首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Previous studies have indicated that Atlantic salmon, Salmo salar L., affected by amoebic gill disease (AGD) are resistant to re‐infection. These observations were based upon a comparison of gross gill lesion abundance between previously infected and naïve control fish. Anecdotal evidence from Atlantic salmon farms in southern Tasmania suggests that previous infection does not protect against AGD as indicated by a lack of temporal change in freshwater bathing intervals. Experiments were conducted to determine if previous infection of Atlantic salmon with Neoparamoeba sp. would provide protection against challenge and elucidate the immunological basis of any protection. Atlantic salmon were infected with Neoparamoeba sp. for 12 days then treated with a 4‐h freshwater bath. Fish were separated into two groups and maintained in either sea water or fresh water for 6 weeks. Fish were then transferred to one tank with a naïve control group and challenged with Neoparamoeba sp. Fish kept in sea water had lower mortality rates compared with first time exposed and freshwater maintained fish, however, these data are believed to be biased by ongoing mortalities during the seawater maintenance phase. Phagocyte function decreased over exposure time and freshwater maintained fish demonstrated an increased ability to mount a specific immune response. These results suggest that under the challenge conditions herein described, antigen exposure via infection does not induce protection to subsequent AGD.  相似文献   

2.
Previous work in our laboratory defined a method of inducing laboratory‐based amoebic gill disease (AGD) in Atlantic salmon, Salmo salar L. Gills of AGD‐affected fish were scraped and the debris placed into fish‐holding systems, eliciting AGD in naïve Atlantic salmon. While this method is consistently successful in inducing AGD, variability in the kinetics and severity of infections has been observed. It is believed that the infections are influenced by inherently variable viability of post‐harvest amoeba trophozoites. Here, a new method of experimental induction of AGD is presented that redefines the infection model including the minimum infective dose. Amoebae were partially purified from the gills of AGD‐affected Atlantic salmon. Trophozoites were characterized by light microscopy and immunocytochemistry and designated Neoparamoeba sp., possibly Neoparamoeba pemaquidensis. Cells were placed into experimental infection systems ranging in concentration from 0 to 500 cells L?1. AGD was detected by gross and histological examination in fish held in all systems inoculated with amoebae. The number of gross and histological AGD lesions per gill was proportional to the inoculating concentration of amoebae indicating that the severity of disease is a function of amoeba density in the water column. The implications of these observations are discussed in the context of the existing AGD literature base as well as Atlantic salmon farming in south‐eastern Tasmania.  相似文献   

3.
Freshwater bathing is essential for control of amoebic gill disease (AGD) during the marine phase of the Tasmanian Atlantic salmon production cycle, a practice that is costly, production limiting and increasing in frequency. Although the pathogenesis of gill infection with Neoparamoeba sp. in naïve Atlantic salmon, Salmo salar, is now understood, the progression of re‐infection (post‐treatment) required elucidation. Here, we describe the weekly histopathological progression of AGD from first to second freshwater bath. Halocline cessation and increased water temperature appeared to drive the rapid onset of initial infection prior to bathing. Freshwater bathing cleared lesions of attached trophozoites and associated cellular debris. Subsequent gill re‐infection with Neoparamoeba sp. was evident at 2 weeks post‐bath and had significantly increased (P < 0.001), in severity by 4 weeks post‐bath. No significant difference in gross pathology was observed until 4 weeks post‐bath (P < 0.05). The re‐infective progression of AGD was characterized by localized host tissue responses juxtaposed to adhered trophozoites (epithelial oedema, hypertrophy and hyperplasia), non‐specific inflammatory cell infiltration (macrophages, neutrophils and eosinophilic granule cells) and finally advanced hyperplasia with epithelial fortification. During the post‐bath period, non‐AGD lesions including haemorrhage, necrosis and regenerative hyperplasia were occasionally observed, although no evidence of secondary colonization of these lesions by Neoparamoeba sp. was noted. We conclude that pathogenesis during the inter‐bath period was identical to initial infection although the source of re‐infection remains to be established.  相似文献   

4.
Elucidation of the role of infectious agents putatively involved in gill disease is commonly hampered by the lack of culture systems for these organisms. In this study, a farmed population of Atlantic salmon pre‐smolts, displaying proliferative gill disease with associated Candidatus Branchiomonas cysticola, Ca. Piscichlamydia salmonis and Atlantic salmon gill pox virus (SGPV) infections, was identified. A subpopulation of the diseased fish was used as a source of waterborne infection towards a population of naïve Atlantic salmon pre‐smolts. Ca. B. cysticola infection became established in exposed naïve fish at high prevalence within the first month of exposure and the bacterial load increased over the study period. Ca. P. salmonis and SGPV infections were identified only at low prevalence in exposed fish during the trial. Although clinically healthy, at termination of the trial the exposed, naïve fish displayed histologically visible pathological changes typified by epithelial hyperplasia and subepithelial inflammation with associated bacterial inclusions, confirmed by fluorescent in situ hybridization to contain Ca. B. cysticola. The results strongly suggest that Ca. B. cysticola infections transmit directly from fish to fish and that the bacterium is directly associated with the pathological changes observed in the exposed, previously naïve fish.  相似文献   

