首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
全基因组关联分析(GWAS)是应用单核苷酸多态性(Single Nucleotide Polymorphism,SNP)在全基因组水平上发现影响复杂性状的基因变异的一种手段。为了加强GWAS在亚麻育种中的应用,本文归纳了GWAS的优势及分析流程,列举了近年来国内外利用GWAS定位到的亚麻产量及品质相关性状的标记位点和候选基因,总结了亚麻白粉病的研究现状及其他作物在GWAS的相关研究,并提出GWAS在亚麻育种和抗病的未来发展趋势,为亚麻GWAS研究提供理论基础。  相似文献   

2.
全基因组关联分析(genome-wide association study, GWAS)是2005年左右出现的一种用于开展连锁标记开发和基因挖掘等研究的有效方法,并在多种作物中得到了广泛应用。本研究阐述了GWAS的原理、优点和主要研究方法以及在粮食作物、经济作物、糖料作物等作物中的研究进展,同时对作物GWAS研究的未来进行了展望,以期为进一步利用GWAS进行作物各种性状遗传基础的研究提供参考。  相似文献   

3.
整合GWAS和WGCNA分析挖掘甘蓝型油菜黄籽微效作用位点   总被引:1,自引:0,他引:1  
甘蓝型油菜是世界上最重要的油料作物之一, 黄籽是提高品质的重要育种目标。本研究以520份具有代表性的甘蓝型油菜品种(系)为材料, 结合种子发育过程中8个时期的转录组数据, 采取整合全基因组关联分析(GWAS)和权重基因共表达网络分析(WGCNA)的策略, 挖掘油菜黄籽性状微效作用位点, 2年共检测到199个SNP位点, 在SNP位点附近共挖掘出1826个名义候选基因。利用R语言中的WGCNA软件包构建了8个共表达模块, 基因功能富集分析显示, turquoise模块和blue模块与黄籽表型相关。苯丙烷代谢途径、类黄酮途径的关键基因BnATCAD4BnF3H以及BnANS为turquoise模块的枢纽基因(hub gene)。通过已知的黄籽相关基因, 挖掘出了一部分黄籽微效作用基因, 这些基因多参与苯丙烷、类黄酮以及原花青素代谢途径。本研究挖掘的这些位点和候选基因可作为影响油菜黄籽形成的重要候选区域和基因, 有助于探究甘蓝型油菜黄籽基因资源信息、揭示油菜黄籽性状的遗传基础和分子机制、丰富分子育种理论以及提高油菜品质。  相似文献   

4.
多倍体普遍存在于植物界尤其是被子植物中,多倍化的发生有利于植物进化,其在物种遗传多样性和适应性等方面有着显著优势。研究表明植物几乎所有的重要经济性状均为复杂性状,这些复杂性状往往由多基因控制,且与非遗传(环境)因素共同决定。高通量测序技术的发展使得测序成本不断降低,高密度覆盖的标记使得基因型鉴定更加精确化,因此全基因组关联分析(genome-wide association study, GWAS)已成为研究多倍体植物复杂性状的新策略。本综述介绍了植物多倍体研究的意义、复杂性状的遗传学背景以及GWAS的一般流程,简要分析了多倍体GWAS的特点,并回顾了当前多倍体植物GWAS在复杂性状基因位点中所取得的研究进展,旨在为多倍体植物重要性状的遗传改良及分子辅助育种提供理论支持。  相似文献   

5.
甘蓝型油菜“凸耳”性状是在油菜幼苗期(3~8叶)表现出来的一个在叶片面上长1~5片小叶的易于识别的形态标记性状,在油菜遗传育种研究与利用中有着较高的利用研究价值。通过对甘蓝型油菜“凸耳”性状遗传机制和遗传鉴定研究,在摸清其遗传控制基础和遗传规律基础上,对该性状在油菜遗传育种研究与利用中的利用途径和应用前景进行分析评价,有着很大的利用价值。  相似文献   

