首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The accuracy of the Doppler technique for indirect systolic blood pressure measurement was assessed in 16 anesthetized cats. Eight cats were anesthetized with isoflurane and 8 were anesthetized with halothane. Anesthetic depth and mode of ventilation were varied to obtain a wide range of arterial blood pressure. A Doppler transducer was placed on the palmer surface of the left forelimb over the common digital branch of the radial artery to detect blood flow, and a blood pressure monitoring cuff with a width 37% the limb circumference was placed half way between the elbow and the carpus. To enable direct arterial pressure measurements, the left femoral artery was catheterized and the blood pressure waveforms recorded simultaneously. Systolic blood pressure measured by use of the Doppler ultrasonic technique was significantly lower than that obtained from the femoral artery catheter. Using linear regression, we determined a clinically useful calibration adjustment for Doppler indirect blood pressure measurement in cats: femoral systolic pressure = Doppler systolic pressure + 14 mm of Hg.  相似文献   

2.
Cardiopulmonary effects of halothane anesthesia in cats   总被引:2,自引:0,他引:2  
The cardiopulmonary effects of 2 planes of halothane anesthesia (halothane end-tidal concentrations of 1.78% [light anesthesia] and 2.75% [deep anesthesia]) and 2 ventilatory modes (spontaneous ventilation [SV] or mechanically controlled ventilation [CV]) were studied in 8 cats. Anesthesia was induced and maintained with halothane in O2 only, and each cat was administered each treatment according to a Latin square design. Cardiac output, arterial blood pressure, pulmonary arterial pressure, heart rate, respiratory frequency, and PaO2, PaCO2, and pH were measured during each treatment. Stroke volume, cardiac index, and total peripheral resistance were calculated. A probability value of less than 5% was accepted as significant. In the cats, cardiac output, cardiac index, and stroke volume were reduced by deep anesthesia and CV, although only the reduction attributable to CV was significant. Systemic arterial pressure was significantly reduced by use of deep anesthesia and CV. Respiratory frequency was significantly lower during CV than during SV. Arterial PO2 was significantly decreased at the deeper plan of anesthesia, compared with the lighter plane. At the deeper plane of anesthesia, arterial PCO2 and pulmonary arterial pressure were significantly lower during CV than during SV. The deeper plane of halothane anesthesia depressed cardiopulmonary function in these cats, resulting in hypotension and considerable hypercapnia. Compared with SV, CV significantly reduced circulatory variables and should be used with care in cats. Arterial blood pressure was judged to be more useful for assessing anesthetic depth than was heart rate or respiratory frequency.  相似文献   

3.
The hemodynamic effects of 1.5 minimal alveolar concentration of halothane alone (1.6% end-tidal) and 1.5 minimal alveolar concentration of halothane (1.1% end-tidal concentration) combined with epidurally administered morphine were compared during controlled ventilation in 10 dogs used on 2 occasions and randomly allocated to 2 groups. Arterial blood pressure, cardiac index, stroke volume, left ventricular work, and pulmonary arterial pressure were significantly (P less than 0.05) higher in dogs of the morphine-treated group before administration of morphine. After epidural administration of morphine (0.1 mg/kg of body weight diluted in 0.26 ml of saline solution/kg), hemodynamic changes were not observed, and the aforementioned variables remained significantly (P less than 0.05) higher than values in dogs of the halothane only group. Compared with halothane (1.6%) alone, the reduction in halothane end-tidal concentration (1.1%) associated with epidurally administered morphine is beneficial in maintaining hemodynamic function.  相似文献   

4.
OBJECTIVE: To determine the relationship between bispectral index (BIS) and minimum alveolar concentration (MAC) multiples of sevoflurane in cats. ANIMALS: 8 domestic cats. PROCEDURE: Each cat was anesthetized twice with sevoflurane. First, the MAC of sevoflurane for each cat was determined by use of the tail clamp method. Second, cats were anesthetized with sevoflurane at each of 5 MAC multiples administered in random order. Ventilation was controlled, and after a 15-minute equilibration period at each MAC multiple of sevoflurane, BIS data were collected for 5 minutes and the median value of BIS calculated. RESULTS: The mean (+/- SD) MAC of sevoflurane was 3.3 +/- 0.2%. The BIS values at 0.5 MAC could not be recorded as a result of spontaneous movement in all 8 cats. The BIS values at 2.0 MAC were confounded by burst suppression in all 8 cats. Over the range of 0.8 to 1.5 MAC, BIS values decreased significantly with increasing end-tidal sevoflurane concentrations. Mean (+/- SD) BIS measurements were 30 +/- 3, 21 +/- 3, and 5 +/- 2 at 0.8, 1.0, and 1.5 MAC, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Values of BIS are inversely and linearly related to end-tidal sevoflurane concentrations in anesthetized cats, and BIS may be a useful predictor of CNS depression in this species. The consistently low BIS values recorded in this study suggest that clinical BIS end points used to titrate anesthetic agents in humans may not be applicable to cats.  相似文献   