5.
The treatment of amoebic gill disease (AGD) in cultured Atlantic salmon, Salmo salar L., using mucolytic agents has been previously reported. The agent L‐cysteine ethyl ester reduces salmonid mucus viscosity and potentially increases the flushing of the gill. In the present study, the effects of the mucolytic agent N‐acetyl cysteine (NAC) were assessed. Cutaneous mucus from rainbow trout, Oncorhynchus mykiss Walbaum, and Atlantic salmon was shown to have reduced viscosity when mixed in vitro with 100 or 200 μg/mL NAC. Saltwater‐acclimated rainbow trout and Atlantic salmon were fed an oil‐incorporated, NAC‐medicated diet (8 g NAC/kg diet) for up to 24 d and challenged with inoculation of 300 cells/L Neoparamoeba spp., the etiological agent of AGD. Control fish were fed normal oil‐coated pellets and received no NAC. NAC medication failed to reduce the severity of gill lesions associated with AGD even though the mucus viscosity from medicated fish was less than that of controls. Oral NAC medication does not appear to be an effective method for controlling AGD in salmonids despite reducing cutaneous mucus viscosity.  相似文献   

6.
Infections of gill amoebae that manifest as amoebic gill disease (AGD) occur in Atlantic salmon in Tasmania. The treatment of choice is freshwater bathing; however, the effectiveness of this treatment has declined over time. In this experiment, cage trials of chloramine‐T (Cl‐T) to treat AGD in Atlantic salmon were conducted over 3 months, and involved an initial bath in either freshwater or seawater with Cl‐T, followed by a second bath 6 weeks later. Amoeba densities were reduced to 50–80% of original values for both treatments. Neoparamoeba sp. density was not affected by bathing, and was not significantly different over the course of the experiment. Lesion prevalence was higher for Cl‐T‐treated fish than for freshwater‐treated fish, with overall prevalence levels of 14.30±1.00% and 8.03±0.57% respectively. This was also seen for gross gill scores. In the fortnight after each of the two baths, Cl‐T‐treated fish had significantly higher lesion levels, although this difference was then resolved by 4 weeks post bathing. The use of Cl‐T in seawater is at least as effective as freshwater at reducing amoebae density, and may be a more practical alternative when freshwater is in short supply.  相似文献   

7.
Previous studies have indicated that when Atlantic salmon, Salmo salar L., are exposed to Neoparamoeba sp. the fish produce anti-Neoparamoeba sp. antibodies. It appears unlikely that these antibodies elicit any specific protection against amoebic gill disease (AGD) as fish with demonstrable activities have been affected by AGD. Experiments were conducted on Atlantic salmon cultured throughout Tasmania to assess the natural production of antibodies towards Neoparamoeba sp. Fish were sampled from areas where AGD was prevalent and from areas where there had been no reported cases. An enzyme-linked immunosorbent assay (ELISA) was used to measure anti-Neoparamoeba sp. antibody activities in serum. All fish from sea water had antibody activities greater than the negative control fish, including fish from areas with no reported cases of AGD. Time trial samples indicated that time after transfer to sea water did not appear to be a significant (P > 0.05) factor in antibody activity, however location was (P < 0.05). There was no agreement (corrected kappa value, 0.16) between the ELISA result and the isolation of Neoparamoeba sp. from the gills of the same fish. The results suggest that Atlantic salmon in seawater culture in Tasmania produce anti-Neoparamoeba sp. antibodies regardless of infection history, suggesting the presence of Neoparamoeba sp. in the environment.  相似文献   

8.
9.
Previous investigations into the pathophysiology of amoebic gill disease (AGD) have suggested that there are probable cardiovascular effects associated with this disease. In the present study Atlantic salmon, Salmo salar L., were experimentally infected by cohabitation with diseased individuals. Two commonly used vasodilators, sodium nitroprusside (SNP) and captopril, the angiotensin-converting enzyme (ACE) inhibitor, were used as tools to investigate possible vasoconstriction and/or renin–angiotensin system (RAS) dysfunction in AGD-affected animals. Within the SNP trial, results showed that AGD-affected fish exhibited lowered cardiac output (Q), lowered cardiac stroke volume (VS) and a significantly elevated systemic vascular resistance (RS) compared with non-affected naïve counterparts. These effects were totally abolished following SNP administration (40 μg kg−1), however significant cardiovascular effects associated with SNP were not observed. Within the captopril trial, where AGD-affected fish were more diseased compared with the SNP trial, a significant hypertension was observed in AGD-affected fish. Captopril administration (10−4 mol L−1 at 1 mL kg−1) resulted in a significant drop in dorsal aortic pressure (PDA) for both AGD-affected and naïve control fish. In terms of peak individual responses, captopril administration effectively lowered PDA in both AGD-affected and naïve control groups equally. The drop in PDA following SNP administration however was significantly greater in AGD-affected fish potentially suggesting disease-related vasoconstriction. The lack of significant cardiovascular effects directly associated with both SNP and captopril administrations possibly relate to the 6 h recovery period following surgical procedures. However, while variable, these results do suggest that there are significant cardiovascular effects including vasoconstriction and hypertension associated with AGD.  相似文献   

