首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
天山北坡季节性积雪消融对浅层土壤水热变化影响研究   总被引:2,自引:0,他引:2  
融雪期,浅层土壤水热变化影响融雪水下渗及积雪产流过程,是融雪产流模拟及汇流计算的重要参数.本研究以天山北坡军塘湖流域为研究区,从积雪消融角度来分析浅层土壤水热变化情况,通过分析积雪消融期土壤剖面水分、温度的变化规律确定二者之间的定量关系.结果表明,气温对土壤温度的影响随着土壤深度增加减弱,积雪越厚,土壤温度越高;土壤水分受地温影响较大,雪水入渗能在一定程度上补给土壤水,但消融后期剧烈的蒸发引起土壤表层10cm内水分损失较多.阴阳坡土壤水分均随时间呈中等变异(除阳坡60cm),在30-60cm土壤层土壤水热间表现出显著的相关性.此结果为该区域农业生产、春季融雪洪水预警进一步研究提供参考.  相似文献   

2.
沙尘对天山积雪消融的影响   总被引:1,自引:0,他引:1  
积雪是西北干旱区重要的水资源,春季融雪时期,沙尘天气频繁,沙尘沉降会减少积雪表面反射率,增加雪层的太阳辐射吸收,加速积雪的融化,影响干旱区年内的水资源分布。通过融雪期在天山积雪雪崩研究站开展模拟沙尘沉降试验,观测积雪物理特性参数变化,分析沙尘对积雪消融的影响。本研究设置2 g·m^-2、4 g·m^-2、8 g·m^-2、自然雪4个处理,3组重复,从3月4日开始,3月11日结束。结果表明:沙尘沉降对积雪消融具有明显影响。在2 g·m^-2、4 g·m^-2、8 g·m^-2沙尘沉降量下,随着融雪的进行,沙尘沉降量逐渐增大,致使积雪表面粒径增大,积雪反射率降低,雪表层温度差变大,2 g·m^-2、4 g·m^-2、8 g·m^-2导致积雪消融速率比自然状态下的快22.36%、46.05%和76.90%。通过野外试验获得了主要积雪物理参数对沙尘沉降的响应,量化了沙尘沉降对积雪消融的影响,其结果可为西北干旱区水资源管理提供参考。  相似文献   

3.
滦河流域产流特性变化趋势分析   总被引:1,自引:0,他引:1  
随着滦河流域下垫面的变化,流域产流特性也相应的发生了变化。文中分析了滦河流域存在的产流模式,通过分析径流系数变化和降雨径流相关关系,发现产流模式有从超渗产流向蓄满产流过渡或先超渗后蓄满的趋势。并选取了20世纪80年代后的几场典型较大洪水过程,分别采用所建立蓄满产流模型(新安江模型)和超渗产流模型(陕北模型)对这几场洪水进行模拟分析,通过两者模拟径流量的差值估算了产流特性变化对径流量变化的影响程度。结果表明:随着滦河流域植被覆盖率的不断提高,产流特性的这种变化对产流量有一定的减少作用,会使滦河流域径流量减少26.9%左右。  相似文献   

4.
积雪覆盖下的季节性冻土对融雪水出流的影响   总被引:2,自引:0,他引:2  
以天山北坡军塘湖流域为研究区,利用2012-2013年融雪期实测逐日积雪、冻土数据,分析季节性冻土的水热状体对融雪水出流的影响.结果表明:①2012年融雪期30 cm以上季节性冻土的冻融变化经历了稳定冻结期、冻融交替变化期、无冻期3个阶段,其中10 cm季节性冻土稳定冻结期、无冻期分别占融雪期50%和40%.②以2012年、2013年融雪期起始积雪厚度分别为18 cm和30 cm为例,有季节性冻土存在条件下融雪水出流时间比没有季节性冻土存在提前2d.③不同深度土壤日积温与融雪水出流量均呈负相关,且土壤剖面10 cm以上负相关性最大(R2=0.825).④季节性冻土延缓了土壤液态水含量的增加速度,使融雪水最大出流提前到来.  相似文献   

5.
积雪含水率是干旱区季节性积雪出流的重要条件。描述了融雪期干旱区季节性积雪含水率的变化,利用数理统计方法分析了影响因素,并采用多元统计模型进行模拟。结果表明:1)融雪期干旱区季节性积雪含水率变化范围在0-8%之间。积雪含水率融雪前期变化较小,在0-1%之间,融雪后期变化幅度增加,在1-8%之间;2)融雪前期、后期积雪含水率大致从下层至上层依次减少,中期反之;3)气温是积雪含水率变化的主要影响因素,其具有滞后性。  相似文献   

