首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Profiles of changes in physiological parameters of freshwater giant prawns, Macrobrachium rosenbergii, exposed to various dissolved oxygen (DO) levels of 7.75, 4.75, 2.75, and 1.75 mg l−1 are reported. The parameters involved in osmoregulation and oxygen transport were monitored for a 6-day period. Notable depressions in hemolymph osmolality, Na+, K+, and Cl contents were observed within 24 h after exposure to hypoxia at 2.75 and 1.75 mg O2 l−1, and thereafter remained at rather steady levels, which were significantly lower than those under normoxic conditions (4.75–7.75 mg O2 l−1). The extent of depression of osmotic-related constituents, hemolymph osmolality and Cl in particular, increased with decreased DO.

Oxyhemocyanin constituted 65.46–65.84% of total hemolymph proteins under the various DO levels examined; both hemolymph oxyhemocyanin and proteins showed notable elevations 24 h after exposure to hypoxic conditions, and reached the highest and constant level by 48 h after exposure. The compensatory responses of prawns to reduced O2 were manifested by increased O2 uptake through augmentation of hemocyanin, which results in enhancement of oxygen binding capacity of the hemolymph. In the same period, a significant surge of the respiratory products, PCO2 and HCO3, was also demonstrated 6 h after exposure to hypoxic conditions which resulted in hemolymph alkalosis. These processes likely resulted in an increase in water influx and consequent declines in hemolymph osmolality and ion composition. Furthermore, hyperventilation and respiratory alkalosis, indicated by increased oxyhemocyanin and pH, respectively, were found to be predominant responses of M. rosenbergii to hypoxic stress.  相似文献   


2.
Juvenile greenlip abalone, Haliotis laevigata, (mean whole weight 4.48±1.9 g, mean±s.d., n=953) were highly sensitive to ammonia as indicated by depressed growth rate and food consumption measured over 2–3 months in bioassay tanks. For growth rate expressed on a whole weight basis, the EC5 and EC50 values (5 and 50% growth reductions) were 0.041 mg FAN l−1 (Free Ammonia–Nitrogen) and 0.158 mg FAN l−1, respectively. Shell growth rates declined over the entire experimental range (0.006–0.188 mg FAN l−1). At the end of the bioassay, groups of abalone were transferred to respiratory chambers. Oxygen consumption rate increased to a maximum of 188% of control values at 0.235 mg FAN l−1 and decreased slightly at the highest concentration of 0.418 mg FAN l−1.  相似文献   

3.
Plasma vitamin D and vitamin D metabolites were measured in Atlantic salmon parr during smoltification and after transfer to seawater. The fish were fed commercial feed for 5 months under natural light, and Na+/K+ ATPase was measured as an indicator of the smoltification status. No significant differences were recorded in the level of plasma vitamin D metabolites. However, a tendency of increasing plasma concentration of 25OHD3 and also a temporary increase in plasma 1,25(OH)2D3 and 24,25(OH)2D3 were recorded prior to seawater transfer. The minor changes in plasma levels of the metabolites indicate a role of the vitamin D metabolites during parr–smolt transformation, although we do not know whether the increased levels are caused by increased synthesis of the metabolites or by decreased binding to receptors or decreased excretion.  相似文献   

4.
Levels of glucose, lactate, pO2, pCO2, HCO3, TCO2, Na+, K+, Cl, protein, and oxyhemocyanin in the hemolymph and its osmolality and pH were measured when tiger shrimp, Penaeus monodon (13.5 ± 1.5 g body weight), were individually injected with saline or dopamine at 10 8, 10 7, or 10 6 mol shrimp 1. Results showed that hemolymph glucose, lactate, pCO2, HCO3, and TCO2 values increased from 2 to 4 h; hemolymph osmolality, Na+, and total protein had increased at 2 h; and hemolymph K+ decreased from 2 to 8 h after the dopamine injection. All physiological parameters returned to the control values 4–16 h after receiving dopamine. The dopamine injection also significantly decreased the oxyhemocyanin/protein ratio of P. monodon which occurred at 2 h, resulting from an elevation of hemolymph protein and a slight decrease of oxyhemocyanin. These results suggest that stress-inducing dopamine caused a transient period of modulation of energy metabolism, osmoregulation, respiration, and the acid–base balance in P. monodon in adapting to this environmental stress.  相似文献   

