首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
分别研究了不同硝化细菌浓度(0、20、60、120 mL/100 L)和不同微生物滤料(珊瑚石、锅炉煤渣、牡蛎壳)对养殖水中氨氮处理效果的影响。结果显示,添加硝化细菌后,水体中的氨氮浓度呈现下降趋势,在8~12 h出现极低值后,开始上升,但上升速度较慢;随着水体中硝化细菌添加量的增加,水体中的氨氮浓度下降速度加快;水体中亚硝酸氮浓度呈现先上升后下降的趋势,并在4~6 h出现极高值,然后迅速下降,且硝化细菌添加量越高,下降速度越快。硝化细菌对以珊瑚石和锅炉煤渣为滤料的养殖水体中氨氮和亚硝酸氮的处理效果显著优于牡蛎壳,但珊瑚石和锅炉煤渣之间无显著差异。综合试验结果,应急水质处理时,硝化细菌菌剂的添加量以一次60 mL/100 L(或以活菌计数为1.2×109个/100 L)、间隔24 h添加1次为宜;经过脱硫筛选之后的锅炉煤渣可以作为循环水养殖用滤料。  相似文献   

2.
采用上流式和下流式曝气生物滤池处理凡纳滨对虾(Litopenaeus vannamei)养殖污水,连续进行30 d,分析出水水质,并观察系统运行情况和装置污染状况。研究了养殖污水中化学需氧量、氨氮、硝酸盐氮、亚硝酸盐氮、无机氮及活性磷酸盐6项指标的去除效果。实验结果表明:从养殖污水主要污染物指标的去除效果和稳定性上看,上流式优于下流式曝气生物滤池。在系统进水化学需氧量质量浓度为7.62~8.20 mg/L、氨氮质量浓度为0.62~0.65 mg/L、硝酸盐氮质量浓度为0.54~0.59 mg/L、亚硝酸盐氮质量浓度为0.23~0.27 mg/L、无机氮质量浓度为1.40~1.47 mg/L、活性磷酸盐质量浓度为0.24~0.29 mg/L,水温为25℃~30℃时,上流式曝气生物滤池对养殖污水中6项指标的去除率分别为:45.2%、88.9%、58.5%、78.8%、75.3%和25.1%。可见,对氨氮的去除效果最佳,亚硝酸盐氮和无机氮次之,化学需氧量和硝酸盐氮的去除效果较差,活性磷酸盐去除率最低。  相似文献   

3.
不同生物絮团对脊尾白虾高密度养殖水体氨氮的影响   总被引:1,自引:0,他引:1  
为筛选适宜虾类工厂化养殖使用的生物絮团种类,以脊尾白虾(Exopalaemon carinicauda)为实验材料,探讨了3种不同产地(河南、福建、河北)来源的EM菌产生的生物絮团对脊尾白虾高密度养殖水体氨氮(ammonia nitrogen, AN)浓度的影响。每种生物絮团下共设置600尾/m~3、800尾/m~3、1 000尾/m~3共3个养殖密度,实验周期为8 d。结果显示,应用河南产地的EM菌,在600尾/m~3、800尾/m~3、1 000尾/m~3养殖密度下,水体最终氨氮浓度为1.28 mg/L、1.52 mg/L、1.90 mg/L,日均节水率为50.1%;应用福建产地的EM菌,水体最终氨氮浓度为1.03 mg/L、1.48 mg/L、2.15 mg/L,日均节水率为52.2%;应用河北产地的EM菌,水体最终氨氮浓度为1.58 mg/L、1.78 mg/L、2.74 mg/L,日均节水率为24.4%;而对照组水体最终氨氮浓度分别为1.62 mg/L、2.12 mg/L、3.05 mg/L,以上3种生物絮团在脊尾白虾高密度海水养殖中均有降低水体氨氮的作用,且效果存在显著差异,揭示水产养殖过程中应对适宜的EM菌试剂进行筛选后使用。实验筛选获得了适合脊尾白虾高密度养殖的生物絮团,为进一步开展其工厂化养殖及节水减排提供了参考。  相似文献   