6.
古尔班通古特沙漠的积雪及雪融水储存特征   总被引:3,自引:1,他引:2  
通过在中国科学院阜康荒漠生态站北沙窝试验区布置野外定位试验,对古尔班通古特沙漠地区积雪物理特征变化、沙垄坡地以及稀疏梭梭林地的积雪分布、融雪水分在土壤中的转化储存效率及其成因进行研究.结果表明:古尔班通古特沙漠地区的积雪属低密度的"干寒型"雪,平均雪密度在0.14~0.27g/cm<'3>之间,积雪分布存在较大的空间分异特性;融雪水文过程以垂直入渗储存为主,没有明显的洼地积水和地表汇流过程;雪融水转化为土壤水分的比例高达78.8%~92%,为春季荒漠植被的生长提供了很好的水分条件.除了起伏的沙垄地形、冬季的低气温、多雾天气外,有限的积雪量、积雪融化前极低的土壤含水量以及高渗透率的沙地是古尔班通古特沙漠雪融水以垂直人渗为主并具有高的转化储存效率的主要原因.  相似文献   

7.
区域尺度积雪信息的时空监测,对确定雪灾的影响范围及灾情等级划分具有重要意义。利用2002-2012年10个积雪季节的Terra Aqua/MODIS积雪产品(MOD10A2),按月最大面积合成,分析了内蒙古积雪覆盖面积的时空变化特征及气候响应。结果表明:时间上,近10年内蒙古积雪面积年内变化整体上呈现双峰和单峰的波动特点,最大积雪面积发生在12月和1月份,最小积雪面积发生在10月份。近10年内蒙古积雪面积年际变化呈现波动的特点,整体上积雪面积有减少的趋势。空间上大兴安岭西麓、呼伦贝尔高原以及乌珠穆沁盆地是积雪长时间覆盖区,锡林郭勒草原和乌兰察布草原的积雪面积变化主导着内蒙古的总体积雪面积波动,1月份之前是积雪面积增加的阶段,之后是积雪消融阶段。内蒙古的积雪面积变化与当地的气候条件变化趋势相关,气温的明显上升引起暖冬化,可能导致积雪面积的减少,说明内蒙古积雪面积的变化主要受气温的影响。  相似文献   

8.
气候变化对陇东冬小麦生态影响特征研究   总被引:1,自引:0,他引:1  
对黄土高原比较有典型代表性的残塬"董志塬"的变暖及冬小麦生态响应特征进行研究,发现"董志塬"近35 a来年平均增温线性趋势达0.0505℃,增温表现出平均气温、最高气温、最低气温同时上升,且冬春季增温速度最快,秋季次之,夏季增温最平缓;增温对冬小麦的生态影响主要体现在全生育期(线性趋势0.91 d/a)、越冬期(线性趋势0.85 d/a)显著缩短,春季发育期普遍提前(返青期以0.57 d/a的线性趋势提前,拔节期以0.42 d/a的线性趋势提前,成熟期以0.48 d/a的线性趋势提前),而春季各发育期间间隔日数并未出现缩短的趋势.认为气候变暖对当地农业生产有利有弊,气候变暖,尤其冬春气温显著升高将导致越冬期土壤水分损耗增大,春旱加剧,不利于春季农业生产;另一方面冬小麦全生育期缩短,成熟期提前,能有效提高复种指数和土地利用率.  相似文献   

9.
东北林区积雪空间分布与变化特征   总被引:1,自引:0,他引:1  
使用东北林区156个气象观测站的1961 ~ 2008年逐日积雪深度资料,对该区积雪平均空间分布特征及时空变化规律进行详细分析.结果表明:东北林区自北向南、自东北向西南主要呈现出积雪初日逐渐推迟,积雪终日逐渐提前,积雪期、积雪日数逐渐增长,年最大积雪深度逐渐加深的空间分布特征;1961-2008年积雪初日以1.8天/10a的速度显著推迟,积雪终日明显提前,平均每10a提前1.9天,积雪期平均每10a缩短3.5天,积雪日数无明显趋势性变化,年最大积雪深度随时间变化呈不明显增加趋势;全区88%站点的积雪初日呈推迟趋势,积雪终日提前站点占总站点的95%,97%的区域积雪期呈缩短趋势,积雪日数缩短的地区占总区域的58%,71%地区的年最大积雪深度增加;积雪初日、积雪终日、积雪期、年最大积雪深度均在20世纪90年代发生突变,积雪日数未出现显著突变点,但均表现出2a、4a及6-8a的周期特征.  相似文献   