5.
A cyanobacterium (Spirulina platensis) was co-cultured with black tiger shrimp (Penaeus monodon) for water quality control. We evaluated the effects of: (1) three S. platensis trial conditions on inorganic nitrogen concentrations at one shrimp density (S. platensis trial conditions included: absent, nonharvested and semicontinuous harvesting) and (2) two shrimp densities on inorganic nitrogen concentrations, with and without S. platensis. Semicontinuous harvesting of S. platensis at one shrimp density resulted in significantly reduced (P<0.05) inorganic nitrogen concentrations (NH4, NO2 and NO3). With S. platensis absent, ammonium and nitrite concentrations ranged from 0.5 to 0.6 mg l−1, while nitrate concentrations ranged from 16 to 18 mg l−1 by day 44. With nonharvested S. platensis, considerable variability occurred with nitrogen concentrations. Semicontinuous harvest of S. platensis reduced nitrate to 4 mg l−1, while ammonium and nitrite ranged from 0.0 to 0.15 mg l−1, respectively. The factorial evaluation of shrimp density versus presence and absence of S. platensis resulted in greatly reduced nitrogenous compounds with S. platensis present regardless of shrimp density, and only moderately increased nitrogen with greater shrimp density. Without S. platensis, all nitrogen compounds were substantially elevated and shrimp survived was significantly reduced at high shrimp density.  相似文献   

6.
The effects of body weight, water temperature and ration size on ammonia excretion rates of the areolated grouper Epinephelus areolatus and the mangrove snapper Lutjanus argentimaculatus were investigated. Under given experimental conditions, L. argentimaculatus had a higher weight-specific ammonia excretion rate than E. areolatus. Weight-specific ammonia excretion rates of fasted individuals of both species showed an inverse relationship with body weight (W, g wet wt.), but a positive relationship with water temperature (t, °C). The relationships for total ammonia nitrogen (TAN) were: E. areolatus: TAN (mg N kg−1 d−1)=21.4·exp0.11t·W−0.43 (r2=0.919, n=60); L. argentimaculatus: TAN (mg N kg−1 d−1)=121.5·exp0.12t·W−0.55 (r2=0.931, n=60). Following feeding, the weight-specific ammonia excretion rate of E. areolatus increased, peaked at 2 to 12 h (depending on temperature), and returned to pre-feeding levels within 24 h. A similar pattern was observed for L. argentimaculatus, with a peak of TAN excretion being found 6 to 12 h after feeding. Stepwise multiple regression analysis indicated that weight-specific TAN excretion rates of both species increased with increasing temperature and ration (R, percent body wt. d−1): E. areolatus: TAN (mg N kg−1 d−1)=22.8·t−28.8·R−378.2 (r2=0.832, n=24); L. argentimaculatus: TAN (mg N kg−1 d−1)=22.9·t−25.4·R−216.4 (r2=0.611, n=24). The effect of body weight on weight-specific postprandial TAN excretion was not significant in either species (p>0.05). This study provides empirical data for estimating ammonia excretion of these two species under varying conditions. This has application for culture management.  相似文献   

7.
The culture of the mulloway (Argyrosomus japonicus), like many other Sciaenidae fishes, is rapidly growing. However there is no information on their metabolic physiology. In this study, the effects of various hypoxia levels on the swimming performance and metabolic scope of juvenile mulloway (0.34 ± 0.01 kg, mean ± SE, n = 30) was investigated (water temperature = 22 °C). In normoxic conditions (dissolved oxygen = 6.85 mg l− 1), mulloway oxygen consumption rate (M·o2) increased exponentially with swimming speed to a maximum velocity (Ucrit) of 1.7 ± < 0.1 body lengths s− 1 (BL s− 1) (n = 6). Mulloway standard metabolic rate (SMR) was typical for non-tuna fishes (73 ± 8 mg kg− 1 h− 1) and they had a moderate scope for aerobic metabolism (5 times the SMR). Mulloway minimum gross cost of transport (GCOTmin, 0.14 ± 0.01 mg kg− 1 m− 1) and optimum swimming velocity (Uopt, 1.3 ± 0.2 BL s− 1) were comparable to many other body and caudal fin swimming fish species. Energy expenditure was minimum when swimming between 0.3 and 0.5 BL s− 1. The critical dissolved oxygen level was 1.80 mg l− 1 for mulloway swimming at 0.9 BL s− 1. This reveals that mulloway are well adapted to hypoxia, which is probably adaptive from their natural early life history within estuaries. In all levels of hypoxia (75% saturation = 5.23, 50% = 3.64, and 25% = 1 .86 mg l− 1), M·o2 increased linearly with swimming speed and active metabolic rate (AMR) was reduced (218 ± 17, 202 ± 14 and 175 ± 10 mg kg− 1 h− 1 for 75%, 50% and 25% saturation respectively). However, Ucrit was only reduced at 50% and 25% saturation (1.4 ± < 0.1 and 1.4 ± < 0.1 BL s− 1 respectively). This demonstrates that although the metabolic capacity of mulloway is reduced in mild hypoxia (75% saturation) they are able to compensate to maintain swimming performance. GCOTmin (0.09 ± 0.01 mg kg− 1 m− 1) and Uopt (0.8 ± 0.1 BL s− 1) were significantly reduced at 25% dissolved oxygen saturation. As mulloway metabolic scope was significantly reduced at all hypoxia levels, it suggests that even mild hypoxia may reduce growth productivity.  相似文献   

