首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In total, 211 isolates of A. pleuropneumoniae were collected from pigs with hemorrhagic pneumonia at slaughterhouses during 2002-2007. Serotypes, antimicrobial susceptibility and minimum inhibitory concentration (MIC) values were determined for each isolate of A. pleuropneumoniae to 10 antimicrobial agents. Serovar 1 of A. pleuropneumoniae was predominant in Taiwan in 138 of the 211 isolates, followed by serovars 2 and 5. More than 90% of collected isolates were sensitive to ceftiofur, cephalothin, and chloramphenical. However, lincospectin and gentamicin were relatively less susceptible with sensitivities of only 2.4 and 5.7%, respectively. Additionally, ceftiofur had the highest in vitro activity with an MIC(50) of 2.2 μg/ml, followed by cephalothin (2.7 μg/ml) and chloramphenicol (7.9 μg/ml). Lincospectin had the least activity with MIC(50) and MIC(90) values of 73.9 and 114.5 μg/ml, respectively. The data indicate that ceftiofur and cephalothin were extremely active against A. pleuropneumoniae and with minimum MIC values. These drugs are suitable for controlling and treating hemorrhagic pleuropneumonia outbreaks in swine.  相似文献   

2.
This study determined the antimicrobial activity of tulathromycin against Rhodococcus equi in vitro. Ninety-eight virulent isolates of R. equi from equine clinical cases were examined, of which 20 isolates were macrolide resistant. A custom 96-well antimicrobial susceptibility testing plate was used, allowing 14 additional antimicrobials to be tested against R. equi. Isolates were cultured with various concentrations of antimicrobials, and minimal inhibitory concentration (MIC) values were determined. Tulathromycin was found to have poor activity in vitro against R. equi isolates susceptible or resistant to macrolides, with MIC50 and MIC90 values >64 ug/mL for all isolates. MIC values for other macrolides tested were similar to previously published data.  相似文献   

3.
The periods of time that cephalothin and cefazolin serum concentration remained above minimum inhibitory concentration (MIC) for beta hemolytic, coagulase positive staphylococcal, and Escherichia coli clinical isolates were compared. Cephalothin and cefazolin were similarly very effective in vitro against staphylococcal isolates, with an MIC90 of 0.12 μg/mL and 0.25 μg/mL, respectively. In contrast, cefazolin was more effective than cephalothin against E coli isolates; the cefazolin MIC90 for E coli was 16 μg/mL and for cephalothin 64 μg/mL. Cefazolin (20 mg/kg intravenously [IV]) serum concentration remained more than MIC90 for E coli isolates significantly longer than serum concentration of cephalothin (40 mg/kg IV) ( P <.001).  相似文献   

4.
Minimum inhibition concentrations (MICs) were determined for ampicillin, ceftiofur, cephalothin, chloramphenicol, enrofloxacin, gentamicin, lincomycin, lincospectin (lincomycin/spectinomycin), neomycin, premafloxacin, spectinomycin, sulfamethoxazole/trimethoprim, and tetracycline against a total of 180 isolates of Actinobacillus pleuropneumoniae, Escherichia coli, and Salmonella choleraesuis (60 each) clinically isolated from pigs on farms in Taiwan from 1994 to 1996. No more than 3 isolates per farm were used. Ceftiofur had the highest activity in vitro against isolates of A. pleuropneumoniae, E. coli, and S. choleraesuis, with MIC90 values of 0.03, 2, and 1 microg/ml, respectively. Premafloxacin was highly active against isolates of A. pleuropneumoniae, E. coli, and S. choleraesuis, with MIC90 values of 2, 8, and 0.5 microg/ml, respectively, which were lower than those with enrofloxacin (MIC90 8, 32, and 2 microg/ml, respectively). Neomycin was moderately active against A. pleuropneumoniae and E. coli, with MIC90 values of 8 and 64 microg/ml, respectively, but was inactive with S. choleraesuis. Gentamicin showed high activity against A. pleuropneumoniae (MIC90 of 2 microg/ml) but was only moderately active with E. coli and S. choleraesuis (MIC90 of 64 and 32 microg/ml). Cephalothin was highly active against isolates of A. pleuropneumoniae (MIC90 of 1 microg/ml) but was inactive with E. coli (MIC90 of 128 microg/ml). Lincomycin had moderate activity (MIC90 of 32 microg/ml) against A. pleuropneumoniae. Chloramphenicol, lincomycin, and tetracycline were inactive with E. coli and S. choleraesuis (MIC90 > 128 microg/ml). In conclusion, ceftiofur and premafloxacin were highly active against isolates of A. pleuropneumoniae, E. coli, and S. choleraesuis, enrofloxacin and gentamicin were highly to moderately active; cephalothin was highly active against A. pleuropneumoniae and moderately active against S. cholearesuis; chloramphenicol, lincomycin, and tetracycline were active only with A. pleuropneumoniae; neomycin was moderately active against A. pleuropneumoniae and E. coli. The other antimicrobials tested were inactive.  相似文献   