4.
自野生和养殖鱼体内分离出4株乳酸菌,分别为魏斯氏乳酸菌、植物乳杆菌、粪肠球菌和乳酸乳球菌。在水温25℃、盐度35及pH 8.3下,研究了用其单一菌株及混合菌株的菌体培养液和离心菌体去除实验室海水鱼类养殖系统水体中氨氮的效果,以不添加乳酸菌的处理为对照组。结果表明,菌体培养液和离心菌体对水体氨氮的降解效果相同。添加乳酸菌的处理组氨氮水平在24h后均比对照组显著下降,之后维持相对平稳水平。其中,魏斯氏乳酸菌处理的菌体培养和离心菌体组1~5d氨氮分别为0.13~0.10mg/L和0.15~0.10mg/L,24h降解率分别为41.48%和37.20%;植物乳杆菌处理组1~5d氨氮分别为0.15~0.08mg/L和0.16~0.08mg/L,24h降解率达35.10%和32.50%;粪肠球菌在1~5d氨氮分别为0.16~0.08mg/L和0.15~0.07mg/L,24h降解率分别为23.90%和29.27%;乳酸乳球菌在1~5d氨氮分别为0.16~0.08mg/L和0.18~0.08mg/L,24h降解率分别为29.70%和23.90%。混合菌株对氨氮降解效率总体低于单一菌株。渔源乳酸菌对养殖水体氨氮有不同程度降解作用,但菌株配伍需要根据菌株自身特性及营养源互补性进行科学配比。  相似文献   

5.
分析了封闭循环水产养殖系统中生物滤池所采用的软性滤料、弹性滤料、半软性滤料3种生物滤料的特点,对填装这3种滤料的生物滤池处理养殖污水中氨氮的能力进行了比较和分析。实验结果表明,(1)在同样的水力停留时间下,加入同体积滤料的3个生物滤池对氨氮的去除能力不同,3个生物滤池的氨氮去除率均随着进水氨氮质量浓度的增加而降低;(2)在不同的水力停留时间条件下,每个生物滤池对氨氮的去除能力不同,水力停留时间为80 min时的氨氮去除率最高。在该系统中综合考虑水力停留时间及滤料的不同,弹性滤料滤池在水力停留时间为80 min时去除氨氮的效果最好,平均去除率达到53.2%。  相似文献   

6.
纯氧充气对大菱鲆生长及水质指标的影响   总被引:2,自引:0,他引:2  
主要研究了纯氧增氧技术对大菱鲆的生长及养殖水体中几项重要水质因子的影响。本实验中,实验池中的溶氧最低能维持在8.96±0.16mg/L,最高时可达到12.2±0.71mg/L。经过282d的培养,大菱鲆体重由30.43±0.42g达到1103.73±19.00g,日增重率平均为1.24±0.14%,整个实验期间大菱鲆均处于快速生长状态。至实验结束时,养殖密度最终达到33.99±0.59kg/m3。养殖水体中,pH变化范围在7.62~8.03之间,平均pH为7.76±0.05。COD变化范围在0.75~1.85mg/L,平均COD为1.04±0.16mg/L。亚硝酸盐浓度1.27~7.23μg/L之间,平均浓度在3.23±0.21μg/L。氨氮浓度一般维持在0.07~0.28mg/L,平均浓度为0.14±0.02mg/L。硝酸盐浓度在0.39~0.69mg/L之间,平均浓度为0.51±0.02mg/L。COD、pH、亚硝酸盐浓度很低,均在渔业水质标准所规定的范围以内。  相似文献   

7.
依照水生生物毒性方法,在溶解氧5.0~6.0mg/L、水温27.0~28.0℃、p H8.0~8.2条件下,用分析纯NH_4Cl和NaNO_2配制成总氨氮(非离子氨)浓度为0(对照组)、37(2.26)mg/L、42(2.56)mg/L、49(2.99)mg/L、56(3.42)mg/L、65(3.96)mg/L、75(4.57)mg/L、87(5.31)mg/L和100(6.10)mg/L,亚硝酸盐浓度为0mg/L(对照组)、0.49mg/L、0.65mg/L、0.75mg/L、0.87mg/L、1.15mg/L、1.55mg/L和2.10 mg/L,研究氨氮和亚硝酸盐浓度对平均体质量(1.39±0.60)g的大刺鳅Mastacembelue armatus幼鱼的急性毒性。结果表明:大刺鳅幼鱼总氨氮的24h、48h和96h半致死浓度分别为78.35mg/L、77.15mg/L和76.05mg/L,非离子氨半致死浓度分别为4.78 mg/L、4.71mg/L和4.64mg/L,亚硝酸盐半致死浓度分别为1.177mg/L、0.921mg/L和0.798mg/L,总氨氮、非离子氨和亚硝酸盐的安全浓度分别为7.61mg/L、0.46mg/L和0.0798mg/L。亚硝酸盐对大刺鳅幼鱼的急性毒性强于氨氮,对亚硝酸盐的毒性也比其他鱼类更敏感,在生产中应特别注意监控水体中亚硝酸盐浓度的变化。  相似文献   