8.
In order to develop a simple and accurate index of the salinity resistance of tilapia, batches of 10 juveniles (5 to 20 g) of two different species Oreochromis niloticus and Sarotherodon melanotheron reared in freshwater were subjected to gradual increases in salinity until 100% mortality. Seven daily increments of salinity were tested with 4 replicates: 2, 4, 6, 8, 10, 12 and 14 g l−1 day−1, while control batches were kept in fresh water. The temperature was maintained at 27 °C. The concentration of oxygen, ammonia and the pH were not limiting factors. The mortality, monitored on a daily basis, appeared after 2–51 days and was spread out over 1–20 days, depending on the increment of salinity. The higher the daily rate in salinity increase, then the shorter the time lapse before total mortality occurred. The cumulative mortality as a function of salinity fit well with simple linear regressions. The criterion of the resistance to salinity was the index MLS (median lethal salinity) defined at each daily rate as the salinity at which 50% of fish died. For S. melanotheron, the mean MLS was 123.7±3.5 g l−1 whatever the daily rate in salinity. For O. niloticus, the MLS was 46.3±3.4 g l−1 for daily increases in salinity ranging from 2 to 8 g l−1 day−1 and decreased significantly (P<0.05) above this level. The MLS-8 g l−1 day−1 ,which takes into account the full capacity of the fish to adapt to the increasing salinity, appeared to be a simple, optimized and efficient criterion for assessing the resistance to salinity for O. niloticus and S. melanotheron. This criterion can be a useful tool for ranking the different parental strains and hybrids of different genus and species of tilapia used in programmes of genetic selection for growth and salinity tolerance.  相似文献   

9.
Filtration rates of hatchery-reared king scallop (Pecten maximus L.) juveniles, fed a single species alga diet (Pavlova lutheri (Droop) Green), were measured at a range of temperatures (6–21 °C). Weight specific filtration rate (ml min−1 g−1 (live weight)) of juveniles of a selected size range of 17–19 mm shell height (0.26–0.36 g live weight) increased with temperature above 16 °C and decreased below 11 °C, but was not significantly different between these two temperatures. Measurements at 16 °C using juveniles with a wider size range of 10–25 mm shell height (0.05–0.8 g live weight) gave the allometric equation: filtration rate (ml min−1)=12.19×weight (g)0.887. Filtration rate decreased significantly when the cell concentration was greater than 200 cells μl−1 (4.25 mg (organic weight) l−1). With six other algae food species, filtration rates similar to those with P. lutheri were only achieved with Chaetoceros calcitrans (Paulsen) Takano. All other algae species tested were cleared from suspension at significantly lower rates. Experiments with diet mixtures of P. lutheri and these other algae suggested that this was usually a reflection of lowered filtration activity, rather than pre-ingestive rejection of cells. In experimental outdoor nursery rearing systems, the filtration rate was inversely proportional to the concentration of cells in the inflow, in the range 5–210 cells μl−1. It was not affected by flow rate (2–130 l h−1, equivalent to 0.12–28.38 l h−1 g−1 (live weight)) with scallop juveniles stocked from 2 to 62 g l−1. The results are discussed in relation to on-growing scallops at field sites.  相似文献   

10.
Four studies examined shipping factors of packing technique, density, duration, type of water and use of habitat material for shipping juvenile and adult prawns Macrobrachium rosenbergii. Prawns were shipped in double polyethylene lined 38 × 38 × 20 cm deep styrofoam boxes containing oxygenated water. At temperatures of 19–20°C, 17 g prawns could be shipped safely for 42 h at a density of 10–12 prawns per box (12–15 g liter−1 shipping water). Juveniles, mean size about 6 g, could be shipped at a density of 40 per box (18 g liter−1) for 24 h or 20–25 per box (9–11 g liter−1) for 48 h. Use of mesh material to increase surface area in the box did not appear beneficial nor did shipping in brackish water (salinity8‰). Adults packed unrestricted resulted in survival rates substantially higher than those obtained from immobilized prawns wrapped in mesh.