5.
Rapidly growing mycobacteria (RGM) and Nocardiae can cause severe or refractory infections in cats and dogs. Prolonged antibacterial therapy is required to cure these infections. As fluoroquinolones have been used in combination therapy for treating RGM infections, isolates from the Mycobacterium smegmatis cluster (n=64), Mycobacterium fortuitum cluster (n=17), and M. mageritense cluster (n=2), collected from feline and canine patients, underwent susceptibility testing to pradofloxacin. The MIC(50), MIC(90) and tentative epidemiological cut-off (ECOFF) values as determined by microbroth dilution susceptibility testing that inhibited growth of the M. smegmatis and M. fortuitum clusters were 0.063, 0.125 and ≤ 0.25; and 0.125, 0.250 and ≤ 1.0 μg/mL, respectively. E-Test results showed similar trends but MICs were lower than those for microbroth dilution. In summary, pradofloxacin demonstrated effective in vitro activity against RGM isolates. Additionally, veterinary isolates of Nocardia nova (n=18), Nocardia farcinica (n=3) and Nocardia cyriacigeorgica (n=1) underwent microbroth dilution testing to ciprofloxacin, enrofloxacin and pradofloxacin. The MIC(50) and MIC(90) of pradofloxacin, ciprofloxacin and enrofloxacin that inhibited growth of Nocardia nova isolates were 2 (4), 8 (16), 16 (32) μg/mL, respectively. The tentative ECOFF values for pradofloxacin and ciprofloxacin were 32 μg/mL and for enrofloxacin 64 μg/mL. The MIC or MIC range for the three N. farcinica isolates of pradofloxacin, ciprofloxacin and enrofloxacin were 0.25-0.5, 2 and 2 μg/mL and for the single N. cyriacigeorgica isolate were 1, 4 and 4 μg/mL, respectively. On the basis on these results, fluoroquinolones appear to have limited therapeutic potential for most Nocardia infections.  相似文献   

6.
Clinical pharmacokinetics of five oral cephalosporins in calves   总被引:1,自引:0,他引:1  
The minimal inhibitory concentrations (MIC) of cephalexin, cephradine, cefaclor, cefatrizine and cefadroxil for Salmonella species, Escherichia coli and Pasteurella multocida isolated previously from young calves were determined. The MIC90 values for cephalexin, cephradine and cefadroxil ranged between 3.12 micrograms ml-1 and 12.5 micrograms ml-1, whereas those of cefatrizine and cefaclor were 3.12 micrograms ml-1 and 0.78 microgram ml-1, respectively. Each drug was administered intravenously and orally to groups of pre-ruminating calves and orally to early ruminating calves. Although the pharmacokinetic characteristics of the drugs after intravenous injection were similar to other beta-lactam antibiotics, significant differences between the cephalosporins examined were found in respect of certain kinetic parameters. The drugs showed rapid absorption into the systemic circulation after oral administration to pre-ruminating calves but the elimination half-life values (t1/2 beta) varied between three hours (cefaclor and cefadroxil) and nine hours (cefatrizine). The bioavailability of the drugs was about 35 per cent of the administered dose. Co-administration of probenecid with each antibiotic caused a twofold or greater increase in peak serum drug concentrations (Cmax) but the effect on t1/2 beta was variable. Cephalexin, cephradine and cefaclor given to the ruminating calves resulted in very low serum or plasma concentrations and their use should be restricted to younger calves. Cefadroxil was found to give the highest serum concentrations in this age group but had significantly lower bioavailability when compared with the unweaned calves. Provisional oral dosage regimens were computed for each cephalosporin on the basis of the MIC data and the kinetic parameters derived from intravenous and oral drug administration.  相似文献   