10.
准噶尔盆地南缘梭梭群落春季融雪期的土壤呼吸动态   总被引:3,自引:0,他引:3  
积雪对温带中高纬度地区早春土壤温度和水分具有调控作用,并对土壤呼吸具有重要影响。利用箱式法观测2012年早春积雪融化阶段古尔班通古特沙漠南缘典型温带荒漠梭梭群落内土壤呼吸的动态变化。结果表明:春季融雪期梭梭群落土壤呼吸变异极大,变化范围为0.2~1.2 μmol•m-2•s-1,日平均土壤呼吸速率变化呈先增后减趋势,但土壤最大呼吸速率随土壤含水量的减少而减少。融雪期灌丛内外土壤呼吸变化规律相同,梭梭灌丛内土壤呼吸速率显著高于灌丛外。融雪期土壤含水量与最大土壤呼吸具有显著的相关关系,但在日尺度上土壤温度与土壤呼吸具有显著的相关关系。研究表明:积雪融化对土壤呼吸具有显著的激发效应,早春积雪变化对土壤呼吸速率将产生重要影响。  相似文献   

11.
天山北坡融雪期季节性冻土融化过程分析   总被引:2,自引:0,他引:2  
利用军塘湖河流域典型试验场2013年11月至2014年3月整个冻结融化期野外观测的季节性冻土温度和水分数据,对融雪期该地区季节性冻土的融化过程和特点进行了分析,研究了融雪期土壤在融化过程中各土壤层的时间与垂直温度和水分的变化,并探讨了融雪期季节性冻土的水文效应。结果表明:1季节性冻土的融化过程可以分为融雪前期、融雪中期和融雪后期3个阶段;2融雪期季节性冻土的温度呈阶段性变化,随着土壤深度的增加,大气温度对土壤温度的影响越小,且存在明显的滞后性;3土壤的水分含量在融雪中期才有所提升,季节性冻土从上下2个方向融解;4融雪中后期的积雪液态含水率对土壤水热状况的影响显著,整个融雪期积雪密度对土壤水热状况影响较小;5季节性冻土的冻融过程对春季融雪径流有着十分重要的影响。  相似文献   

12.
利用西天山阿热都拜小流域积雪、融雪和气象观测场2017-2018年每30 min的同步降雪、融雪和气温观测数据,对全年积雪期较短时间尺度上的融雪动态过程及其与气温的关系进行了对比分析。结果表明:山区降雪表现为"先升后降"的总体特征。稳定积雪期集中在2017年12月27日至2018年3月8日,最大降雪速率高达9. 6mm·h^-1(雪水当量值,转化成新鲜雪深值为96. 5 mm·h^-1)。山区融雪过程的变化规律与降雪变化正好相反,呈现出"先降后升"的变化特征。融雪变化分为3个阶段,第一阶段:随着气温的下降,融雪速率下降,融雪速率由3. 24 mm·h^-1逐渐下降至0 mm·h^-1;第二阶段:当气温低于融雪的临界温度(-13. 5-12. 0℃)时,不产生融雪;第三阶段:随着气温的回升,融雪速率从0 mm·h^-1逐渐上升至3. 87 mm·h^-1。在全年融雪与气温的大数据关系中,融雪量与气温的相关性系数不是很显著,其相关性系数为0. 708;在无降水干扰下,7 d平均同步融雪量与气温的相关性系数处于显著水平,Pearson相关性系数为0. 907,R^2=0. 823;当进一步考虑滞后效应后,融雪量与气温的相关性系数提升至极显著的线性关系,相关性系数高达0. 943,R^2=0. 889,均通过了0. 01显著性水平的双尾检验。在西天山阿热都拜小流域融雪量的变化过程与气温的变化过程有着密切的相关性。这种融雪量对气温变化的响应关系及其分析方法,对于提高应对未来气候变化的能力和预防洪灾及水资源管理具有一定的参考价值。  相似文献   