6.
全基因组关联分析(genome-wide association study, GWAS)的理论及应用是近十几年来国内外数量性状研究的热点, 但是以往GWAS方法注重于个别主要QTL/基因的检测与发掘。为了相对全面地解析全基因组QTL及其等位基因构成, 本研究提出了限制性两阶段多位点GWAS方法(RTM-GWAS, https://github.com/njau-sri/rtm-gwas)。RTM-GWAS首先将多个相邻且紧密连锁的SNP分组, 成为具有多个单倍型(复等位变异)的连锁不平衡区段(SNPLDB)标记, 然后采用两阶段分析策略, 基于多位点复等位变异遗传模型, 在节省计算空间的条件下保障全基因组QTL及其复等位变异检出的精确度。和以往GWAS方法相比, RTM-GWAS以性状遗传率为上限, 能够较充分地检测出QTL及其相应的复等位变异并能有效地控制假阳性的膨胀。由其结果建立的QTL-allele矩阵代表了群体中所研究性状的全部遗传组成。依据这种QTL-allele矩阵的信息, 可以设计最优基因型的遗传组成, 预测群体中最优化的杂交组合, 并用以进行群体遗传和特有与新生等位变异的研究。本研究首先对RTM-GWAS方法的特点和计算程序功能进行说明, 然后通过大豆试验数据说明RTM-GWAS计算程序的使用方法。  相似文献   

7.
正近期,研究学者将全基因组关联分析(GWAS)技术用于揭示作物重要的农艺性状,如开花期、成熟期和株高等性状并且显示了其在农艺性状定位和检测方面的优势。中国科学院东北地理与农业生态研究所大豆分子育种学科组利用IlluminaSoyS NP8k iS electBeadChip(中等密度芯片)对来自中国、日本、美国、加拿大和其他国家的235份大豆资源进行基因型分型,获得了4471个多态性SNP分子标记,揭示了一个相对  相似文献   

8.
植物全基因组选择育种技术原理与研究进展   总被引:1,自引:0,他引:1  
优势杂交育种是选育高产优质新品种的有效育种途径,该方法需要在田间选配大量的杂交组合进行试验。而作物的主要经济性状如产量等大多是数量性状,该类性状由多基因控制,受环境影响大,常规的育种选择过程耗时很长且选择能力有限。随着基因组测序技术和计算机科学的快速发展,通过高密度的分子标记准确预测作物产量等复杂性状成为可能。植物全基因组选择育种技术通过训练群体收集表型数据和基因型数据,使用特定的模型估计分子标记效应值或个体育种值,再根据待测群体的基因型数据和模型拟合结果对待测群体的表型值进行预测。全基因组选择育种技术可以对目标性状进行预测和定向选择,减少育种工作量,显著缩短育种周期,提高育种效率,具有广阔的应用前景。本研究从植物优势杂交育种预测方法研究进展、全基因组选择育种原理与模型算法研究进展、模型预测能力验证方法研究进展、植物全基因组选择育种应用、全基因组选择育种的局限性和植物全基因组选择育种展望等6个方面阐述植物全基因组选择育种的发展现状。  相似文献   

9.
含油量是油菜最重要的性状之一, 目前已有较多的油菜种子含油量定位研究, 然而各研究系统相对独立, 群体与标记的差别使得难以比较不同研究结果。本研究连续4年种植了一个含308份材料的油菜自然群体, 结合60K SNP芯片数据对种子含油量进行了全基因组关联分析(GWAS), 并将所鉴定的显著位点与早前2个自然群体及10个分离群体鉴定到的位点进行全基因组比较与整合。结果显示, 通过GWAS共检测到8个与种子含油量显著关联的位点, 单个位点解释的表型变异度为3.22%~5.13%; 结合其他12个群体的定位结果, 共获得193个油菜含油量整合位点, 分布于油菜的所有19条染色体, A亚基因组平均每条染色体有13个位点, 显著高于C亚基因组(7个)。对不同群体鉴定结果的比较发现, 7个整合区间能在至少3个群体中被检测到, 均位于A亚基因组染色体(A01、A02、A03、A06、A08、A09和A10)上, 其中有3个与C亚基因组上的区间存在同源性, 在这3个区间中共鉴定到26个已知的油脂代谢相关基因。本研究将193个位点锚定到法国公布的甘蓝型油菜参考基因组, 构建了一个可视的油菜种子含油量位点全基因组整合系统, 可为油菜种子含油量重要位点的确定提供帮助, 并为制定提高油菜种子含油量的育种方案提供参考。  相似文献   

