首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Equine Actinobacillus species were analysed phylogenetically by 16S rRNA gene (rrs) sequencing focusing on the species Actinobacillus equuli, which has recently been subdivided into the non-haemolytic A. equuli subsp. equuli and the haemolytic A. equuli subsp. haemolyticus. In parallel we determined the profile for RTX toxin genes of the sample of strains by PCR testing for the presence of the A. equuli haemolysin gene aqx, and the toxin genes apxI, apxII, apxIII and apxIV, which are known in porcine pathogens such as Actinobacillus pleuropneumoniae and Actinobacillus suis. The rrs-based phylogenetic analysis revealed two distinct subclusters containing both A. equuli subsp. equuli and A. equuli subsp. haemolyticus distributed through both subclusters with no correlation to taxonomic classification. Within one of the rrs-based subclusters containing the A. equuli subsp. equuli type strain, clustered as well the porcine Actinobacillus suis strains. This latter is known to be also phenotypically closely related to A. equuli. The toxin gene analysis revealed that all A. equuli subsp. haemolyticus strains from both rrs subclusters specifically contained the aqx gene while the A. suis strains harboured the genes apxI and apxII. The aqx gene was found to be specific for A. equuli subsp. haemolyticus, since A. equuli subsp. equuli contained no aqx nor any of the other RTX genes tested. The specificity of aqx for the haemolytic equine A. equuli and ApxI and ApxII for the porcine A. suis indicates a role of these RTX toxins in host species predilection of the two closely related species of bacterial pathogens and allows PCR based diagnostic differentiation of the two.  相似文献   

2.
Apx toxins in Pasteurellaceae species from animals   总被引:6,自引:0,他引:6  
Pasteurellaceae species particularly of porcine origin which are closely related to Actinobacillus pleuropneumoniae were analyzed for the presence of analogues to the major A. pleuropneumoniae RTX toxin genes, apxICABD, apxIICA and apxIIICABD and for their expression. Actinobacillus suis contains both apxICABD(var.suis) and apxIICA(var. suis) operons and was shown to produce ApxI and ApxII toxin. Actinobacillus rossii contained the operons apxIICA(var.rossii) and apxIIICABD(var.rossii). However, only the toxin ApxII and not ApxIII could be detected in cultures of A. rossii. The Apx toxins found in A. suis and A. rossi may play a role in virulence of these pathogens. Actinobacillus lignieresii, which was included since it is phylogenetically very closely related to A. pleuropneumoniae, was found to contain a full apxICABD(var.lign.) operon which however lacks the -35 and -10 boxes in the promoter sequences. As expected from these results, no expression of ApxI was detected in A. lignieresii grown under standard culture conditions. Actinobacillus seminis, Actinobacillus equuli, Pasteurella aerogenes, Pasteurella multocida, Haemophilus parasuis, and also Mannheimia (Pasteurella) haemolytica, which is known to secrete leukotoxin, were all shown to be devoid of any of the apx toxin genes and did not produce ApxI, ApxII or ApxIII toxin proteins. However, proteins of slightly lower molecular mass than ApxI, ApxII and ApxIII which showed limited cross-reactions with monospecific, polyclonal anti-ApxI, anti-ApxII and anti-ApxIII were detected on immunoblot analysis of A. equuli, A. seminis and P. aerogenes. The presence of Apx toxins and proteins that imunologically cross react with Apx toxins in porcine Actinobacillus species other than A. pleuropneumoniae can be expected to interfere with serodiagnosis of porcine pleuropneumonia.  相似文献   