7.
The aims of this study were to describe and compare the pharmacokinetic profiles and T(>MIC90) of two commercially available once-daily recommended cephalexin formulations in healthy adult dogs administered by the intramuscular (i.m.) route. Six beagle dogs received a 10 mg/kg dose of an 18% parenteral suspension of cephalexin of laboratory A (formulation A) and laboratory B (formulation B) 3 weeks apart. Blood samples were collected in predetermined times after drug administration. The main pharmacokinetic parameters were (mean +/- SD): AUC((0-infinity)), 72.44 +/- 15.9 and 60.83 +/- 13.2 microg.h/mL; C(max), 10.11 +/- 1.5 and 8.50 +/- 1.9 microg/mL; terminal half-life, 3.56 +/- 1.5 and 2.57 +/- 0.72 h and MRT((0-infinity)), 5.86 +/- 1.5 and 5.36 +/- 1.2 h for formulations A and B, respectively. T(>MIC90) was 63.1 +/- 14.7 and 62.1 +/- 14.7% of the dosing interval for formulations A and B, respectively. Median (range) for t(max) was 2.0 (2.0-3.0) h and 3.0 (2.0-4.0) for formulations A and B, respectively. Geometric mean ratios of natural log-transformed AUC((0-infinity)) and C(max) and their 90% confidence intervals (CI) were 0.84 (0.72-0.98) and 0.83 (0.64-1.07), respectively. The plasma profiles of cephalexin following the administration of both formulations were similar. No statistical differences between pharmacokinetic parameters or T(>MIC90) were observed, however, bioequivalence between both formulations could not be demonstrated, as lower 90% CI failed to fell within the selected range of 80-125% for bioequivalence.  相似文献   

8.
The in vitro activity of flumequine in comparison with several other drugs was tested against 17 P. multocida, 16 P. haemolytica, 21 S. dublin, 21 S. typhimurium and 21 E. coli strains, isolated in (veal) calves in the Netherlands. The MIC50 of flumequine for the respective pasteurellas was 0.25 and 1 microgram/ml, for the salmonellas and E. coli 0.5 micrograms/ml. In comparison with flumequine, enrofloxacin and ciprofloxacin showed higher in vitro activity, with MIC50 less than or equal to 0.008 micrograms/ml for ciprofloxacin. Decreased susceptibility of the pasteurellas was found for kanamycin, neomycin, streptomycin, gentamicin, oxytetracycline and doxycycline. The MIC50 of minocycline for P. multocida was 0.5 micrograms/ml and there was no cross resistance with the other tetracyclines. P. multocida was very susceptible to ampicillin (MIC50 less than or equal to 0.03 micrograms/ml), P. haemolytica, however, was 100% resistant to this drug. Both pasteurellas were susceptible to cephalothin and approximately 50% of the strains of both bacteria were resistant to chloramphenicol. The MIC50 of either spiramycin or tylosin was greater than or equal to their respective breakpoint-MIC values. Both pasteurellas were susceptible to the combination of trimethoprim and sulphamethoxazole. However, for P. multocida, the addition of sulphamethoxazole to trimethoprim had no synergistic effect on its MIC. In comparison with trimethorpim, aditoprim was less potent. Therefore only P. multocida was susceptible to aditoprim.  相似文献   