5.
Forty-five horses were maintained on halothane or isoflurane anesthesia for at least 90 minutes and received positive pressure ventilation after the first 30 minutes of anesthesia. Parameters monitored included end-tidal partial pressure of carbon dioxide (ETPCO2), arterial blood pressure, and arterial blood gases and pH. There was a statistically significant correlation between end-tidal carbon dioxide and arterial partial pressure of carbon dioxide (PaCO2) for both halothane and isoflurane anesthesia. There was no significant correlation between end-tidal carbon dioxide and either body weight or systolic blood pressure. No statistically significant difference was found in arterial to end-tidal carbon dioxide difference nor in alveolar dead space because of time or positioning over anesthetic periods of up to 3 hours. It is concluded that end-tidal carbon dioxide monitoring is a satisfactory measure of changes in respiratory acid-base balance with inhalation anesthesia in horses when ventilation is controlled.  相似文献   

6.
To determine if the preanesthetic administration of ephedrine would prevent anesthesia-induced hypotension in dogs and cats, 10 cats were anesthetized with acepromazine, butorphanol, ketamine, and isoflurane, and 8 dogs were anesthetized with acepromazine, morphine, propofol, and halothane. Cats received ephedrine or saline 10 minutes after premedication. Dogs received ephedrine or saline at the time of premedication. Systolic arterial blood pressure, respiratory rate, heart rate, end-tidal CO2, O2 saturation, cardiac rhythm, and rectal temperature were recorded.  相似文献   

7.
This study was undertaken to evaluate the effect of 3 different doses of epidurally administered morphine sulphate on the minimum alveolar concentration (MAC) of isoflurane in healthy cats. Five 4-year-old, spayed female cats weighing 4.7 ± 0.8 kg were allocated randomly to receive one of 3 doses of morphine on each study day. The 3 doses of morphine were 0.05, 0.1 and 0.2 mg/kg bwt and each cat was studied 3 times so that each cat received all doses. On each study day, cats were anaesthetised with isoflurane and instrumented. The MAC of isoflurane was determined in triplicate and morphine sulphate was administered via an epidural catheter chronically implanted prior to the study. Maximum MAC reduction was determined over the following 2 h. At the end of the study cats were allowed to recover. There was a significant reduction in MAC of isoflurane, with all doses of epidural morphine (P<0.05). The maximum reduction in MAC of isoflurane after 0.05 mg/kg bwt, 0.10 mg/kg bwt and 0.20 mg/kg bwt morphine was 21.4 ± 9.796, 30.8 ± 9.696, and 30.2 ± 6.8%, respectively, with no significant difference between doses. Systolic, mean and diastolic blood pressure, heart rate, respiratory rate and arterial pH decreased significantly whereas arterial carbon dioxide tension increased significantly after morphine administration (P<0.05). The means for all variables returned to pre-morphine values when the end-tidal isoflurane concentration was reduced to the new MAC point. In conclusion, epidural morphine decreased the concentration of isoflurane required to prevent movement in response to noxious mechanical stimulation to the tail base. A similar effect may be seen clinically allowing lower doses of isoflurane to be used to provide surgical anaesthesia for procedures involving the hind limbs, pelvis and tail.  相似文献   

8.
The purpose of this study was to compare the effects of epidural bupivacaine (BUP) and oxymorphone/bupivacaine (O/B) and intravenous (i.v.) oxymorphone (IVO) on halothane requirements during hind end surgery and postoperative analgesia in 24 dogs. Dogs were randomly assigned to treatment groups: O/B--oxymorphone (0.1 mg/kg) in 0.75% bupivacaine (1 mg/kg for a total volume of 0.2 ml/kg); BUP--0.5% bupivacaine (1 mg/kg for a total volume of 0.2 ml/kg) with i.v. oxymorphone (0.05 mg/kg) postoperatively; and IVO--oxymorphone (0.05 mg/kg) pre- and postoperatively. Heart rate (HR), respiratory rate, arterial blood pressure, end-tidal carbon dioxide and halothane, and arterial blood gases were recorded prior to treatment and every 15 minutes thereafter. Once surgery had begun, end-tidal halothane concentrations were decreased as low as possible while still maintaining a stable anesthetic plane. Data were analyzed using ANOVA with P < 0.05 considered significant. End-tidal halothane requirements did not differ significantly among treatments. Respiratory depression was increased and HR was decreased in the O/B and IVO groups. Postoperative analgesic requirements were significantly less in dogs receiving O/B.  相似文献   