3.
RTX toxins are bacterial pore-forming toxins that are particularly abundant among pathogenic species of Pasteurellaceae, in which they play a major role in virulence. RTX toxins of several primary pathogens of the family of Pasteurellaceae are directly involved in causing necrotic lesions in the target organs. Many RTX toxins are known as haemolysins because they lyse erythrocytes in vitro, an effect that is non-specific, but which serves as a useful marker in bacteriological identification and as an easily measurable signal in vitro in experimental studies. More recent studies have shown that the specific targets of most RTX toxins are leukocytes, with RTX toxins binding to the corresponding β-subunit (CD18) of β2 integrins and then exerting cytotoxic activity. After uptake by the target cell, at sub-lytic concentrations, some RTX toxins are transported to mitochondria and induce apoptosis. For several RTX toxins the binding to CD18 has been shown to be host specific and this seems to be the basis for the host range specificity of these RTX toxins. Observations on two very closely related species of the Pasteurellaceae family, Actinobacillus suis, a porcine pathogen particularly affecting suckling pigs, and Actinobacillus equuli subsp. haemolytica, which causes pyosepticaemia in new-born foals (sleepy foal disease), have revealed that they express different RTX toxins, named ApxI/II and Aqx, respectively. These RTX toxins are specifically cytotoxic for porcine and equine leukocytes, respectively. Furthermore, the ApxI and Aqx toxins of these species, when expressed in an isogenetic background in Escherichia coli, are specifically cytotoxic for leukocytes of their respective hosts. These data indicate the determinative role of RTX toxins in host specificity of pathogenic species of Pasteurellaceae.  相似文献   

4.
Actinobacillus equuli is found in the normal oral flora of horses, but has been associated with several diseases, and particularly with the usually fatal septicaemia in neonatal foals which is thought to be associated with a failure of the passive transfer of immunoglobulins via the colostrum. The Aqx protein of A equuli, belonging to the RTX family of pore-forming toxins, is also cytotoxic to horse lymphocytes. The presence of antibodies to Aqx was investigated in sera from individual horses from different regions; the sera from adult horses and foals 24 hours after birth reacted with Aqx, and sera from foals sampled shortly after an intake of colostrum also reacted with Aqx, but sera from foals taken before an intake of colostrum did not react with Aqx.  相似文献   

5.
Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, which causes worldwide severe losses in pig farming. The virulence of the 15 serotypes of A. pleuropneumoniae is mainly determined by the three major RTX toxins ApxI, ApxII and ApxIII, which are secreted by the different serotypes in various combinations. A fourth RTX toxin, ApxIV, is produced by all 15 serotypes only during infection of pigs, but not under in vitro conditions. Pigs infected with A. pleuropneumoniae show specific antibodies directed against ApxIV. In contrast, antibodies against the other three toxins ApxI, ApxII and ApxIII are also found in pigs free of A. pleuropneumoniae. The antibodies to the three latter might result from other, less pathogenic Actinobacillus species such as A. rossii and A. suis. We used a recombinant protein based on the N'-terminal part of ApxIV to serologically detect A. pleuropneumoniae infections in pigs by immunoblot analysis. The analysis of sera of experimentally infected pigs revealed that ApxIV-immunoblots detected A. pleuropneumoniae infections in the second to third week post infection. We developed an indirect ELISA based on the purified recombinant N'-terminal moiety of ApxIV. The analysis of sera from pigs that were experimentally or naturally infected by A. pleuropneumoniae, and of sera of pigs that were free of A. pleuropneumoniae, revealed that the ELISA had a specificity of 100% and a sensitivity of 93.8%. The pre-validation study of the ApxIV-ELISA revealed that the latter was able to detect A. pleuropneumoniae-positive herds, even when clinical and pathological signs of porcine pleuropneumonia were not evident. Pigs vaccinated with a subunit vaccine Porcilis App were serologically negative in the ApxIV-ELISA.  相似文献   