During the shipment, pH and dissolved oxygen concentrations decreased whereas ammonia concentrations increased. The decreased pH levels may have reduced the ammonia toxicity by decreasing the amount of toxic unionized ammonia (NH3) in solution. In general, dissolved oxygen concentrations appeared more closely related to survival rates than did other water quality parameters which were measured.  相似文献   


11.
Sperm physiology, in vivo artificial insemination and spawning of the ocean pout (Macrozoarces americanus L.), a marine bottom fish, were studied. Milt was collected from the reproductive tract of mature males by suction using a catheter. The uncontaminated milt, having a very low sperm concentration, contains highly motile spermatozoa and sperm motility was retained in vitro at 4 °C for at least 24 h in both seminal plasma and ovarian slime collected from the oviduct of pre-spawning females. Instead of activating sperm, dilution in sea water instantly immobilized the spermatozoa of ocean pout. Osmolarity and pH of ocean pout seminal plasma were in the ranges 365–406 mOsM and 7.2–7.5, respectively. A study of the ionic composition of ocean pout seminal plasma demonstrated the presence of various ions including Na+, K+, Ca2+, Mg2+, and Cl, with a remarkably lower K+ concentration compared to that from other fish species. Since injections of milt containing motile sperm into the ovaries of pre-spawning females, which spawned in the absence of males, yielded fertilized ocean pout eggs, it is concluded that the ocean pout exhibits internal fertilization. The larvae hatched after 3 months of egg incubation in ambient sea water (9–10 °C). With proper timing of in vivo artificial insemination of mature females, fertilized ocean pout eggs can be obtained from fish reared in captivity.  相似文献   

12.
Growth performance and food conversion efficiency (FCE) were investigated in juvenile spotted wolffish (Anarhichas minor Olafsen), mean (S.D.) initial weight 15.7 (4.8) g, reared at four levels of carbon dioxide (CO2(aq)) for 10 weeks at 6 °C and 33‰. CO2 levels averaged 1.1 (control), 18.1 (low), 33.5 (medium) and 59.4 (high) mg l−1, with corresponding pH values of 8.10, 6.98, 6.71 and 6.45, respectively. In addition, kidneys from sampled fish were examined macroscopically for gross signs of calcareous deposits, i.e. nephrocalcinosis, at the start and end of the experiment. Growth was significantly reduced at the highest concentration (P<0.0001), as compared to all other groups, while no overall differences in growth rate or mean weight were seen in the range of 1.1–33.5 mg CO2 l−1 at the end of the experiment. Daily feeding rates and total food consumption were reduced at the highest concentration (P<0.001), whereas food conversion efficiency did not vary significantly between groups. Plasma chloride levels displayed a significant decrease with increasing CO2 levels, from 151.3 mmol l−1 (1.1 mg CO2 l−1) to 128.3 mmol l−1 (59.4 mg CO2 l−1) at the end of the experiment, whereas plasma osmolality in the high CO2 group was significantly higher compared to the control group at the end of the experiment (371.4 and 350.8 mOsmol kg−1, respectively). Nephrocalcinosis was observed in all groups at the end of the experiment, but was most pronounced in the medium and high CO2 group.  相似文献   

13.
Ammonia-N (NH4+ + NH3) and total nitrogen (TN) efflux rates of Macrobrachium rosenbergii were measured during stepwise temperature changes (26 °C → 22 °C → 18 °C → 22 °C → 26 °C) at different rates. Sudden temperature reductions did not affect efflux rates, but sudden temperature rises evoked rapid and high increases in the efflux rates. A direct relationship between ammonia-N excretion and water temperature was observed when gradual temperature changes were effected over a 5 h period. When the animals were acclimated to a new temperature for 72 h, no clear effects of temperature on the efflux rates were found. Sudden temperature changes resulted in an increased proportion of ammonia-N in the total nitrogen excreted. It is suggested that temperature changes during the shipment of M. rosenbergii should be avoided or made gradually.  相似文献   

