalanx of the forelimb potentially compensates for the higher loading forces associated with the lead forelimb. When scaled as percentages of trait size, the asymmetry magnitudes largely reflected those reported in humans, suggesting similar measurement criteria could be applied when considering stock selection and controlling for injury predisposition in horses.  相似文献   

7.
Twelve horses were utilized in a 2 × 2 factorial experiment to investigate the proportionality of the skeleton (small and large framed) and musculature (light and heavy) of mature horses. Large framed horses were longer from the elbow to fetlock, knee to fetlock, hock to fetlock, and from the poll to the end of the nasal bone than small framed horses. Withers height was correlated (P<.001) with the lengths of all long bones (r=.85 to .95) with the exception of the metacarpal bone (r=.69, P<.05). Yet when the lengths of the head, legs, scapula, humerus, femur, tibia, metacarpal, and metatarsals were expressed as a percentage of withers height, no differences between frame sizes were observed.The heavily muscled horses had greater (P<.05) rear quarter width, forearm circumference, gaskin circumference, head width and length than did the lightly muscled horses. The weights of the extensor carpi radialis, biceps femoris, and total round muscle were greater for the heavily muscled horses. Correlations (P<.001) between the weights of the biceps femoris and the total round muscle, total round tissue, and gaskin circumference ranged from .89 to .94 while correlations (P<.001) of the biceps femoris weight with quarter width and extensor carpi radialis were .83 and .82, respectively.Cannon wall area and circumference measurements did not differ for frame size or the degree of muscling but a correlation (r=.75, P<.01) was noted between the cannon circumference taken on the live horses and the actual circumference of the large and small metacarpals.The demonstrated relationship between the lengths of the long bones and height of a horse indicate little value for many of the traditional conformation guidelines governing selection of the ideal conformation horse. Horsemen should realize that many body lengths such as elbow to fetlock actually represented a relatively constant percentage of withers height. Lengths of the scapula, humerus, metacarpal, femur, and tibia also reflected a constant relationship with withers height. The correlations between the extensor carpi radialis and the biceps femoris weights refute the common belief that horses may naturally (no forced exercise) be more heavily muscled in either the fore or rear quarter. Therefore, the data support the theory of proportionality relative to the conformation of the skeletal size and muscling of predominantly Quarter Horse bred horses.  相似文献   

8.
Orthopaedic shoeing applied for disorders such as navicular disease is mostly evaluated on hard track surfaces, but very often horses are ridden only on soft tracks. To compare the effects of normal shoes, eggbar shoes, and shoes with heel wedges (5 degrees) on the kinematics of the distal forelimb on hard and soft track surfaces, eleven sound Dutch Warmblood horses were led across three different tracks (an asphalt, a fibre/sand mix (= Agterberg), and a pure sand track) with three different shoe types (a normal shoe, an eggbar shoe, and a shoe with heel wedges). The hoof rotation and the maximal extension of the fetlock joint at midstance period were recorded by an infrared-light based gait analysis system (ProReflex) at walk and at trot. Statistical analysis revealed significant effects of track and shoe type, and a shoe-track interaction (p<0.05). On soft track surfaces, the equilibrium of the distal forelimb dictated a 1.5-4 degrees forward rotation of the normal or eggbar shod foot, the most on a sand track. The wedge effect on hoof rotation, however, was always significantly greater, but similar to that on the hard track surface (5 degrees forward rotation). The maximal fetlock extension was less on a soft surface, in particular on the sand track (p<0.05). This decrease was most pronounced when the horses were shod with heel wedges and was least pronounced with normal shoes. In conclusion, in particular the sand track allows a forward rotation of the hoof and thus relief of pressure in the navicular area, and a decrease in maximal fetlock extension and thus unloading of the fetlock joint. The extra forward rotation of the hoof induced by heel wedges on hard tracks was almost the same on soft track surfaces. Eggbars and fibre/sand mix tracks have intermediate effects on unloading of the distal forelimb.  相似文献   

9.
Movement analysis techniques allow objective and quantitative assessment of kinematic gait analysis. Consistent repeatability of the kinematic data is essential for such assessments. This study investigated whether the repeatability of a standardized Equinalysis Elite gait analysis system is sufficient to allow its use in clinical evaluation of equine lameness with reliable documentation of individual locomotion patterns. The extent to which examinations on different days affected the results when a standardized protocol was used was investigated. The repeatability of distal limb kinematics in nine sound horses over three successive days at one location was investigated. Measurements were performed at the examination area, for three motion cycles at the walk and trot, in each direction per day. Skin markers were placed on the lateral aspect of the coffin joint, forelimb fetlock joint, hindlimb fetlock joint, carpus, tarsus, elbow, and stifle, at clipped sites marked with a permanent marker. The inter-day repeatability of angular measurements of the carpus, tarsus, forelimb fetlock, and hindlimb fetlock joints was determined. A low degree of inter-day repeatability was found with statistically significant (P ≤ .05) differences between findings on different days, observed in the time-angle diagrams of left and right carpus, tarsus, forelimb fetlock, and hindlimb fetlock joints of all horses, at both walk and trot. The standardized Equinalysis Elite system for gait analysis of distal limb kinematics in the horse did not provide highly repeatable data in this setting.  相似文献   