6.
7.
Actinobacillus equuli is carried in the alimentary tract of mares and can cause severe septicemia of neonatal foals. A hemolytic subspecies, A. equuli subsp. haemolyticus, and a non-hemolytic subspecies, A. equuli subsp. equuli, have been identified. Hemolytic strains produce the RTX toxin Aqx. The purpose of this study was to demonstrate sequentially in two sets of mare-foal pairs antibodies to A. equuli whole bacterial cells, outer membrane proteins, and recombinant Aqx and to compare the transfer of antibodies to these antigens between mares and their foals. Two mare/foal sets of sera were evaluated. Cohort A consisted of 18 mare-foal pairs obtained in the spring of 2005. Cohort B consisted of 10 mare-foal pairs obtained in the spring of 2006. For both sets, mare and foal sera were obtained immediately after foaling and prior to nursing (time 0) as well as at 12 and 24h and daily thereafter for 7 days. For Cohort B, sera were also obtained 30 days after birth. At parturition all mares had detectable antibodies to A. equuli whole cells and outer membranes; however, of those mares, two in Cohort A had undetectable antibodies to Aqx and their foals likewise had undetectable anti-Aqx antibodies. Antibodies against whole cells, outer membrane proteins, and Aqx were readily transferred from mares to foals. In most cases, there were significant correlations (p<0.05) between antibodies against whole cells, outer membrane proteins, and Aqx in mares' sera at the time of parturition and foal sera 24 after birth. Antibodies against the three antigen preparations had declined insignificantly (p>0.05) by day 30.  相似文献   

8.
Actinobacillus suis-like organisms (ASLOs) have been isolated from the genital, respiratory, and digestive tracts of healthy adult horses, horses with respiratory disease, and septic foals. Two foals with congenital hypothyroidism-dysmaturity syndrome from separate farms developed ASLO infection. At necropsy, both had contracted carpal flexor tendons, thyroid hyperplasia, and thrombotic and necrotizing mesenteric lymphangitis and lymphadenitis; one foal also had mandibular prognathism. Numerous ASLOs were isolated from tissues from both foals, including intestine. Biochemical testing and mass spectrometric analysis of the two Actinobacillus isolates did not allow unequivocal identification. Comparative genetic analysis was done on these and similar isolates, including phylogeny based on 16S rRNA, rpoB and recN genes, as well as RTX (repeat in toxin) toxin typing of apxIA-apxIVA and aqxA genes. One isolate was identified as Actinobacillus suis sensu stricto, based on the presence of apxIA and apxIIA but not aqxA, whereas the other isolate had aqxA but neither apxIA nor apxIIA, consistent with A equuli ssp haemolyticus. Based on genotypic analysis of the isolates included for comparison, 3 of 3 equine ASLOs and 2 of 5 A equuli isolates were reclassified as A equuli subsp haemolyticus, emphasizing the importance of toxin genotyping in accurate classification of actinobacilli.  相似文献   

9.
The taxonomy of the members of the genus Actinobacillus associated with animals has been reviewed with focus on classification and identification including molecular based characterization, typing and identification. Out of the 22 species or species like taxa reported as Actinobacillus, 19 are associated with animals. When classified on the basis of 16S rRNA sequence based phylogenetic analysis, DNA-DNA hybridizations and phenotypic analysis, Actinobacillus sensu stricto is restricted to include A. lignieresii, A. pleuropneumoniae, A. equuli subsp. equuli, A. equuli subsp. haemolyticus (taxon 11 of Bisgaard), A. hominis, A. suis, A. ureae, A. arthritidis (taxon 9 of Bisgaard), Actinobacillus genomospecies 1 and 2 and the taxa 8 and 26 of Bisgaard. The remaining 11 species of Actinobacillus are unrelated to A. sensu stricto and should consequently be grouped with other genera or be renamed as new genera depending on new data. Identification of members of Actinobacillus at species level is possible through phenotypic characterization combined with information on host of isolation. PCR tests are available for specific detection of A. pleuropneumoniae. Only A. pleuropneumoniae is presently considered as a primary pathogen. Based on different types of RTX genes it is possible to PCR type A. pleuropneumoniae to serotype level. PCR might also be used for the specific detection of A. equuli subsp. haemolyticus. Epidemiological investigations and surveillance have so far included serotyping, multilocus enzyme electrophoresis (MLEE), ribotyping and restriction fragment length profiling.  相似文献   