9.
The objectives of this study were to determine the plasma and pulmonary disposition of gamithromycin in foals and to investigate the in vitro activity of the drug against Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) and Rhodococcus equi. A single dose of gamithromycin (6 mg/kg of body weight) was administered intramuscularly. Concentrations of gamithromycin in plasma, pulmonary epithelial lining fluid (PELF), bronchoalveolar lavage (BAL) cells, and blood neutrophils were determined using HPLC with tandem mass spectrometry detection. The minimum inhibitory concentration of gamithromycin required for growth inhibition of 90% of R. equi and S. zooepidemicus isolates (MIC(90)) was determined. Additionally, the activity of gamithromycin against intracellular R. equi was measured. Mean peak gamithromycin concentrations were significantly higher in blood neutrophils (8.35±1.77 μg/mL) and BAL cells (8.91±1.65 μg/mL) compared with PELF (2.15±2.78 μg/mL) and plasma (0.33±0.12 μg/mL). Mean terminal half-lives in neutrophils (78.6 h), BAL cells (70.3 h), and PELF (63.6 h) were significantly longer than those in plasma (39.1 h). The MIC(90) for S. zooepidemicus isolates was 0.125 μg/mL. The MIC of gamithromycin for macrolide-resistant R. equi isolates (MIC(90)=128 μg/mL) was significantly higher than that for macrolide-susceptible isolates (1.0 μg/mL). The activity of gamithromycin against intracellular R. equi was similar to that of azithromycin and erythromycin. Intramuscular administration of gamithromycin at a dosage of 6 mg/kg would maintain PELF concentrations above the MIC(90) for S. zooepidemicus and phagocytic cell concentrations above the MIC(90) for R. equi for approximately 7 days.  相似文献   

10.
The pharmacokinetics of cephalexin, a first generation cephalosporin, were investigated in dogs using two formulations marketed for humans, but also often employed by practitioners for pet therapy. Cephalexin was administered to five dogs intravenously and intramuscularly as a sodium salt and by the oral route as a monohydrate. The dosage was always 20 mg/kg of active ingredient. A microbiological assay with Sarcina lutea as the test organism was adopted to measure cephalexin concentrations in serum. The mean residence time (MRT) median values after intravenous (i.v.), intramuscular (i.m.) and oral administration (p.o.) were 86 min, 200 min, and 279 min, respectively. After i.m. and oral dosing the peak serum concentrations (24.2 +/- 1.8 micrograms/mL and 20.3 +/- 1.7 micrograms/mL, respectively) were attained at 90 min in all dogs and bioavailabilities were 63 +/- 10% and 57 +/- 5%, respectively. The time course of the cephalexin serum concentrations after oral administration was best described by a model incorporating saturable absorption kinetics of the Michaelis-Menten type: thus in the gastrointestinal tract of dogs a carrier mediated transport for cephalexin similar to that reported in humans, may exist. The predicted average serum concentrations of cephalexin after repeated i.m. and oral administration indicated that, in order to maintain the therapeutic concentrations, the 20 mg/kg b.w. dosage should be administered every 6-8 h.  相似文献   

11.
为了有效地治疗鸡大肠杆菌病,采用微量倍比稀释方法测定了17种抗菌药物对临床分离的豫北地区15株鸡大肠杆菌的体外最小抑菌浓度(MIC),并根据其MIC及MIC范围(MICRange)使用SPSS 13.0中Probit过程计算出17种抗菌药物的MIC50和MIC90.结果表明:多粘菌素B的抑菌作用最强,MIC50、MIC90分别为0.11、0.87 μg/mL;加替沙星的抑菌作用次之,MIC50、MIC90分别为2.53、3.88 μg/mL,其它3种药物恩诺沙星、左氧氟沙星、环丙沙星的抑菌作用相当,但不及加替沙星,MIC50、MIC90分别为10.11~11.79 μg/mL、15.16~21.13 μg/mL;多西环素和阿莫西林等12种抗菌药物的抑菌作用较小,MIC50、MIC90分别为18.53~388.50 μg/mL和30.59~713.42 μg/mL.  相似文献   