9.
The cardiopulmonary effects of a halothane/oxygen combination were studied in eight cats subjected to a 25% whole blood volume loss. Test parameters included cardiac output measured via thermodilution, heart rate, respiratory rate, arterial blood pressure (systolic, diastolic and mean) and blood gas analysis. Values for cardiac index, stroke volume and systemic vascular resistance were calculated from these data. Posthemorrhage cardiac output, cardiac index, stroke volume and measurements of arterial blood pressure were significantly decreased (p less than 0.05). Heart rate remained unchanged. Following induction of halothane anesthesia the above parameters experienced a further significant decline (p less than 0.05) from their immediate preanesthetic (i.e. posthemorrhage) values. Heart rate also significantly decreased (p less than 0.05). Thirty minutes following the cessation of halothane anesthesia these values returned to near-hemorrhage levels, being above their respective preanesthetic values. Systemic vascular resistance initially rose, peaking ten minutes into halothane anesthesia, before gradually falling to prehemorrhage values at the end of halothane anesthesia. Following hemorrhage, respiratory rate demonstrated a transient increase, associated with an arterial CO2 tension fall, before returning to initial values at the preanesthetic time. During halothane anesthesia respiratory rate remained unchanged whereas arterial CO2 tension rose significantly (p less than 0.05) and pH declined slightly from preanesthetic readings. These returned to prehemorrhage values 30 minutes following the cessation of halothane anesthesia.  相似文献   

10.
The ventricular arrhythmogenic dose of epinephrine (ADE) was determined in 6 dogs anesthetized with halothane alone or with halothane after injection of tiletamine/zolazepam (TZ). Respiratory rate and tidal volume were controlled and sodium bicarbonate was administered to maintain arterial pH and blood gas values within reference range. Heart rate and arterial blood pressure were recorded during determination of the ADE. The ADE (mean +/- SD) was no different during anesthesia with use of halothane alone (8.9 +/- 4.3) than it was when injections of TZ preceded administration of halothane (6.7 +/- 2.8). Tiletamine/zolazepam was also administered IV immediately after determination of the ADE during halothane-induced anesthesia. The TZ administered in this manner did not alter the ADE. Blood pressure and heart rate were significantly greater during infusion of epinephrine than immediately prior to infusion. The administration of TZ did not alter blood pressure response. The ADE was also determined in 6 cats anesthetized with halothane preceded by administration of TZ. The ADE (mean +/- SD) was 0.7 +/- 0.23 micrograms/kg, a value similar to that reported for cats during anesthesia with halothane alone.  相似文献   

11.
Although temporary occlusion of the carotid arteries is commonly done to reduce blood loss during nasal surgery in the dog, data supporting its use are mostly anecdotal and subjective. Twelve dogs were placed under general inhalation anesthesia and mechanically ventilated to maintain normocapnea and an end-tidal halothane concentration equivalent to 1.3 times the minimum alveolar concentration. Tourniquets were placed around both carotid arteries of each dog. Both lingual arteries were cannulated in each dog and their heart rate and blood pressure were measured bilaterally. During unilateral carotid artery occlusion, the blood pressures in the ipsilateral lingual artery were significantly (P < 0.05) lower than the preocclusion control pressures and pressures recorded in the contralateral vessel. Bilateral carotid artery occlusion resulted in a further significant (P < 0.05) fall in all lingual arterial pressures. The recorded heart rates only varied significantly from preocclusion control values when they increased during bilateral carotid occlusion (P < 0.05). The results of this study confirm that carotid artery occlusion has the potential to reduce intraoperative blood loss during oronasal surgery in the dog.  相似文献   