10.
To meet the needs of sport horses, horseshoes of various styles and materials have been implemented to enhance performance. Steel shoes are commonly used for their affordability and longevity; however, the use of aluminum horseshoes is being adopted to satisfy the various requirements of certain equestrian activities. Owing to the importance of the allure of movement in many aspects of competitive riding, the lightweight nature of aluminum horseshoes has been recognized to accentuate foreleg action. By performing a repeated-measures crossover study on nine healthy stock-type horses, the effects of these two horseshoe types on forelimb action were analyzed at the trot using two-dimensional kinematics. Horses were trotted in hand for three repetitions over a distance of 50.1 meters on days 4, 18, 32, and 46 postshoeing for two 6-week shoeing cycles. Video footage was collected and analyzed using gait analysis software (EquineTec) for each repetition. The measured stride length, fetlock extension, elbow and knee range of motion, and minimum and maximum elbow angle remained constant between treatments. However, there was a significant treatment effect on minimum carpal angle and maximum hoof height, with aluminum shoes having a larger minimum carpal angle than those in steel shoes (P < .05) and a lower maximum hoof height (P < .05). An overall 3-degree difference in minimum carpal angle and approximate 2.5-cm difference in maximum hoof height was observed between treatments. This finding is of particular importance to performance horse disciplines for which a lesser degree of knee action is desirable.  相似文献   

11.
Summary

The kinematic pattern of mild bilateral lameness was studied by inducing a supporting limb lameness in both forelimbs of 11 sound Dutch Warmblood horses. The kinematics of the horses were recorded while they trotted (3.5 m/s) on a treadmill. The locomotion analysis system CODA‐3 was used to determine the temporal stride patterns, limb movements as well as head and trunk movement patterns. The transient lameness model, by which pressure‐induced pain is evoked on the hoof sole, was used. Differences between left and right limbs as well as between the sound and the lame condition were tested using a paired t‐test.

Stride and stance duration did not change significantly (p < 0.05) during bilateral lameness compared to the pattern of sound horses. Diagonal advanced placement changed to an earlier placement of both forelimbs. Fetlock hyperextension decreased also in both forelimbs, while the pro‐ and retraction, hoof impact angle, maximal hoof height, and all hind limb variables remained unchanged. Vertical head and trunk movements tended to decrease, but these changes were not significant.

It was concluded that fetlock hyperextension and diagonal advanced placement indicate locomotor disturbances, but that mild bilateral lameness may be difficult to distinguish from individual patterns in single assessments because of the lack of locomotor asymmetries. Evaluation of these variables at regular intervals may allow an early detection of bilateral lameness, which then could be confirmed by diagnostic local anaesthesia.  相似文献   

12.
Reasons for performing study: Most lameness in horses relates to foot problems and may be associated with changes in hoof shape, but there is a lack of information on the influence of normal exercise on hoof shape. Objectives: To investigate the effect of training on proximal hoof circumference in young Thoroughbred racehorses being prepared for racing. Methods: Thirty‐seven young Thoroughbred racehorses were included in this study. Front hoof circumference immediately below the coronary band was measured weekly with a measuring tape in all horses present at the stable. Most horses accomplished a minimum of 2 training periods at the stable separated by periods of rest on a paddock. One sample t tests were used to evaluate if the mean change per week differed from zero. To estimate the repeatability coefficient, the left proximal hoof circumference of 25 horses was measured 3 times in a random order on one day. Results: Most horses showed a similar pattern of change. The proximal hoof circumference decreased during the training periods (P<0.0001) and increased when the horse was rested (P<0.0001). The decrease of the circumference during the first training period was ?0.66 mm/week on the left and ?0.64 mm/week on the right. During the second training period, this was ?0.58 mm/week on the left and ?0.57 mm/week on the right. During the rest period, the circumference increased by 1.03 mm/week on the left and 1.12 mm/week on the right. The repeatability coefficient for the left circumference was 1.8 mm. Conclusions: Horses showed a decrease in circumference during race training that reversed when they were rested. Potential relevance: Measurement of front hoof circumference is a simple method to assess change in hoof shape. It provides an opportunity to investigate the relationships between specific training, hoof shape and soundness.  相似文献   