10.
The immune responsiveness of mice (without prior natural exposure) and mares (with naturally acquired antibodies) was determined following vaccination with Actinobacillus equuli outer membrane proteins (OMPs) and/or recombinant A. equuli toxin (rAqx). Mice were vaccinated subcutaneously on days 0 and 21 with one of three doses (5, 25 or 50μg) of A. equuli OMPs, rAqx or both, together with Freund's incomplete adjuvant (FIA). Antibodies against formalin-killed whole bacterial cells (WBCs), OMPs and Aqx were determined on days 0, 21 and 42. Mares were vaccinated subcutaneously on days 0 and 21 with 100μg OMPs, 100μg rAqx or a combination of 50μg of each antigen, together with FIA. Antibodies against WBCs, OMPs and Aqx were determined at 7day intervals for the first 42days, as well as on days 56, 70, 154 and 238. Vaccination of mice stimulated an apparent dose response to OMPs and Aqx. Antibodies against OMPs and Aqx were enhanced following vaccination of mares that had naturally acquired pre-existing antibodies. There was no evidence of interference with antibody responses to the individual antigens when OMPs and rAqx were combined prior to vaccination.  相似文献   

11.
Most serotypes of A. pleuropneumoniae produce more than one toxin in vivo. To determine the value of the production of more than one toxin in the development of disease, we tested the pathogenicity of isogenic strains of A. pleuropneumoniae serotype 1 that are mutated in the toxin genes apxIA and/or apxIIA or in the transport genes apxIBD. Bacteria mutated in both apxIA and apxIIA, or in apxIBD, were unable to induce pathological lesions, thereby confirming the conclusion that ApxI and ApxII are essential for the pathogenesis of pleuropneumonia. Infection with isogenic strains lacking either ApxI or ApxII did not consistently lead to pleuropneumonia unlike the parent strain S4074. ApxII seemed at least as important as ApxI for the development of clinical and pathological symptoms. Only one of the four pigs inoculated with a mutant strain unable to produce ApxII developed mild pneumonia whereas two out of the three pigs inoculated with a mutant strain unable to produce ApxI developed more severe lesions. The results indicate that both ApxI and ApxII of A. pleuropneumoniae serotype 1 are necessary for full virulence.  相似文献   

12.
13.
The haemolytic RTX toxins of 27 isolates of Actinobacillus pleuropneumoniae, representing all serovars that have been isolated in Australia, were characterised. The quantity of protein secreted by these isolates into the media was not significantly different between serovars, but haemolytic activity was detected only in the unconcentrated supernatants from cultures of serovar 1 and 5 isolates. Haemolytic activity in supernatants of serovar 2, 3 and 7 isolates was detected only after the supernatants were concentrated. On Southern hybridisation blots, genomic DNA of serovar 1 and 5 isolates contained regions that were similar to the cloned structural genes for Apxl (apxIA) and for ApxII (apxIIA). In contrast, genomic DNA of serovar 2,3 and 7 isolates only contained regions similar to, if not identical with, the cloned apxIIA gene. The haemolytic activity of the culture supernatant depends on the type or composition of media and adaptability of the bacteria to in-vitro cultivation. Low passage cultures of A pleuropneumoniae, which were characterised by waxy colonies, produced significantly weaker haemolytic activity than A pleuropneumoniae after several passages in vitro.  相似文献   

14.
Cytotoxic and hemolytic activity of Haemophilus (Actinobacillus) pleuropneumoniae serotype 1 strain CM5 was investigated because of the potential role as a virulence determinant. Viable bacteria were toxic for porcine and bovine neutrophils, whereas bacteria killed by heat treatment at 60 C for 1 hour were not. Similarly, bacteria-free culture supernatant was cytotoxic and hemolytic in assays that used porcine neutrophils and erythrocytes, whereas supernatant treated at 60 C for 1 hour had no activity. Erythrocytes from various species were susceptible to the hemolytic activity of bacteria-free culture supernatant, with ovine and bovine erythrocytes being most sensitive. The neutrophil-toxic and hemolytic activity of bacteria-free culture supernatant was inhibited by cholesterol and oxygen and abolished after trypsin digestion. The neutrophil-toxic and hemolytic activity was preserved during storage at or less than 4 C, but was lost rapidly at 56 C or 80 C. Neutralizing antibodies were demonstrated in serum of pigs and rabbits immunized with 10-fold concentrated culture supernatant of strain CM5 and in field pigs that had recovered from natural infection with H pleuropneumoniae serotype 1. Bacteria-free culture supernatants of 18 strains, including H pleuropneumoniae serotypes 1 through 10, Actinobacillus suis, and Haemophilus taxon minor group, were tested for heat-sensitive, neutrophil-toxic, and hemolytic activity. Fifteen strains were neutrophil toxic, but only 10 of these were hemolytic. Haemophilus pleuropneumoniae, serotype 1, strain VLS557; serotype 5, strain K17; and Haemophilus taxon minor group strain 33PN were neither cytotoxic nor hemolytic.  相似文献   