14.
Hizikia fusiforme (Harv.) Okamura (brown seaweed) was cultured using aeration with two CO2 conditions: outdoor air (actual atmospheric CO2 concentration, averaging 360 μl l 1) and CO2-enriched air (averaging 700 μl l 1), to investigate the possible adjustments of elevated atmospheric CO2 to the growth, photosynthesis and nitrogen metabolism in this mariculture species. Aeration with CO2-enriched air reduced the pH in the culture medium in comparison with aeration with air. The mean relative growth rate was enhanced when H. fusiforme was grown at high CO2 with respect to normal CO2. There was little change in the rate of light-saturated photosynthesis, dark respiratory rate and apparent photosynthetic efficiency, measured in natural seawater, between thalli grown in high and normal CO2 contents. However, both the mean nitrate uptake rate and the activity of nitrate reductase at light period were increased following culture at high CO2, indicating an enhanced nitrogen assimilation of H. fusiforme thalli with the CO2 enrichment in culture. It was proposed that the intensive cultivation of H. fusiforme would remove nutrients more efficiently with the future elevation of CO2 levels in seawater, which could be a possible solution to the problem of ongoing coastal eutrophication.  相似文献   

15.
Amoebic gill disease (AGD) of cultured salmonids in Tasmania is caused by the amphizoic parasitic amoeba Neoparamoeba pemaquidensis. The freshwater tolerance of amoebae isolated from the gills of AGD-affected salmon (predominantly N. pemaquidensis) was tested in vitro using a trypan blue exclusion assay. Amoebae exposed to water containing high concentrations of Ca2+ or Mg2+ (200 mg l−1) showed high levels of survival up to 3 h of exposure. Exposure to water containing elevated Na+, choline chloride or water at different pH all had no significant survival of amoebae. Exposure of amoebae to different concentrations of chlorine dioxide, chloramine-T or hydrogen peroxide in artificially hard water demonstrated that chloramine-T and hydrogen peroxide were the most efficacious at killing amoebae in vitro. This work suggests that the hardness of freshwater may be an important factor for the survival of marine amoebae (predominantly N. pemaquidensis) on the gills of AGD-affected salmon and have significant implications with regard to the efficacy of freshwater bathing practices for the control of AGD on farms. Additionally, chloramine-T and hydrogen peroxide appear to be efficacious at killing marine gill amoebae in vitro and may be useful for the control of AGD in farmed Atlantic salmon.  相似文献   

16.
A study was conducted to evaluate the effect of partial replacement of dietary fish meal by crystalline amino acids on growth performance, feed utilization, body composition and nitrogen utilization of turbot juveniles.

Four diets were formulated to be isolipidic (12% DM) and isonitrogenous (8% DM). A fish meal based diet was used as control. In the experimental diets, a crystalline amino acid (AA) mixture was used to partially replace fish meal, corresponding to a non-protein nitrogen content of 19, 37 and 56%, respectively (diets 19AA, 37AA and 56AA, respectively). The overall amino acid profile of the experimental diets resembled that of the whole-body protein of turbot. Each experimental diet was fed to triplicate groups of 20 fish (initial body weight of 31.8 g) twice daily to apparent satiation for 42 days. During the trial water temperature averaged 18 °C.

Final body weight, weight gain (g kg ABW− 1 day− 1) and specific growth rate were not different between the control and 19AA diet but significantly decreased with the increase of crystalline-AA inclusion from 19 to 56%. Feed intake and feed efficiency of fish fed the control and diet 19AA were similar and significantly higher than those of fish fed the 56AA diet. At the end of the growth trial, there were no significant differences in whole-body composition among groups. Hepatosomatic index was also unaffected by dietary treatments.

Nitrogen retention (g kg ABW− 1 day− 1) of fish fed the control and the 19AA diets were similar and significantly higher than that of fish fed the other diets. Expressed as a percentage of the nitrogen intake, N retention was significantly higher with the control than with the 37AA and 56AA diets.

Daily ammonia excretion (mg kg ABW− 1 day− 1) of fish fed the control diet was significantly higher than that of fish fed the 37AA and 56AA diets, while daily urea excretion (mg kg ABW− 1 day− 1) did not significantly differ among treatments. Non-fecal nitrogen (ammonia + urea) excretion (mg kg ABW− 1 day− 1) was significantly higher for fish fed the control diet than in those fed the 37AA and 56AA diets. However, as percent of N intake, ammonia excretion and non-fecal N excretion were significantly higher in fish fed the 56AA diet than in those fed the control and 19AA diets.