13.
Manas River,the largest inland river to the north of the Tianshan Mountains,provides important water resources for human production and living.The seasonal snow cover and snowmelt play essential roles in the regulation of spring runoff in the Manas River Basin(MRB).Snow cover is one of the most significant input parameters for obtaining accurate simulations and predictions of spring runoff.Therefore,it is especially important to extract snow-covered area correctly in the MRB.In this study,we qualitatively and quantitatively analyzed the uncertainties of snow cover extraction caused by the terrain factors and land cover types using TM and DEM data,along with the Per(the ratio of the difference between snow-covered area extracted by the Normalized Difference Snow Index(NDSI) method and visual interpretation method to the actual snow-covered area) and roughness.The results indicated that the difference of snow-covered area extracted by the two methods was primarily reflected in the snow boundary and shadowy areas.The value of Per varied significantly in different elevation zones.That is,the value generally presented a normal distribution with the increase of elevation.The peak value of Per occurred in the elevation zone of 3,700–4,200 m.Aspects caused the uncertainties of snow cover extraction with the order of sunny slopesemi-shady and semi-sunny slopeshady slope,due to the differences in solar radiation received by each aspect.Regarding the influences of various land cover types on snow cover extraction in the study area,bare rock was more influential on snow cover extraction than grassland.Moreover,shrub had the weakest impact on snow cover extraction.  相似文献   

14.
ZHANG Yin 《干旱区科学》2022,14(9):962-977
Estimating the snow cover change in alpine mountainous areas (in which meteorological stations are typically lacking) is crucial for managing local water resources and constitutes the first step in evaluating the contribution of snowmelt to runoff and the water cycle. In this paper, taking the Jingou River Basin on the northern slope of the Tianshan Mountains, China as an example, we combined a new moderate-resolution imaging spectroradiometer (MODIS) snow cover extent product over China spanning from 2000 to 2020 with digital elevation model (DEM) data to study the change in snow cover and the hydrological response of runoff to snow cover change in the Jingou River Basin under the background of climate change through trend analysis, sensitivity analysis and other methods. The results indicate that from 2000 to 2020, the annual average temperature and annual precipitation in the study area increased and snow cover fraction (SCF) showed obvious signs of periodicity. Furthermore, there were significant regional differences in the spatial distribution of snow cover days (SCDs), which were numerous in the south of the basin and sparse in the central of the basin. Factors affecting the change in snow cover mainly included temperature, precipitation, elevation, slope and aspect. Compared to precipitation, temperature had a greater impact on SCF. The annual variation in SCF was limited above the elevation of 4200 m, but it fluctuated greatly below the elevation of 4200 m. These results can be used to establish prediction models of snowmelt and runoff for alpine mountainous areas with limited hydrological data, which can provide a scientific basis for the management and protection of water resources in alpine mountainous areas.  相似文献   

15.
黄土旱塬垄作覆膜栽培土壤水分及温度变化研究   总被引:2,自引:0,他引:2  
黄土高原雨养农业区水分缺乏是制约农业生产的关键因子。本研究在黄土高原长武塬进行小区试验,通过垄作覆膜(RP)与平作不覆膜(FP)两种处理的对比研究,分析垄作覆膜下玉米生长时期土壤水分与温度的变化,以及降雨事件对于土壤水分的动态影响。结果表明,垄作覆膜在30~60 cm土层土壤水分显著高于平作不覆膜约8%,而平作不覆膜在深层(100~160 cm)土壤水分明显高于垄作覆膜,玉米生长季土体储水量变化垄作覆膜垄与沟在30~60 cm处均高出平作不覆膜20 mm,而在100~160 cm处垄作覆膜比平作不覆膜低25 mm。垄沟覆膜-垄(RPR)土壤表层10 cm处温度较垄沟覆膜-沟(RPF)与平作不覆膜分别高2.01℃和1.91℃。中雨情况下,垄作覆膜降雨土壤入渗深度可达30 cm,平作不覆膜下可以到10 cm,但强降雨事件中垄作覆膜土壤深层入渗受到抑制。降雨强度越大,土壤前期含水量越高,土壤水分峰值产生的时间越短;垄作覆膜由于土壤水分条件的改善使得土壤水分峰值出现时间较平作不覆膜早。垄作覆膜由于垄沟微地形改变使沟内具有集水效应,同时沟内集水对垄上水分存在侧向补充,但时间上存在滞后效应,滞后时间与降雨量和降雨前土壤含水量相关。垄作覆膜能够保水保墒,增加降雨入渗,抑制强降雨事件的深层入渗,抑制"自覆盖"现象的发生,从而对玉米生长具有重要的意义。  相似文献   

16.
利用2000-2017年LandsatTM数据,基于SNOMAP算法提取秦岭主峰太白山积雪面积,同时结合研究区地形数据及10个气象站点的气象观测数据,分析太白山积雪变化特征及其与地形、气候因素的关系.结果表明:(1)2000-2017年冷季太白山积雪面积在波动中减少.积雪面积消减率为24.15%;(2)影响太白山积雪变...  相似文献   