15.
The Haemophilus parasuis aroA gene encodes 5-enolpyruvylshikimate-3-phosphate synthase and participates in the aromatic amino acids and the folic acid universal metabolic pathway of bacteria. The application of aroA-based PCR-RFLP methodology yields a significant degree of diversity in H. parasuis and Actinobacillus species. PCR amplification of the aroA gene rendered a 1,067-bp fragment in all 15 H. parasuis serovars, and also in Actinobacillus pleuropneumoniae serotypes 1-12, Actinobacillus lignieresii, Actinobacillus equuli, Actinobacillus porcinus, Actinobacillus rossii, Actinobacillus suis, Actinobacillus ureae, Actinobacillus minor and Actinobacillus indolicus. Sau3AI and RsaI digestions of the aroA PCR products rendered seven different restriction fragment length polymorphism (RFLP) patterns: group I (H. parasuis serovars 1, 2, 4-6, and 8-15, A. porcinus and A. ureae), group II (H. parasuis serovars 3 and 7, and A. pleuropneumoniae serotypes 1, 4, 5, 9, 11 and 12), group III (A. lignieresii), group IV (A. pleuropneumoniae serotype 7), group V (A. pleuropneumoniae serotypes 2, 3, 6 and 8, A. equuli, A. rossii, A. minor and A. indolicus), group VI (A. suis) and group VII (A. pleuropneumoniae serotype 10). This is the first report describing the presence of aroA gene in H. parasuis, A. lignieresii, A. porcinus, A. rossii, A. suis, A. ureae, A. minor and A. indolicus and the data presented here demonstrates a significant degree of aroA genetic diversity in H. parasuis and species of the genus Actinobacillus.  相似文献   

16.
Actinobacillus equuli was isolated in pure culture from the liver and lungs of an adult rabbit with Tyzzer's disease (Clostridium piliforme). Based on the haemolytic features on blood agar plates, a positive reaction in the CAMP-test, hydrolysis of esculin, the inability to ferment l-arabinose, tDNA-PCR and sequencing of the 16S rRNA gene, the isolate was classified as A. equuli subsp. haemolyticus biovar 1. However, the aqxA gene, characteristic for haemolytic A. equuli strains, was not detected by PCR.  相似文献   

17.
Xu F  Chen X  Shi A  Yang B  Wang J  Li Y  Guo X  Blackall PJ  Yang H 《Veterinary microbiology》2006,118(3-4):230-239
Actinobacillus pleuropneumoniae is the aetiological agent of porcine pleuropneumonia, a highly contagious and often fatal disease. A candidate live vaccine strain, potentially capable of cross-serovar protection, was constructed by deleting the section of the apxIA gene coding for the C-terminal segment of ApxI toxin of the A. pleuropneumoniae serovar 10 reference strain (D13039) and inserting a chloramphenicol resistance gene cassette. The mutant strain (termed D13039A(-)Chl(r)) produced an approximately 48kDa protein corresponding to the N-terminus of the ApxI toxin, and exhibited no haemolytic activity and lower virulence in mice compared with the parental strain. The mutant was evaluated in a vaccination-challenge trial in which pigs were given two intra-nasal doses of the mutant at 14 days intervals and then challenged 14 days after the last vaccination with either A. pleuropneumoniae serovar 1 (4074) or serovar 2 (S1536) or serovar 10 (D13039) reference strains. The haemolysin neutralisation titres of the pre-challenge sera were significantly higher in the vaccinated pigs than in the unvaccinated pigs. The mortalities, clinical signs and lung lesion scores in the vaccinated pigs were significantly lower than those in the unvaccinated pigs for the serovar 1 challenge. A significantly lower lung lesion score was also observed in the vaccinated pigs, compared with unvaccinated pigs, for serovar 2 challenge. Our work suggests that the mutant strain offers potential as a live attenuated pleuropneumonia vaccine that can provide cross-serovar protection.  相似文献   