12.
OBJECTIVE: To determine accuracy of an oscillometric blood pressure monitor used over a wide range of pressures in anesthetized cats. DESIGN: Prospective study. ANIMALS: 6 healthy cats. PROCEDURE: 4 female cats and 2 male cats that weighed 2.7 to 4.5 kg (5.9 to 9.9 lb) and were 2 to 8 years old were anesthetized. Blood pressure was measured directly with an arterial catheter placed in the right femoral artery and indirectly from the left antebrachium by use of an oscillometric monitor. A series of diastolic arterial pressure (DAP), mean arterial pressure (MAP), and systolic arterial pressure (SAP) measurements were obtained during hypotension, normotension, and hypertension. Values obtained indirectly and directly were compared. RESULTS: The oscillometric monitor was accurate for DAP and MAP throughout the entire pressure range and met the standards of the Association for the Advancement of Medical Instrumentation (mean +/- SD difference from values obtained directly, < or = 5 +/- 8 mm Hg). The SAP was increasingly underestimated with increasing overall pressure; mean differences from direct measurements were -5.2, -12.1, and -17.7 mm Hg during hypo-, normo-, and hypertension, respectively. Standard deviations for SAP were all < or = 8 mm Hg. The monitor gave readings during all attempts. The direct blood pressure recording system appeared to perform well with neither under- nor overdamping. CONCLUSIONS AND CLINICAL RELEVANCE: Except for a minor underestimation of SAP during normo- and hypertension, the oscillometric monitor yielded reliable and easily obtainable blood pressure measurements in anesthetized cats.  相似文献   

13.
OBJECTIVE: To evaluate the use of a lithium dilution cardiac output (LiDCO) technique for measurement of CO and determine the agreement between LiDCO and thermodilution CO (TDCO) values in anesthetized cats. ANIMALS: 6 mature cats. PROCEDURE: Cardiac output in isoflurane-anesthetized cats was measured via each technique. To induce different rates of CO in each cat, anesthesia was maintained at > 1.5X end-tidal minimum alveolar concentration (MAC) of isoflurane and at 1.3X end-tidal isoflurane MAC with or without administration of dobutamine (1 to 3 microg/kg/min, i.v.). At least 2 comparisons between LiDCO and TDCO values were made at each CO rate. The TDCO indicator was 1.5 mL of 5% dextrose at room temperature; with the LiDCO technique, each cat received 0.005 mmol of lithium/kg (concentration, 0.015 mmol/mL). Serum lithium concentrations were measured prior to the first and following the last CO determination. RESULTS: 35 of 47 recorded comparisons were analyzed; via linear regression analysis (LiDCO vs TDCO values), the coefficient of determination was 0.91. The mean bias (TDCO-LiDCO) was -4 mL/kg/min (limits of agreement, -35.8 to + 27.2 mL/kg/min). The concordance coefficient was 0.94. After the last CO determination, serum lithium concentration was < 0.1 mmol/L in each cat. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated a strong relationship and good agreement between LiDCO and TDCO values; the LiDCO method appears to be a practical, relatively noninvasive method for measurement of CO in anesthetized cats.  相似文献   

14.
Changes in glycosylated hemoglobin (GHb) concentrations, K values (% disappearance of glucose/min after an intravenous injection of 1 g/kg dextrose), and blood glucose concentrations were examined in eight cats before and during the induction of diabetes, and in four of these cats after they were placed on insulin treatment. There was a statistically significant separation of GHb, K values, and fasting blood glucose concentrations between healthy and diabetic cats. Changes in GHb correlated best with the K value and single weekly fasting glucose concentrations averaged over eight periods for each cat while diabetes was induced (R = 0.80 and 0.78, respectively); however, fasting blood glucose concentrations obtained on the day of the GHb measurement were also highly correlated (R = 0.69; P < 0.001). The correlation between GHb and single weekly glucose concentrations obtained in insulin-treated cats at the time of insulin peak action and averaged over an 8-wk time period for each cat was less but still significant (R = 0.53; P < 0.001). It is concluded that GHb measurements are a simple and reliable way to monitor changes in glucose control in the diabetic cat over a prolonged period.  相似文献   