12.
The minimum inhibitory concentrations (MICs) of tetracycline, enrofloxacin, tylosin, spiramycin and a lincomycin:spectinomycin 1:2 combination, against 24 Sicilian isolates of Mycoplasma agalactiae, the causative organism of contagious agalactia were determined in vitro by a broth dilution method. Enrofloxacin was the most effective antimicrobial in vitro with a range of MIC values from 0.125 to 0.500 microg/ml and an MIC(50) of 0.203 and MIC(90) of 0.365 microg/ml. Using the MIC(50) and MIC(90) values the remaining four antimicrobials are ranked in order of in vitro effectiveness as follows: tylosin (MIC(50)0.292; MIC(90)0.525 microg/ml) was slightly more effective than tetracycline (MIC(50)0.296; MIC(90)0.533 microg/ml), followed by lincomycin:spectinomycin (MIC(50)0.521; MIC(90)0.938 microg/ml) and spiramycin (MIC(50)1.583; MIC(90)2.850 microg/ml). MIC values above 1.000 microg/ml were obtained using tetracycline, tylosin and spiramycin for some M. agalactiae isolates.  相似文献   

13.
This report compares the in vitro activity of three cephalosporins (cephalothin, cefoxitin and ceftriaxone) against 57 Staphylococcus aureus strains isolated from cows with clinical mastitis on the basis of the minimal inhibitory (MIC) and minimal bactericidal concentrations (MBC). The majority of the S aureus strains showed resistance to cefoxitin and ceftriaxone and sensitivity to cephalothin. The highest MICs and MBCs were found for cefoxitin and ceftriaxone. Antimicrobial tolerance (MBC/MIC greater than or equal to 32:1) was observed in relation to cephalothin and ceftriaxone. The data suggest that these cephalosporins may not be effective for the treatment of staphylococcal bovine mastitis. The precise definition of their antimicrobial efficacies requires more detailed in vitro and in vivo studies.  相似文献   

14.
The pharmacokinetic properties of ceftriaxone, a third-generation cephalosporin, were investigated in five cats after single intravenous, intramuscular and subcutaneous administration at a dosage of 25 mg/kg. Ceftriaxone MICs for some gram-negative and positive strains isolated from clinical cases were determined. Efficacy predictor (t > MIC) was calculated. Serum ceftriaxone disposition was best fitted by a bicompartmental and a monocompartmental open models with first-order elimination after intravenous and intramuscular and subcutaneous dosing, respectively. After intravenous administration, distribution was fast (t1/2d 0.14 +/- 0.02 h) and moderate as reflected by the volume of distribution (V(d(ss))) of 0.57 +/- 0.22 L/kg. Furthermore, elimination was rapid with a plasma clearance of 0.37 +/- 0.13 L/h.kg and a t1/2 of 1.73 +/- 0.23 h. Peak serum concentration (Cmax), tmax and bioavailability for the intramuscular administration were 54.40 +/- 12.92 microg/mL, 0.33 +/- 0.07 h and 85.72 +/- 14.74%, respectively; and for the subcutaneous route the same parameters were 42.35 +/- 17.62 microg/mL, 1.27 +/- 0.95 h and 118.28 +/- 39.17%. Ceftriaxone MIC for gram-negative bacteria ranged from 0.0039 to >8 microg/mL and for gram-positive bacteria from 0.5 to 4 microg/mL. t > MIC was in the range 83.31-91.66% (10-12 h) of the recommended dosing interval (12 h) for Escherichia coli (MIC90 = 0.2 microg/mL).  相似文献   