18.
Endothelial cytotoxicity of Actinobacillus pleuropneumoniae   总被引:5,自引:0,他引:5  
The cytotoxicity of Actinobacillus pleuropneumoniae serotype 1 strain CM5 for porcine and bovine endothelial cells in vitro, was dose-dependent. This strain and its attenuated and avirulent substrain CM5A were equally cytotoxic. The cytotoxicity observed during five hours of exposure of endothelial cells to bacterial products was abolished if the bacteria were inactivated by heat or sonication. Exposure of the endothelial cells for five hours to 100 and 200 micrograms of purified lipopolysaccharide resulted in a partial cytotoxicity only, which was not enhanced in the presence of fresh guinea pig serum. The cytotoxicity of viable bacteria could be neutralised by a polyclonal rabbit antiserum to the purified 104kD haemolysin. A bacteria-free supernate of a culture of strain CM5 had both haemolytic and cytotoxic activity. The haemolytic activity could be neutralised completely by the anti-serum to the 104kD haemolysin, whereas the cytotoxic activity was only partially neutralisable. Hence A pleuropneumoniae is cytotoxic for endothelial cells and this cytotoxicity is possibly mediated by the 104kD haemolysin.  相似文献   

19.
Nineteen isolates of Actinobacillus suis were recovered from horses during the period October 1978-December 1980. Animals varied in age from a full term foetus to 12 years. One isolate was obtained from the nose of an apparently healthy horse, the remainder were obtained from still-born foetuses (2), foals dying within a week of birth (5), older animals with respiratory (6) or genital infections (3) or abscesses in the jaw (1). One isolate was obtained from the lung of a 2-week-old foal which had shown diarrhoea. The bacteriological characteristics of the isolates and the pathological lesions present in eight cases are described. The organism has a wide geographical distribution in New Zealand, and in the northern part of the North Island appears to be more common than A. equuli.  相似文献   

20.
OBJECTIVE: To evaluate the serological response of pigs receiving either the Porcilis APP vaccine or a modified live vaccine based on a streptomycin-dependent (SD) strain of Actinobacillus pleuropneumoniae, and then challenged with an Australian isolate of A. pleuropneumoniae of either serovar 1 or 15 as a means of understanding the protection provided by both vaccines against serovar 1 but not against serovar 15. DESIGN: The serological tests evaluated were serovar-specific polysaccharide ELISA tests (for serovar 1 and 15), ELISA tests for antibodies to three A. pleuropneumoniae toxins (ApxI, ApxII and ApxIII) as well as to a 42 kDa outer membrane protein (OMP), a haemolysin neutralisation (HN) assay and immunoblotting. The tests were used to detect antibodies in vaccinated pigs that had been shown to be protected against serovar 1 but not serovar 15. RESULTS: In the polysaccharide antigen ELISA assays, both vaccines resulted in a significant rise in the titre in the serovar 1 ELISA but not the serovar 15 ELISA. The Porcilis APP vaccinated pigs showed a significant response in the ApxI, ApxIII and 42 kDa OMP ELISA. In the ApxII ELISA, all pigs tested (the Porcilis APP vaccinates and the controls) were positive on entry to the trial. In the HN assay, the Porcilis APP vaccinated pigs showed a significant response after one dose while the SD vaccinated pigs required two doses of vaccine before a marked rise in titre was induced. Immunoblotting revealed that neither vaccine generated antibodies that recognised the ApxIII produced by serovar 15. CONCLUSIONS: The failure of these vaccines to provide protection against serovar 15 may be due to novel virulence factors possessed by serovar 15, significant differences between the ApxIII toxin of serovar 15 and those present in the Porcilis APP vaccine or failure by both vaccines to induce antibodies to the serovar 15 specific polysaccharide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号