15.
OBJECTIVE: To compare haemodynamic and respiratory variables during isoflurane-fentanyl (IF) and propofol-fentanyl (PF) anaesthesia for surgery in injured cats. STUDY DESIGN: Prospective, randomized, controlled clinical study. ANIMALS: Thirty-three client-owned injured cats undergoing orthopaedic surgery. MATERIALS AND METHODS: Pre-anaesthetic medication was intravenous midazolam 1 mg kg(-1), butorphanol 0.4 mg kg(-1) and ketamine 2 mg kg(-1). Anaesthesia was induced with propofol (P) and maintained with either: (a) a continuous rate infusion (CRI) of fentanyl (F) 0.02 mg kg(-1) hour(-1) and isoflurane (initial end-tidal concentration of 1%), (b) a fentanyl CRI (dose as before) and sevoflurane (initial end-tidal concentration of 2%) or (c) a CRI of propofol (12 mg kg(-1) hour(-1)). All three techniques were given to effect until surgical anaesthesia was achieved. Heart rate and rhythm (ECG), mean arterial blood pressure, respiratory rate, tidal volume and end-tidal CO(2) concentration were recorded. Venous blood gas analysis was performed before and after sedation, and at the end of anaesthesia. Blood chemistry and blood cell counts were assessed before, at the end of, and 24 hours after anaesthesia. The variables recorded from cats anaesthetized with IF and PF were compared. RESULTS: Mean end-expiratory isoflurane concentration was 1.19 +/- 0.19%. The propofol infusion rate was 11.4 +/- 0.8 mg kg(-1) hour(-1). No significant differences between the two groups in heart rate were identified; no cardiac dysrhythmias were recorded. Mean arterial blood pressure was significantly lower in IF cats during skin incision (p = 0.01), during surgery without intense surgical stimulation (p < 0.01) and during surgery with intense surgical stimulation (p = 0.01). Nine of 11 cats in the IF group were markedly hypotensive (34-49 mmHg) while seven of 11 cats in group PF were mildly hypotensive (49-59 mmHg). One of 11 cats in group IF and nine of 11 cats in group PF required intermittent positive pressure ventilation (IPPV) to maintain end-tidal CO(2) levels below 6.66 kPa (50 mmHg). CONCLUSION AND CLINICAL RELEVANCE: Despite the necessity to ventilate the lungs of cats in the PF group, arterial blood pressure was better maintained. Propofol-fentanyl anaesthesia is better for surgery in injured cats providing the means to impose IPPV are available.  相似文献   

16.
Fourteen adult beavers (Castor canadensis) weighing 16.5 +/- 4.14 kg (mean +/- SD) were anesthetized for surgical implantation of radio telemetry devices. Beavers were anesthetized with diazepam (0.1 mg/kg) and ketamine (25 mg/kg) administered IM, which provided smooth anesthetic induction and facilitated tracheal intubation. Anesthesia was maintained with halothane in oxygen via a semiclosed circle anesthetic circuit. Values for heart rate, respiratory rate, esophageal temperature, direct arterial blood pressure, end-tidal halothane concentration, and end-tidal CO2 tension were recorded every 15 minutes during the surgical procedure. Arterial blood samples were collected every 30 minutes to determine pH, PaO2, and PaCO2. Values for plasma bicarbonate, total CO2, and base excess were calculated. Ventilation was spontaneous in 7 beavers and controlled to maintain normocapnia (PaCO2 approx 40 mm of Hg) in 7 others. Vaporizer settings were adjusted to maintain a light surgical plane of anesthesia. Throughout the surgical procedure, all beavers had mean arterial pressure less than 60 mm of Hg and esophageal temperature less than 35 C. Mean values for arterial pH, end-tidal CO2, PaO2, and PaCO2 were significantly (P less than 0.05) different in spontaneously ventilating beavers, compared with those in which ventilation was controlled. Respiratory acidosis during halothane anesthesia was observed in spontaneously ventilating beavers, but not in beavers maintained with controlled ventilation. All beavers recovered unremarkably from anesthesia.  相似文献   

17.
The correlation between end-tidal partial pressure of CO2 (PETCO2) and arterial (PaCO2) was determined for spontaneously breathing ponies under halothane or isoflurane anesthesia. The PETCO2 was useful as a trend indicator of PaCO2 during the first 60 minutes of halothane or isoflurane anesthesia when PaCO2 values were less than 60 to 70 mm of Hg. Halothane anesthesia lasting greater than 90 minutes was associated with PaCO2 values in excess of 60 to 70 mm of Hg, a large arterial- to end-tidal PCO2 difference (PaCO2-PETCO2) and a significant increase in alveolar dead space. These effects were not seen during the same period of isoflurane anesthesia. Arterial blood gas analysis is therefore recommended during halothane anesthesia when the PETCO2 is greater than 60 to 70 mm of Hg. A decrease in alveolar capillary perfusion relative to alveolar ventilation is the most likely cause for the increase in alveolar dead space during halothane anesthesia. Based on these findings, isoflurane may be superior to halothane for prolonged anesthesia of spontaneously breathing horses.  相似文献   