15.
The cephalosporin antimicrobial drug cefquinome was administered to yellow cattle intravenously (i.v.) and intramuscularly (i.m.) at a dose of 1 mg/kg of body weight in a two‐period crossover study. The pharmacokinetic (PK) properties of cefquinome in serum, inflamed tissue‐cage fluid (exudate), and noninflamed tissue‐cage fluid (transudate) were studied using a tissue‐cage model. The in vitro and ex vivo activities of cefquinome in serum, exudate, and transudate against a pathogenic strain of Pasteurella multocida (P. multocida) were determined. A concentration‐independent antimicrobial activity of cefquinome was confirmed for levels lower than 4 × MIC. Integration of in vivo pharmacokinetic data with the in vitro MIC provided mean values for the time that drug levels remain above the MIC (T > MIC) in serum was 14.10 h after intravenous and 14.46 h after intramuscular dosing, indicating a likely high level of effectiveness in clinical infections caused by P. multocida of MIC 0.04 μg/mL or less. These data may be used as a rational basis for setting dosing schedules, which optimize clinical efficacy and minimize the opportunities for emergence of resistant organisms.  相似文献   

16.
The pharmacokinetics and intramuscular (i.m.) bioavailability of cefoperazone and cefamandole (20mg/kg) were investigated in dogs and the findings related to minimal inhibitory concentrations (MICs) for 90 bacterial strains isolated clinically from dogs. The MICs of cefamandole for Staphylococcus intermedius (MIC(90) 0.125 microg/mL) were lower than those of cefoperazone (MIC(90) 0.5 micro/mL) although the latter was more effective against Escherichia coli strains (MIC(90) 2.0 microg/mL vs. 4.0 microg/mL). The pharmacokinetics of the drugs after intravenous administrations were similar: a rapid distribution phase was followed by a slower elimination phase (t((1/2)lambda2) 84.0+/-21.3 min for cefoperazone and 81.4+/-9.7 min for cefamandole). The apparent volume of distribution and body clearance were 0.233 L/kg and 1.96 mL/kg/min for cefoperazone, 0.190 L/kg and 1.76 mL/kg/min for cefamandole. After i.m. administration the bioavailability and peak serum concentration of cefamandole (85.1+/-13.5% and 35.9+/-5.4 microg/mL) were significantly higher than cefoperazone (41.4+/-7.1% and 24.5+/-3.0 micog/mL), but not the serum half-lives (t(1/2el) 134.3+/-12.6 min for cefoperazone and 145.4+/-12.3 min for cefamandole). The time above MIC(90) indicated that cefamandole can be administered once daily to dogs for the treatment of staphylococcal infections (T>MIC for S. intermedius 23.8+/-0.3 and for Staphylococcus aureus 21.6+/-0.6h).  相似文献   

17.
豫北地区临床分离鸡大肠杆菌的体外抑菌作用测定   总被引:1,自引:0,他引:1  
为了有效地治疗鸡大肠杆菌病,采用微量倍比稀释方法测定了17种抗菌药物对临床分离的豫北地区15株鸡大肠杆菌的体外最小抑菌浓度(MIC),并根据其MIC及MIC范围(MICRange)使用SPSS 13.0中Probit过程计算出17种抗菌药物的MIC50和MIC90。结果表明:多粘菌素B的抑菌作用最强,MIC50、MIC90分别为0.11、0.87μg/mL;加替沙星的抑菌作用次之,MIC50、MIC90分别为2.53、3.88μg/mL,其它3种药物恩诺沙星、左氧氟沙星、环丙沙星的抑菌作用相当,但不及加替沙星,MIC50、MIC90分别为10.11-11.79μg/mL、15.16-21.13μg/mL;多西环素和阿莫西林等12种抗菌药物的抑菌作用较小,MIC50、MIC90分别为18.53-388.50μg/mL和30.59-713.42μg/mL。  相似文献   