Specific activity of glutamate dehydrogenase, alanine and aspartate aminotransferases did not significantly differ among experimental groups.

In conclusion, in diets with an overall amino acid profile resembling that of the whole-body protein of turbot, crystalline-AA may replace 19% of dietary protein without negatively affecting growth performances or feed utilization efficiency. However, higher protein replacement levels of protein-bound-AA by crystalline-AA severely depressed growth performance.  相似文献   


17.
A hydraulically integrated serial turbidostat algal reactor (HISTAR) for the mass production of microalgae was designed, constructed and preliminarily evaluated. The 9266-l experimental system consists of two enclosed turbidostats hydraulically linked to a series of six open continuous-flow, stirred-tank reactors (CFSTRs). The system was monitored and controlled using GENESIS process control software. A production study was preformed using Isochrysis sp. (C-iso) to assess system stability and production potential under commercial-like conditions. The study was performed at the following target system parameters: system dilution rate of 0.49 per day, pH 7.6, NITROGEN=10 mg l−1, PHOSPHORUS=2 mg l−1, and artificial illumination (photosynthetic photon flux density) from 1000 W metal halide LAMPS=800 μmol s−1 m−2. At steady state conditions, daily harvested algal paste was 1454 g (wet), mean areal system PRODUCTIVITY=47.8±3.04 g m−2 per day (17.1±1.09 g C m−2 per day) and mean CFSTR6 DENSITY=105.5±6.71 mg l−1.  相似文献   

18.
Oxygen consumption rates of white sturgeon (Acipenser transmontanus) were measured under commercial culture conditions. Mean fish size ranged from 0.09 to 3.8 kg (0.2–8.4 lbs). Mean daily values of oxygen consumption rates ranged from 70–330 mg kg fish−1 h−1. Peak oxygen consumption rates were measured to be as much as twice the mean daily values and were seen to occur in response to feeding for fish fed a ration of less than 2.6% body mass per day. With higher feed rations, peak oxygen consumption rates were a smaller percentage of the mean daily value. Multiple regression analysis showed that 93% of the variations in measured oxygen consumption rate values could be attributed to variations in feed ration.  相似文献   

19.
The oxygen consumption of Atlantic salmon was measured in large culture tanks for a period of 20 months from the parr to the adult stage. In addition, diurnal sampling was conducted for estimation of both oxygen consumption and ammonia excretion. The oxygen consumption was affected especially by temperature, season and smoltification. For parr the oxygen consumption rate was 1–6 mg O2/kg min and the ammonia excretion rate was 0·037–0·13 mg N/kg min from autumn to spring. The corresponding rates for adult salmon during the period October to July were 1·5–4·5 mg O2/kg min and 0·075–0·13 mg N/kg min.  相似文献   

20.
The total ammonia nitrogen (TAN) excretion of spiny lobsters Jasus edwardsii and Panulirus cygnus, was determined in relation to temperature, body weight, emersion, daily rhythm and feeding. Temperature and body weight had large influences on the rate of TAN excretion. Exponential relationships were found between temperature (T) and TAN excretion of both species. These were described by the following equations: J. edwardsii Log10 TAN=0.041T−3.57 (r2=0.979, F=143.2, P=0.001), P. cygnus Log10 TAN=0.057T−3.90 (r2=0.987, F=302.2, P<0.001). TAN excretions of both species were positively correlated to body weight (W), and the relationships were described by the following equations: J. edwardsii Log10 TAN=0.473 log10 W−1.704 (r2=0.42, F=14.05, P=0.001), P. cygnus Log10 TAN=0.499 log10 W−1.346 (r2=0.69, F=44.18, P<0.001). TAN excretion increased significantly when lobsters were re-immersed after a 30 min period of emersion. However, it returned to pre-emersion levels by the second hour of re-immersion. Daily rhythm resulted in a significantly higher nocturnal TAN excretion rate for J. edwardsii; no daily rhythm was observed for P. cygnus. Feeding had the largest influence on TAN excretion, with maximum increases of 6.28 (J. edwardsii) and 5.60 (P. cygnus) times the pre-feeding level. TAN excretion rates remained significantly higher than the pre-feeding levels for an extended period (26 h, J. edwardsii; 30 h, P. cygnus). Implications for the use of purging tanks in lobster holding facilities and for the design of biofiltration systems are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号