8.
为减少高密度养殖下菲牛蛭(Hirudinaria manillensis)疾病发生和养殖废水排放,研究比较了3种商品化有益微生物制剂(硝化细菌T1、光合细菌T2和EM复合菌T3)对养殖水体的净化效果。结果表明,3种有益微生物制剂在15d内均能使养殖水体的pH稳定在6.8以上,溶氧量(DO)分别比对照组提高30.12%、26.95%和46.12%;化学耗氧量(COD)分别比对照组低1.02mg/L、1.13mg/L和1.53mg/L;3个处理组对氨氮(NH4+-N)的平均降解率分别为48.48%、45.23%和63.10%,亚硝态氮(NO2-N)平均值分别比对照组低0.16mg/L、0.19mg/L和0.27mg/L;菲牛蛭存活率均高达90%以上,明显高于对照组的53%。3种有益微生物制剂均有显著增加溶氧量、降低氨氮、亚硝态氮和化学耗氧量的效应,对菲牛蛭养殖水体均具有很好的净化作用,其中以EM复合菌效果最佳。  相似文献   

9.
2018年7月12日采样分析江苏省泗阳县9处青虾( Macrobrachium nipponense )养殖中期水体的理化环境、浮游植物种类组成和密度,并比较不同养殖模式对养殖环境的影响。结果显示:青虾养殖水体中,溶氧(DO)>8.44 mg/L、pH 7.91~9.26、总氮(TN)1.030~1.571 mg/L、总磷(TP)0.174~0.421 mg/L、高锰酸钾指数(COD Mn )4.39~8.16mg/L,说明青虾养殖水体具有DO和pH较高,N、P及有机质较低的特点。养殖水体内共观察到浮游植物64属/种,以蓝藻和绿藻为主,浮游植物多样性指数较高,群落结构较稳定;浮游植物密度为0.06×10^8~3.06×10^8个/L。RDA分析显示,水温、亚硝酸盐氮(NO2^--N)和COD Mn 是影响青虾养殖水体中优势浮游植物密度的主要环境因子。不同混养种类对青虾养殖水体理化指标和浮游植物具有一定的影响,但管理模式对环境因子的影响更显著。鉴于所调查的青虾养殖水体内pH和Ca 2+质量浓度低于青虾生长最适值及TP和COD Mn质量浓度升高会增加蓝藻水华暴发的风险,建议适当施加生石灰来提高养殖水体中的pH和Ca 2+质量浓度,并通过建立构建生态沟渠、生态塘等生态工程化设施控制养殖水体中TP和COD Mn的增加。  相似文献   

10.
为研究氨氮对鳜(Siniperca chuatsi)幼鱼的急性毒性效应,以体质量(7.92±0.80) g、体长(8.3±1.1) cm的鳜幼鱼为试验材料,采用常规急性毒性试验法,确定氨氮对鳜幼鱼的半致死浓度和安全浓度。结果表明,在水温(24.7±0.5)℃,pH为7.4±0.1,溶解氧(DO)为(5.9±0.3) mg/L的条件下,氨氮对鳜幼鱼的24、48、72、96h半致死浓度分别为40.45、19.24、13.35、9.23mg/L,安全浓度为0.923mg/L。非离子氨对鳜幼鱼的24、48、72、96h半致死浓度分别为0.550、0.262、0.182、0.126mg/L,安全浓度为0.0126mg/L。非离子氨氮对鳜幼鱼的毒性与其浓度大小和作用时间呈正相关,鳜幼鱼对氨氮耐受性较低。  相似文献   

11.
以异养硝化菌——嗜碱假单胞菌AD-28为试验对象,通过单因子试验测定好氧条件下碳源、碳氮比、温度、pH、溶解氧、初始氮质量浓度及盐度等不同因素对嗜碱假单胞菌AD-28生长及氨氮去除的影响。试验结果表明,适用于嗜碱假单胞菌AD-28生长和氨氮去除的最佳条件为:碳源柠檬酸钠、丁二酸钠、乙酸钠,碳氮比20,温度25~35℃,pH 6.0,转速120r/min;在最佳条件下,嗜碱假单胞菌AD-28对初始质量浓度为20~160mg/L的氨氮去除率在24h内达95%以上。嗜碱假单胞菌AD-28能直接以氨氮为底物进行高效的硝化作用,并能耐受较低的温度(15℃)和较高的盐度(NaCl质量浓度为50g/L),在调节养殖水体水质方面具有广阔的应用前景。  相似文献   