18.
The antimicrobial susceptibility of 73 Actinobacillus (Haemophilus) pleuropneumoniae isolates from swine in Missouri was determined with a microdilution minimal inhibitory concentration test system. Serotyping was accomplished by means of co-agglutination. Serotype 1 (39/73) and serotype 5 (30/73) were commonly found, whereas serotype 7 (4/73) was infrequently encountered. Most isolates (MIC90) were found susceptible to ampicillin (amoxicillin), cephalothin, penicillin, erythromycin, gentamicin, and kanamycin. Marked resistance was found with oxytetracycline, tylosin, and sulfadimethoxine. The data indicate that use of ampicillin (amoxicillin) or penicillin may correlate well with the favorable outcome of treatment.  相似文献   

19.
OBJECTIVE: To evaluate the in vitro antifungal properties of silver sulfadiazine (SSD) and natamycin against filamentous fungi isolated from eyes of horses with keratomycosis. SAMPLE POPULATION: Filamentous fungal isolates obtained from eyes of keratomycosis-affected horses. PROCEDURES: Fungal culture of ocular samples yielded 6 Fusarium spp; 7 Aspergillus spp; and 1 isolate each of Curvularia, Scopulariopsis, Penicillium, and Chrysosporium. For each fungal isolate, minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of SSD and natamycin were determined. RESULTS: For all 17 fungal isolates, SSD MIC distribution ranged from < or = 1 to > 64 microg/mL; MIC50 and MIC90 (MICs at which 50% and 90% of organisms were inhibited) were 4 and 32 microg/mL, respectively. The SSD MFC distribution for all isolates was < or = 1 to > 64 microg/mL; MFC50 and MFC90 (MFCs at which 50% and 90% of organisms were killed) were 8 and > 64 microg/mL, respectively. For all fungal isolates, natamycin MIC distribution ranged from 256 to > 1,000 microg/mL; MIC50 and MIC90 were 512 and > 1,000 microg/mL, respectively. The natamycin MFC distribution for all isolates ranged from 512 to > 1,000 microg/mL; MFC(50) and MFC(90) were each > 1,000 microg/mL. CONCLUSIONS AND CLINICAL RELEVANCE: These in vitro data suggest that SSD is fungicidal against the fungal isolates that were obtained from eyes of horses with keratomycosis and that natamycin is fungicidal against some of the isolates at the drug concentrations evaluated. Silver sulfadiazine may be a therapeutic option for equine keratomycosis.  相似文献   

20.
The antibacterial activity, selection of Escherichia coli (E. coli) mutants and mechanisms of fluoroquinolone resistance were investigated by integrating the minimum inhibitory concentration (MIC), mutant prevention concentration (MPC) and in vitro dynamic model approaches. Difloxacin and orbifloxacin, for which the above information has been scarce, were used. A range of area under curve over a 24h interval (AUC(24h))/MIC ratios and selected E. coli strains were investigated using the dynamic models. Continuous incubation for three days in the presence of difloxacin or orbifloxacin resulted in losses in E. coli susceptibility. An AUC(24h)/MIC (AUC(24h)/MPC)-dependent fluoroquinolone activity and selection of E. coli mutants was confirmed. Maximum losses in susceptibility occurred at AUC(24h)/MIC ratios of 54 (orbifloxacin) and 57.3 (difloxacin). AUC(24h)/MIC ratios of 169.8 (orbifloxacin) and 199.5 (difloxacin) were estimated to be protective against the selection of E. coli mutants, and the corresponding ratios based on AUC(24h)/MPC predictions were 34 (orbifloxacin) and 36.3 (difloxacin). When integrating our in vitro data with pharmacokinetic data in dogs, the conventional clinical doses of both drugs were found to be inadequate to attain the above protective values for 90% of the mutant subpopulation (AUC(24h)/MPC(90)). Both target mutations, esp. at codon 83 (Ser to Leu) of gyrA, and overexpression of efflux pumps contributed to resistance development, with mutants also showing decreased susceptibility to enrofloxacin and marbofloxacin. Additional studies would determine the role of mutations found outside the QRDR, at codon 24 of gyrA, and at codon 116 of parC, and establish the significance of these observations in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号