13.
Reasons for performing study: Although track surfaces are a risk factor of tendon injuries, their effects on tendon loading at high speed are unknown. Using a noninvasive ultrasonic technique, it is now possible to evaluate the forces in the superficial digital flexor tendon (SDFT) in exercise conditions. Objectives: To compare the effects of an all‐weather waxed track (W) vs. a crushed sand track (S), on the SDFT loading in the trotter horse at high speed. Methods: Two trotter horses were equipped with the ultrasonic device (1 MHz ultrasonic probe, fixed on the palmar metacarpal area of the right forelimb). For each trial, data acquisition was made at 400 Hz and 10 consecutive strides were analysed. In each session, the 2 track surfaces were tested in a straight line. The speed was imposed at 10 m/s and recorded. The right forelimb was also equipped with a dynamometric horseshoe and skin markers. The horse was filmed with a high‐speed camera (600 Hz); all recordings were synchronised. Statistical differences were tested using the GLM procedure (SAS; P<0.05). Results: Maximal tendon force was significantly lower on W compared with S. In addition to maximal force peaks around mid‐stance, earlier peaks were observed, more pronounced on S than on W, at about 13%(horse 2) and 30% (both horses) of the stance phase. Comparison with kinematic data revealed that these early peaks were accompanied by plateaux in the fetlock angle‐time chart. For high tendon forces, the tendon maximal loading rate was significantly lower on W than on S. Conclusions and potential clinical relevance: The all‐weather waxed track appears to induce a lesser and more gradual SDFT loading than crushed sand. The SDFT loading pattern at high speed trot suggests proximal interphalangeal joint movements during limb loading.  相似文献   

14.
Racehorses in New Zealand predominantly train counter clockwise. This training pattern has been associated with between forelimb differences in bone mineral density profile and asymmetrical limb loading after training. At present, there is limited data on the hoof conformation of these racehorses. Distal forelimb and digital hoof conformation data were collected from 75 Thoroughbred racehorses (2–5 years old) from two training yards. Digital conformation was subjectively graded, and multiple hoof measurements were made with a modified tire gauge (sole and sulci depth) and from digital photographs. All the horses were shod by two registered master farriers within a median of 15 (interquartile range [IQR], 1–25) days before measurement. There were few distal limb conformation abnormalities scored. Most (62/75) horses presented with some deviation from normal hoof parameters, with 2 (IQR, 1–3) abnormalities reported per horse. The most common hoof abnormality was uneven sulci, which was identified in 43 horses and 59 affected hooves, followed by higher medial hoof wall height in 38 horses and 53 affected hooves. Many of the linear and hoof angle measurements and their ratios were within the bounds reported within the literature and indicative of a balanced foot. The length and width measurements increased with horse age. The dorsal hoof wall (DHW) length:heel length ratios were consistently less than 3:1, and the absolute difference between toe and heel angle was generally greater than 5°. Between limb hoof variation was identified for a number of the morphologic measurements including frog length and sole length and the ratio of sole width:sole length. Flat feet (lack of concave solar surface) were identified in 21/75 (28%) horses and in 28/150 (19%) forelimb hoofs. More horses had a flat left foot (10/75) than right foot (4/75), but seven horses had both feet classified as being flat. Flat feet had 2.4 (1.1–5.6, P = .036) greater odds of presenting with uneven sulci. These data indicate that uneven sulci depth and flatter hooves with may be a typical presentation of Thoroughbred feet. Asymmetry in measurements between limb may reflect the greater loading of the left forelimb when race training counter clockwise.  相似文献   

15.
16.
High-speed cinematography with computer aided analysis was used to study equine hindlimb kinematics. Eight horses were filmed at the trot or the pace. Filming was done from the side (lateral) and the back (caudal). Parameters measured from the lateral filming included the heights of the tuber coxae and tailhead, protraction and retraction of the hoof and angular changes of the tarsus and stifle. Abduction and adduction of the limb and tarsal height changes were measured from the caudal filming. The maximum and minimum values plus the standard deviations and coefficients of variations are presented in tabular form. Three gait diagrams were constructed to represent stifle angle versus tarsal angle, metatarsophalangeal height versus protraction-retraction (fetlock height diagram) and tuber coxae and tailhead height versus stride (pelvic height diagram). Application of the technique to the group of horses revealed good repeatability of the gait diagrams within a limb and the diagrams appeared to be sensitive indicators of left/right asymmetries.  相似文献   