12.
将带有试验硝化细菌——食油假单胞菌X14-1-1的等面积陶粒、聚氯乙烯、纤维、火山岩、无纺布和流化床6种材料的附着基分别放入1 L的充气瓶内,在36℃、130 r/m in的摇床上混合培养48 h后,洗脱计数测定菌种附着数量.模拟氨氮去除率试验中氨氮初始质量浓度为0(不加硫酸铵)、10、20、30、40、50、60 m...  相似文献   

13.
不同溶氧水平下氨氮和亚硝酸盐对黄颡鱼的急性毒性研究   总被引:21,自引:2,他引:19  
在高溶氧(10.77±0.40)mg/L、中溶氧(6.89±0.33)mg/L和低溶氧(3.45±0.54)mg/L水平下,研究了氨氮和亚硝酸盐对黄颡鱼急性毒性效应。结果显示:高溶氧水平下,氨氮和亚硝酸盐对黄颡鱼的96 h-LC50值(95%可信区间)分别为148.1 mg/L(125.03~172.37 mg/L)、206.52 mg/L(164.25~246.23 mg/L);在中等溶氧水平下,氨氮和亚硝酸盐对黄颡鱼的96 h-LC50值(95%可信区间)分别为106.69 mg/L(89.92~123.70 mg/L)、145.77 mg/L(116.77~174.77 mg/L);而低溶氧水平下,氨氮和亚硝酸盐对黄颡鱼的96 h-LC50值(95%可信区间)分别为68.03 mg/L(58.32~77.89 mg/L)、81.33 mg/L(64.76~96.70 mg/L)。结果表明,在3种溶氧条件下,氨氮对黄颡鱼的毒性明显大于亚硝酸盐对黄颡鱼的毒性,因而氨氮对黄颡鱼的毒性成为其养殖过程中的重要影响因子。  相似文献   

14.
蛋白分离器对循环水养殖水质理化因子的调控作用   总被引:1,自引:0,他引:1  
通过测定5个关键水质理化因子,研究蛋白分离器对南美白对虾养殖水质的调控作用。结果表明:使用蛋白分离器后,水体的pH值维持在8.0~8.3,养殖水体中氨氮最高达到0.917mg/L,亚硝酸盐最高达到0.324mg/L,DO含量在3.775~6.300mg/L,COD含量峰值为14.27mg/L。  相似文献   

15.
为探讨枯草芽孢杆菌(Bacillus subtilis)在鱼类养殖池塘中的生态作用,采用直接往养殖水体中投放该制剂的方法,研究分析微生物数量及其与环境因子的相关关系。结果显示,枯草芽孢杆菌,实验池数量为0.35×10~3~1.45×10~3cfu/m L,对照池为0.04×10~3~0.08×10~3cfu/m L;浮游植物生物量,实验池为0.094~1.521 mg/L,对照池为0.103~0.763 mg/L,实验池中枯草芽孢杆菌数量和浮游植物生物量均高于对照组。试验鱼塘中枯草芽孢杆菌与硅藻数量呈显著正相关,相关系数0.844(P0.05);当溶氧≥6 mg/L时,枯草芽孢杆菌与亚硝酸盐氮含量呈显著负相关,相关系数-0.915(P0.05)。溶氧过低(2 mg/L)时,枯草芽孢杆菌对亚硝酸盐氮、氨氮没有明显的降解作用;溶氧≥6 mg/L时,对亚硝酸盐氮、氨氮的降解作用明显。研究表明,投放适量浓度的枯草芽孢杆菌能有效改善养殖水体状况,对水质起到进一步净化作用。  相似文献   

16.
鲟鱼作为具有重要生态和经济价值的水生生物,在气候变暖和人类活动的影响下其自然繁育面临巨大威胁。为了探究环境因子对鲟鱼早期胚胎发育的影响,本研究采用3因子3水平的Box-Behnken设计和响应曲面分析法,开展了温度(14-22 ℃)、氨氮(0.05-0.15 mg/L)和亚硝氮(0.05-0.25 mg/L)对西伯利亚鲟鱼(Acipenser baerii)早期胚胎发育的联合影响效应研究,旨在建立温度、氨氮和亚硝氮对西伯利亚鲟鱼胚胎孵化率的定量关系,并通过多元回归得出温度,氨氮和亚硝氮的最佳组合。结果表明,随着温度的升高,西伯利亚鲟鱼胚胎的孵化率呈现先升高后降低的趋势,随着氨氮和亚硝氮浓度的降低,西伯利亚鲟鱼胚胎孵化率逐渐升高。水温与氨氮的联合效应对鲟鱼胚胎孵化率的影响呈显著水平(p < 0.05),而水温与亚硝氮的联合效应以及氨氮与亚硝氮的联合效应对鲟鱼胚胎孵化率的影响不显著(p > 0.05)。建立的西伯利亚鲟鱼胚胎孵化率模型方程的相关系数为0.9832,校正相关系数为0.9616。通过模型优化得出西伯利亚鲟鱼的胚胎在温度18 ℃,氨氮浓度低于0.08 mg/L和亚硝氮浓度低于0.13 mg/L条件下西伯利亚鲟鱼胚胎的孵化率最高,达到90%以上。  相似文献   