10.
中国作物分子设计育种   总被引:16,自引:1,他引:15  
分子设计育种通过多种技术的集成与整合,对育种程序中的诸多因素进行模拟、筛选和优化,提出最佳的符合育种目标的基因型以及实现目标基因型的亲本选配和后代选择策略,以提高作物育种中的预见性和育种效率,实现从传统的“经验育种”到定向、高效的“精确育种”的转化。分子设计育种主要包含以下3个步骤:(1)研究目标性状基因以及基因间的相互关系,即找基因(或生产品种的原材料),这一步骤包括构建遗传群体、筛选多态性标记、构建遗传连锁图谱、数量性状表型鉴定和遗传分析等内容;(2)根据不同生态环境条件下的育种目标设计目标基因型,即找目标(或设计品种原型),这一步骤利用已经鉴定出的各种重要育种性状的基因信息,包括基因在染色体上的位置、遗传效应、基因到性状的生化网络和表达途径、基因之间的互作、基因与遗传背景和环境之间的互作等,模拟预测各种可能基因型的表现型,从中选择符合特定育种目标的基因型;(3)选育目标基因型的途径分析,即找途径(或制定生产品种的育种方案)。本文评述近几年来我国在遗传研究材料创新、重要性状遗传分析、育种模拟工具开发和应用、设计育种实践、分子设计育种技术体系建设等方面取得的重要进展,结合国内外研究现状对分子设计育种的未来进行展望,最后指出我国近期应加强育种预测方法和工具、基因和环境互作、遗传交配设计、作物功能基因组学、生物信息学方法和工具、设计育种技术体系和决策支持平台等领域的研究,同时重视人才培养和团队建设。  相似文献   

11.
作物驯化和品种改良所选择的关键基因及其特点   总被引:2,自引:0,他引:2  
张学勇  马琳  郑军 《作物学报》2017,43(2):157-170
近15~20年作物基因组学迅速发展,特别是第2代测序技术的普及,显著降低了测序成本,使单核苷酸多态性(SNP)分析和单元型区段(也称单倍型区段)分析渗透到生命科学的各个领域,对系统生物学、遗传学、种质资源学和育种学影响最为深刻,使其进入基因组学的全新时代。一批驯化选择基因的克隆,特别是对一些控制复杂性状形成的遗传基础及其调控机制的解析,更清晰地揭示了作物驯化和品种改良的历史,提升了人们对育种的认知,推动育种方法的改进。驯化和育种既有相似之处,也存在明显的差异。驯化选择常常发生在少数关键基因或位点,对基因的选择几乎是一步到位;而现代作物育种虽然只有100年左右的历史,但其对基因组影响更为强烈,是一些重要代谢途径不断优化的过程。随着生态环境或栽培条件的变化,育种选择目标基因(等位变异)会发生相应的变化或调整,因此对基因(等位变异)的选择是逐步的。此外,强烈的定向选择重塑了多倍体物种的基因组,使其亚基因组与供体种基因组明显不同。在群体水平上,系统分析驯化和育种在作物基因组和基因中留下的踪迹,凝炼其中的规律,将为品种改良和育种提供科学理论和指导,本文也简要介绍了"十三五"国家重点研发计划专项"主要农作物优异种质资源形成与演化规律"的基本研究思路。  相似文献   

12.
芸苔属主要油料作物黄籽性状分子遗传研究进展   总被引:2,自引:0,他引:2  
油菜黄籽性状由于较好的营养和加工品质,得到现代油菜育种越来越多的重视,正逐渐成为油菜育种的重要目标.本文主要从芸苔属3个主要油料作物黄籽性状的遗传规律、基因定位和比较基因组学研究进展进行综述.在黄籽性状遗传方面,白菜型油菜、芥菜型油菜的遗传模式己基本清楚,由两对隐性基因控制,而甘蓝型油菜由于黄籽基因来源不同,存在多种遗传模式.在黄籽基因的定位方面,白菜型油菜、芥菜型油菜均已筛选到多个与黄籽性状紧密连锁的分子标记,并成功转成适合大规模筛选的SCAR标记,为分子标记辅助育种奠定了基础.甘蓝型油菜中也获得一些与黄籽性状紧密连锁的分子标记,并应用于分子标记辅助育种,但由于黄籽来源的不同,这些标记缺少通用性.在比较基因组学方面,根据拟南芥的相关种皮颜色基因,在白菜型油菜、芥菜型油菜、甘蓝型油菜中已克隆出一些与种皮颜色合成有关的基因,这些基因的克隆为油菜色素合成途径和通过转基因创造新型黄籽油菜研究奠定了基础.  相似文献   