17.
The purpose of this study was to describe the pattern of radiopharmaceutical uptake in the metacarpophalangeal (MCP) and metatarsophalangeal (MTP) (fetlock) joints in clinically sound horses. Scintigraphic images from 29 clinically normal horses were evaluated. All the images were assessed subjectively. The lateral views were assessed quantitatively using vertical line profiles through the center of the joint, and mean ratios of radiopharmaceutical uptake were calculated from regions of interest around the third metacarpal or metatarsal bones, and the proximal phalanx and proximal sesamoid bones. From the vertical line profiles, in the majority of forelimbs (65%) the peak activity of radiopharmaceutical distribution was at the proximal region of the proximal phalanx, with a significantly lower activity within the condyles of the third metacarpal bone. However, in 84% of hindlimbs there was a broader profile peak incorporating the condyles of the third metatarsal bone and the proximal aspect of the proximal phalanx, indicating a more generalized even uptake of radiopharmaceutical across the MTP joint. When the regions of interest were compared between front and hindlimbs, there was no significant difference between proximal phalanx and proximal sesamoid bones, but the distal condyles of the third metacarpal bone of the forelimb had significantly lower radiopharmaceutical activity than hindlimbs (P < 0.04). In lateral images, the mean forelimb ratios tended to be higher in the left MCP joint compared with the right (P = 0.069). In hindlimbs, the mean ratios tended to be higher in the right MTP joint than the left (P = 0.052). There was no significant effect of age.  相似文献   

18.
Horses that had been trimmed and shod by apprentice farriers were sourced from the Royal School of Military Engineering, Melton Mowbray (37 horses) and from the Household Cavalry, Knightsbridge (54 horses). The lateral and medial hoof wall angles of both forelimbs were measured using a Ruidoso hoof gauge by the same operator. The difference between the lateral and medial hoof wall angles for each horse was calculated and the results were compared between right-handed and left-handed farriers using the Mann-Whitney U test (P<0.05). There was a significant difference in the mediolateral hoof balance obtained between right-handed and left-handed farriers for each forelimb (P<0.001). Right-handed farriers were shown to create an imbalance in 47 per cent of left forelimbs and 46 per cent of right forelimbs assessed, while left-handed farriers created an imbalance in 41 per cent of left forelimbs and 71 per cent of right forelimbs. The tendency was for right-handed farriers to over-trim the medial (inner) aspect of the left forelimb and the lateral (outer) aspect of the right forelimb; the reverse was demonstrated for left-handed farriers. Performing a risk ratio confirmed these findings.  相似文献   

19.
Video (60 Hz) and force (2000 Hz) data were collected from 5 sound horses during walking. Forelimb data were analysed for 8 strides (4 left, 4 right) per horse to determine sagittal plane kinematics and ground reaction forces (GRFs). The results suggested that brachial rotation was responsible for protraction and retraction of the limb as a whole, while rotations of the scapula and antebrachium elevated the distal limb during breakover and early swing then lowered it in preparation for ground contact. The coffin joint was flexed maximally at the time of peak longitudinal braking force, which occurred during breakover of the contralateral forelimb. The metacarpus was vertical at 28% stride. This was considerably earlier than the change from a braking to a propulsive longitudinal force (34% stride), which coincided with maximal extension of the fetlock joint. The longitudinal propulsive force peaked just after contact of the contralateral forelimb. During the swing phase the joints distal to the shoulder showed a single flexion cycle that peaked at 76% stride at the carpus, 81% stride at the fetlock and 84% stride at the elbow and coffin joints. The coffin and shoulder joints began to extend in the terminal swing phase and continued to extend through ground contact and early stance. The results provide normative data that will be applied in detecting changes in kinematics and ground reaction forces that are associated with specific lamenesses.  相似文献   

20.
Linear, temporal and angular biokinematic characteristics of the forelimb at the walk in different breeds were determined, highlighting inter-breed differences. Twenty-three healthy stallions were used: ten Andalusians (AN), seven Arabs (AR) and six Anglo-Arabs (AA). Height at the withers was significantly different between groups (P < 0.001). Six trials per horse were recorded using a levelled video camera (sampling frame rate 25 frames/s), digitized and analysed using a semi-automatic movement analysis system. No statistically significant differences in speeds were recorded between breeds (P > 0.05). The only temporal parameter which was similar in the three breeds was the moment at which the hoof reached the highest point in its trajectory. The variables presenting the most significant differences were the percentages of deceleration and propulsion within the stance phase. ANOVA for angular variables showed that the greatest difference was in the range of angular movement of the carpal joint, being higher in AN, due to a lower minimum value. In the fetlock joint, the greatest difference was observed in minimum values, which differed in all three breeds. Significant inter-breed differences were also observed for maximum limb retraction, being lowest in the AN group, followed by the AA and AR groups. This finding was reflected in the angular range of motion, despite smaller differences in the degree of limb protraction; very similar values were reported in all three breeds. As regards the elbow joint, no inter-breed differences were observed in terms of minimum values, whereas differences were recorded for maximum and angular range of motion, higher values being displayed by the AR and AN groups than by AA animals. In conclusion, inter-breed differences may be determined in equine forelimb biokinematics at the walk. This study distinguished between AN, AR and AA horses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号