17.
本试验旨在研究饲料中添加牛至油对慢性氨氮胁迫下幼鲤(Cyprinus carpio)鳃、肝、肾、肠道组织结构的影响。挑选450尾初始体重为(17.02 ± 0.40)g的幼鲤,随机分为6组:L(对照组,养于正常水体中并饲喂基础饲料);L0、L300、L600、L900、L1200(试验组,养于4.87 ± 0.21 mg/L氨氮水体中并分别饲喂添加0、300、600、900、1200 mg/kg牛至油的试验饲料),每组设3个重复,每个重复25尾鱼,养殖试验为期56 d。结果表明:添加量为900 mg/kg时,牛至油对鳃、肝、肾组织发挥的缓解作用最大;当牛至油添加量达到1200 mg/kg 时,其缓解氨氮胁迫的作用降低。日粮中牛至油添加量为300、600、900 mg/kg可以显著增加肠绒毛高度,促进幼鲤肠道的生长发育;当牛至油添加量达到1200 mg/kg时,牛至油对于肠绒毛的促生长作用有所减弱。结论:日粮中添加900mg/kg的牛至油有助于缓解由氨氮胁迫造成的幼鲤鳃、肝、肾、肠道组织的损伤,并且对于幼鲤肠绒毛的生长,肠道消化吸收能力具有促进作用。  相似文献   

18.
本实验以小[(6.05±0.44)g/头]、中[(14.68±1.76)g/头]、大[(25.64±3.27)g/头]的3种不同规格刺参(Apostichopus japonicus)为研究对象,研究了氨氮胁迫浓度为0、2、4、6、8、l0 mg/L时对刺参体腔液中溶菌酶(LSZ)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)活性的影响.结果显示,在氨氮浓度为8 mg/L时,第10天后,3种不同规格刺参均出现吐肠、化皮,直至死亡.氨氮浓度为10 mg/L时中规格刺参存活率最低,为86.7%.在氨氮浓度为2 mg/L和4 mg/L时,小、中、大规格刺参的3种非特异性免疫酶活性在第4天显著升高,与对照组(氨氮浓度低于0.05 mg/L)差异显著(P<0.05);第7、10、13天时,LSZ、CAT、SOD酶活性与第4天相比,差异不显著(P>0.05).在氨氮浓度为6、8、10 mg/L时,LSZ、CAT、SOD酶活性在第7天达到最高,与对照组差异性显著(P<0.05).氨氮胁迫对3种不同规格刺参的非特异性免疫酶活性的影响存在差异,在同一氨氮浓度胁迫下,敏感性依次为中规格>大规格>小规格.研究表明,氨氮胁迫会对刺参存活与免疫产生一定影响,在刺参养殖过程中,水环境中氨氮浓度最好控制在6 mg/L以内.  相似文献   

19.
The aim of this study was to assess the mean lethal concentration (LC50) of dissolved oxygen in high ammonia concentration and also the LC50 of ammonia under hypoxic conditions for juveniles of dourado, Salminus brasiliensis. In the first experiment, the non‐ionized ammonia (NH3) concentrations were: 0.026, 0.447, 0.612, 0.909, and 1.334 mg/L, and the dissolved oxygen concentration was maintained at approximately 1.65 mg/L. In the second experiment, the dissolved oxygen concentrations were: 1.64, 1.99, 3.33, 5.10, and 7.77 mg/L, and the non‐ionized ammonia concentration was kept at approximately 0.927 mg/L. The mean lethal concentrations of non‐ionized ammonia varied from 0.584 to 0.577 mg/L, indicating that LC50 values were almost unaffected by exposure time. The estimated LC50 of dissolved oxygen varied from 4.02 to 5.02 mg/L, indicating a slight increase in the mean lethal concentrations as the exposure time increased. Results from this study indicate that interaction between these two parameters increases mortality and also suggest that dourado is susceptible to the combination of high ammonia with low dissolved oxygen concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号