17.
Ecosystems in high-altitude regions are more sensitive and respond more rapidly than other ecosystems to global climate warming.The Qinghai-Tibet Plateau(QTP)of China is an ecologically fragile zone that is sensitive to global climate warming.It is of great importance to study the changes in aboveground biomass and species diversity of alpine meadows on the QTP under predicted future climate warming.In this study,we selected an alpine meadow on the QTP as the study object and used infrared radiators as the warming device for a simulation experiment over eight years(2011-2018).We then analyzed the dynamic changes in aboveground biomass and species diversity of the alpine meadow at different time scales,including an early stage of warming(2011-2013)and a late stage of warming(2016-2018),in order to explore the response of alpine meadows to short-term(three years)and long-term warming(eight years).The results showed that the short-term warming increased air temperature by 0.31℃and decreased relative humidity by 2.54%,resulting in the air being warmer and drier.The long-term warming increased air temperature and relative humidity by 0.19℃and 1.47%,respectively,and the air tended to be warmer and wetter.The short-term warming increased soil temperature by 2.44℃and decreased soil moisture by 12.47%,whereas the long-term warming increased soil temperature by 1.76℃and decreased soil moisture by 9.90%.This caused the shallow soil layer to become warmer and drier under both short-term and long-term warming.Furthermore,the degree of soil drought was alleviated with increased warming duration.Under the long-term warming,the importance value and aboveground biomass of plants in different families changed.The importance values of grasses and sedges decreased by 47.56%and 3.67%,respectively,while the importance value of weeds increased by 1.37%.Aboveground biomass of grasses decreased by 36.55%,while those of sedges and weeds increased by 8.09%and 15.24%,respectively.The increase in temperature had a non-significant effect on species diversity.The species diversity indices increased at the early stage of warming and decreased at the late stage of warming,but none of them reached significant levels(P>0.05).Species diversity had no significant correlation with soil temperature and soil moisture under both short-term and long-term warming.Soil temperature and aboveground biomass were positively correlated in the control plots(P=0.014),but negatively correlated under the long-term warming(P=0.013).Therefore,eight years of warming aggravated drought in the shallow soil layer,which is beneficial for the growth of weeds but not for the growth of grasses.Warming changed the structure of alpine meadow communities and had a certain impact on the community species diversity.Our studies have great significance for the protection and effective utilization of alpine vegetation,as well as for the prevention of grassland degradation or desertification in high-altitude regions.  相似文献   

18.
ManHou XU 《干旱区科学》2015,7(2):189-204
Climate warming and livestock grazing are known to have great influences on alpine ecosystems like those of the Qinghai-Tibetan Plateau(QTP) in China. However, it is lacking of studies on the effects of warming and grazing on plant and soil properties in these alpine ecosystems. In this study, we reported the related research from manipulative experiment in 2010–2012 in the QTP. The aim of this study was to investigate the individual and combined effects of warming and clipping on plant and soil properties in the alpine meadow ecosystem. Infrared radiators were used to simulate climate warming starting in July 2010, while clipping was performed once in October 2011 to simulate the local livestock grazing. The experiment was designed as a randomized block consisting of five replications and four treatments: control(CK), warming(W), clipping(C) and warming+clipping combination(WC). The plant and soil properties were investigated in the growing season of the alpine meadow in 2012. The results showed that W and WC treatments significantly decreased relative humidity at 20-cm height above ground as well as significantly increases air temperature at the same height, surface temperature, and soil temperature at the depth of 0–30 cm. However, the C treatment did not significantly decrease soil moisture and soil temperature at the depth of 0–60 cm. Relative to CK, vegetation height and species number increased significantly in W and WC treatment, respectively, while vegetation aboveground biomass decreased significantly in C treatment in the early growing season. However, vegetation cover, species diversity, belowground biomass and soil properties at the depth of 0–30 cm did not differ significantly in W, C and WC treatments. Soil moisture increased at the depth of 40–100 cm in W and WC treatments, while belowground biomass, soil activated carbon, organic carbon and total nitrogen increased in the 30–50 cm soil layer in W, C and WC treatments. Although the initial responses of plant and soil properties to experimental warming and clipping were slow and weak, the drought induced by the downward shift of soil moisture in the upper soil layers may induce plant belowground biomass to transfer to the deeper soil layers. This movement would modify the distributions of soil activated carbon, organic carbon and total nitrogen. However, long-term data collection is needed to further explain this interesting phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号