13.
花生含油量对单位面积产油量至关重要。该性状受多个微效基因控制,但可用的紧密连锁标记十分有限,传统的分子标记辅助选择育种准确性不高。全基因组选择作为一种新的育种方法,可实现对数量性状的早期预测;近红外光谱分析可对作物品质性状(如含油量等)进行无损检测。通过两者优势互补,建立花生含油量全基因组选择和近红外光谱筛选联合的育种技术,探讨影响花生含油量全基因组选择预测准确性的因素,为花生分子育种奠定理论基础。本研究以216个重组自交系为材料构建训练群体;分别以139、464和505株F2、F3和F4为材料构建育种群体;利用自主开发的“PeanutGBTS40K”液相芯片进行基因分型,开展含油量全基因组选择育种模型分析;通过联合全基因组选择和近红外光谱筛选技术,开展花生含油量性状的育种应用,并评价其育种效果。结果显示,对训练群体进行基因分型后,总共获得30,355个高质量SNPs,并用于11个全基因组预测的模型选择分析。含油量预测准确性最高的模型为rrBLUP,其次是randomforest和svmrbf。以重组自交系为预测群体,F...  相似文献   

14.
生物产量是作物获得高产的重要基础,对于甘蓝型油菜(Brassica napus L.)尤其重要。本研究利用588份甘蓝型油菜材料构成的自然群体2年生物产量表型数据的全基因组关联分析,再结合高生物产量材料‘CQ45’和低生物产量材料‘CQ46’的转录组测序(RNA-seq)结果,整合了6个甘蓝型油菜材料6个部位(茎秆、叶片、花后30 d主轴与侧枝种子、花后30d主轴与侧枝角果皮)的转录组数据构建的加权共表达网络分析(WGCNA),筛选出与生物产量相关的候选基因。通过相关分析发现,2年间甘蓝型油菜自然群体中生物产量对大多数产量相关性状都具有正向效应;自然群体2年生物产量分析的最佳模型均为K+PCA模型,共检测到9个显著位点(P 1/385691或P 0.05/385691);根据CQ45和CQ46共36组转录组数据,选择MAD值为前5%的基因共计5052个用于构建WGCNA,通过筛选合并共得到了15个模块,其中5个基因共表达模块分别与叶片、茎秆和花后30d种子显著性相关;整合了WGCNA中关键模块的hub gene、GWAS分析得到的显著SNP位点和极端表型差异基因确定候选基因,它们的拟南芥同源基因为HCEF1、HOG1、SBPASE、ACT2,这些基因在光合作用的卡尔文循环、碳同化、物质积累等方面发挥重要作用。  相似文献   

15.
为明确甘蓝型油菜花叶性状的遗传特点,开发与花叶性状连锁的分子标记。以甘蓝型油菜品系2205(圆叶)、1423(花叶)为亲本,构建了3个世代群体:F1、BC1和F2,探讨花叶性状的遗传规律;利用分子标记技术对花叶基因进行定位。结果表明,F1植株叶形表现为花叶,BC1(F1×2205)和F2中花叶与圆叶的植株分离比分别符合1∶1和3∶1,说明甘蓝型油菜的花叶性状受1对不完全显性基因控制。利用集团分离法(BSA)筛选637对SSR引物,共筛选到了3个与花叶基因紧密连锁的SSR标记:CB10079、BNGMS114和BNGMS385。连锁分析发现,这3个连锁标记均位于花叶基因的一侧,其中BNGMS114与花叶基因的遗传距离最近,其遗传距离为2.5 c M。将这3个连锁标记的序列与白菜基因组的序列进行比对,结果发现它们与白菜A10染色体的序列共线性较好,花叶基因位于A10染色体的15.70 Mb下游区段。上述标记的获得为油菜花叶性状的分子标记辅助选择育种以及花叶基因的克隆奠定理论基础。  相似文献   