18.
The influence of 2 different levels of the inspired oxygen fraction (FiO2) on blood gas variables was evaluated in dogs with high intracranial pressure (ICP) during propofol anesthesia (induction followed by a continuous rate infusion [CRI] of 0.6 mg/kg/min) and intermittent positive pressure ventilation (IPPV). Eight adult mongrel dogs were anesthetized on 2 occasions, 21 d apart, and received oxygen at an FiO2 of 1.0 (G100) or 0.6 (G60) in a randomized crossover fashion. A fiberoptic catheter was implanted on the surface of the right cerebral cortex for assessment of the ICP. An increase in the ICP was induced by temporary ligation of the jugular vein 50 min after induction of anesthesia and immediately after baseline measurement of the ICP. Blood gas measurements were taken 20 min later and then at 15-min intervals for 1 h. Numerical data were submitted to Morrison’s multivariate statistical methods. The ICP, the cerebral perfusion pressure and the mean arterial pressure did not differ significantly between FiO2 levels or measurement times after jugular ligation. The only blood gas values that differed significantly (P < 0.05) were the arterial oxygen partial pressure, which was greater with G100 than with G60 throughout the procedure, and the venous haemoglobin saturation, that was greater with G100 than with G60 at M0. There were no significant differences between FiO2 levels or measurement times in the following blood gas variables: arterial carbon dioxide partial pressure, arterial hemoglobin saturation, base deficit, bicarbonate concentration, pH, venous oxygen partial pressure, venous carbon dioxide partial pressure and the arterial-to-end-tidal carbon dioxide difference.  相似文献   

19.
The records of 204 cats entering the intensive care unit (ICU) at the University of Edinburgh Small Animal Hospital between December 2002 and October 2006 were retrospectively analysed. Of these, 37 cats over 12 months of age had a systolic blood pressure recorded on entry into the ICU, and this group comprised our study population. Of these 37 cats, 36 had both heart rate and respiratory rate recorded on entry into the ICU, whilst 24 of these cats also had body temperature recorded. The relationship between (i) survival to discharge and (ii) survival until 21 days after admission to the ICU was analysed using univariate generalised linear models with binomial errors. The robustness of any significant relationship was assessed using multivariate analysis methods. In addition, receiver operator curves (ROC) were generated for any of the significant predictors of mortality and from these curves the threshold values, optimal sensitivity and specificity were calculated. Using these values survival curves were generated for any significant prognostic indexes. A decreased blood pressure at the time of admission to the ICU was found to be a significant negative predictor of survival until discharge from the hospital. Overall, a systolic blood pressure of 124 mmHg or higher at the time of admission to the ICU has a sensitivity of 47.8% and a specificity of 85.7% for predicting that a cat will survive until discharge from the hospital.  相似文献   

20.
The effects of asphyxia and potassium on the electrocardiogram (ECG), lead II, were recorded from dogs and cats anesthetized with sodium pentobarbital and halothane. Electrocardiographic recordings were made during control periods, during asphyxia (occluded endotracheal tube), during infusion of an isotonic KCl solution and during infusion of an isotonic NaCl solution. Arterial and venous blood gas partial pressures (PaCO2, PvCO2, PaO2 and and PvO2), plasma Na+ and K+ concentrations, heart rate and mean arterial blood pressure were measured during control periods, asphyxia and during the periods of infusion. The vagi were severed to assess the effect of vagal tone on the ECG changes. The characteristic ECG changes during asphyxia and the electrolyte imbalances resulting from infusion of isotonic KCl and NaCl were determined during sodium pentobarbital and halothane anesthesia in both dogs and cats. The combination of halothane and high PCO2 caused cardiac arrhythmias. Spontaneous recovery from ventricular fibrillation, as a result of hyperkalemia, was recorded from cats. Disappearance of the P waves, which is characteristic of hyperkalemia, was infrequent in this study and the U waves associated with hypokalemia were not found. Severing the vagi did not alter the ECG changes characteristic of asphyxia, hyperkalemia and hypokalemia. It was found that asphyxia and infusion of fluids high or low in potassium can produce ECG changes in both dogs and cats that can be correlated with blood gas partial pressure changes or plasma potassium concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号