16.
甜瓜是重要的葫芦科蔬菜作物之一,其遗传育种学广受研究者的关注。高密度分子遗传图谱有助于提高甜瓜的育种水平,加快育种进程。自1996年第一张甜瓜分子遗传图谱报道后,AFLP等分子标记逐步被应用于甜瓜分子遗传图谱的构建及基因定位。近年来,基因组测序技术发展迅速,全基因组重测序、简化基因组测序、转录组测序等技术逐渐被应用于构建覆盖全基因组的、更加饱和的甜瓜遗传连锁图谱。本研究着重对甜瓜分子遗传图谱、重要农艺性状基因定位研究进展进行了综述,以期为甜瓜生物学研究及分子改良提供理论参考。  相似文献   

17.
作物产量性状QTL定位的研究现状及应用前景   总被引:5,自引:0,他引:5  
作物的许多农艺性状和经济性状是数量性状。研究作物数量性状遗传对农作物育种具有十分重要的意义。本文综述了数量性状基因座QTL(quantitative trait locus)定位的原理和常用方法及分子标记在水稻、小麦、玉米、棉花、大豆、番茄、大麦和油菜等重要作物产量性状基因定位中的研究现状,并对目前产量性状QTL定位存在的问题和发展前景进行了探讨  相似文献   

18.
用“自交混繁”法生产油菜良种   总被引:1,自引:1,他引:1  
黄正行  朱仁栋 《种子》1990,(5):60-61
一、油菜原种生产的特点甘兰型油菜属常异花授粉作物,在隔离条件差时,群体内极易迁入新的基因。目前,生产上使用的油菜品种,一般都是杂交育成,与自花授粉作物相比,个体间性状差异较大,群体内遗传基础复杂,基因的重组和性状的分离是很难  相似文献   

19.
株高和一次有效分枝高度是与甘蓝型油菜结荚层厚度、收获指数紧密关联的重要农艺性状,有关株高的数量性状位点(quantitative trait locus,QTL)和全基因组关联分析(genome-wide association study,GWAS)已有很多报道,但对一次有效分枝高度的QTL和GWAS定位以及候选基因筛选的研究报道较少。本研究利用已构建的高密度遗传连锁图对2016和2017年2个环境的186个株系组成的重组自交系群体株高和一次有效分枝高度及其最佳线性无偏预测(best linear unbiased prediction,BLUP)值进行QTL定位共检测到8个株高的QTL,分别位于A03、A04和A09染色体,单个QTL解释4.60%~13.29%的表型变异,其中位于A04染色体上的QTL(q-2017PH-A04-2和q-BLUP-PH-A04-2)在2017年和BLUP中均被检测到;检测到9个一次有效分枝高度QTL,分别位于A01、A02、A05、A09、C01和C05染色体上,单个QTL解释5.12%~19.10%的表型变异,其中q-2017BH-A09-1、q-BLUP-BH-A09-2和q-BLUP-BH-A09-3有重叠区段。同时,利用课题组前期完成的588份重测序自然群体进行全基因组关联分析,2年共检测到与株高显著关联的50个SNP位点和与一次有效分枝高度显著关联的12个SNP位点;根据SNP的物理位置,筛选出参与细胞增殖、细胞扩增、细胞周期和细胞壁活动的13个株高候选基因,以及参与赤霉素、亚精胺等合成代谢途径、核糖体组成和在光合、萌发等过程中有一定作用的一次分枝高度的11个候选基因,并利用荧光定量PCR技术验证候选基因在极端材料中的表达情况。本研究结果将为油菜株型改良及后续基因的功能研究提供理论依据。  相似文献   

20.
诱变育种是通过人工诱变方法对作物基因组进行改造。诱变既能使作物基因组DNA发生缺失、插入、置换或异位等,也可以对基因进行定点突变或定向敲除、打破基因间的连锁平衡,从而产生新的性状。为了探讨不同诱变技术的方法、优缺点以及在作物遗传育种中的运用,本文归纳了物理、化学、生物和空间等技术诱发突变的原理及方法;比较了传统育种和诱变育种的优缺点;分析了不同诱变技术的作用机理;总结了不同诱变技术在不同作物上的运用。本文指出了目前诱变育种的缺陷,展望了诱变育种的前景,为探索诱变育种在现代化育种中的作用提供了理论和技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号