10.
The development and the application of a quantitative duplex real‐time PCR for the detection of Neoparamoeba perurans and the elongation factor α 1 gene (ELF) of Atlantic salmon, Salmo salar L., and rainbow trout, Oncorhynchus mykiss (Walbaum), are described. A set of primers and probe was designed to amplify a 139‐bp fragment specific to the N. perurans 18S rRNA gene. The test was shown to be very sensitive, being able to detect as little as 13.4 DNA copies per μL corresponding to 0.15 fg of template DNA. In addition, the reaction that detected N. perurans was found to have a high degree of repeatability and reproducibility, to have a linear dynamic range (R2 = 0.999) extending over 5 log10 dilutions and to have a high efficiency (104%). The assay was applied to DNA samples extracted from 48 formalin‐fixed, paraffin‐embedded (FFPE) salmon gill tissues showing varying degrees of gill histopathology and amoebic gill disease (AGD)‐type histopathology ranging from absent to severe (each scored 0–3). Neoparamoeba perurans DNA was detected in all the blocks where AGD‐type histopathology was diagnosed microscopically and in 43.6% of the blocks showing signs of gill pathology. The association between parasitic load and gill histopathology and AGD‐type histopathology severity was also investigated. This study also describes the development and the application of a second real‐time PCR for the generic detection of Neoparamoeba spp., Page, 1987. A set of primers and probe conserved among the Neoparamoeba spp. was designed to amplify a 150‐bp fragment within the 18S rRNA gene. Applied to N. perurans‐negative gill tissues, the method was used to exclude the presence of other Neoparamoeba spp. in those blocks where gill pathology was observed microscopically.  相似文献   

11.
Currently, the only effective and commercially used treatment for amoebic gill disease (AGD) in farmed Tasmanian Atlantic salmon is freshwater bathing. Hydrogen peroxide (H2O2), commonly used throughout the aquaculture industry for a range of topical skin and gill infections, was trialled in vitro and in vivo to ascertain its potential as an alternative treatment against AGD. Under in vitro conditions, trophozoites of Neoparamoeba perurans were exposed to three concentrations of H2O2 in sea water (500, 1000 and 1500 mg L?1) over four durations (10, 20, 30 and 60 min) each at two temperatures (12 and 18 °C). Trophozoite viability was assessed immediately post‐exposure and after 24 h. A concentration/duration combination of 1000 mg L?1 for >10 min demonstrated potent amoebicidal activity. Subsequently, Atlantic salmon mildly affected with experimentally induced AGD were treated with H2O2 at 12 and 18 °C for 15 min at 1250 mg L?1 and their re‐infection rate was compared to freshwater‐treated fish over 21 days. Significant differences in the percentage of filaments affected with hyperplastic lesions (in association with amoebae) and plasma osmolality were noted between treatment groups immediately post‐bath. However, the results were largely equivocal in terms of disease resolution over a 3‐week period following treatment. These data suggest that H2O2 treatment in sea water successfully ameliorated a clinically light case of AGD under laboratory conditions.  相似文献   

12.
Amoebic gill disease (AGD), caused by Neoparamoeba perurans, is a major health challenge for Atlantic salmon aquaculture globally. While freshwater bathing for 2 hr is effective in reducing infection severity, there is need for more rapid and lower cost alternatives. To this end, a combination of sodium percarbonate (SPC) in freshwater was examined for its treatment efficacy. Initial in vitro studies showed a reduction in amoeba viability when exposed for 30 min to freshwater containing >500 mg/L SPC. Subsequently, AGD‐affected salmon were bathed for 30 min in 16°C freshwater containing 100, 500 or 1,000 mg/L SPC, or for 2 hr in 16°C freshwater to mimic industry practice. Treatment at the highest SPC concentration caused extensive gill damage and substantial mortality. Neither occurred to a significant extent at lower SPC concentrations. Gill pathology of surviving fish 10 days post‐treatment (dpt) was comparable to or more severe than pre‐treatment, and significantly (p < .001) more severe than in 2 hr freshwater bathed fish. N. perurans DNA was confirmed by qPCR in all treatment groups at 10 dpt. The data indicate that a 30‐min exposure to SPC in freshwater is not a suitable alternative to existing freshwater treatment of AGD.  相似文献   

13.
Trials were designed to test the efficacy of freshwater treatments for amoebic gill disease (AGD) of Atlantic salmon, Salmo salar L., and the effect they had on the acquisition of resistance to reinfection with AGD. The first trial involved fish being given an industry‐simulated freshwater bath of 2–3 h duration which simulated treatments given on farms. These fish did not display appreciable resistance to reinfection. The second trial involved four groups of fish which had been infected with and treated for AGD in a number of different ways. Once again the fish that had been infected for the first time and given a single 2–3 h freshwater bath and then re‐exposed did not exhibit appreciable resistance to reinfection. In contrast, those fish that had been given a second 2–3 h freshwater bath and those that had been maintained in freshwater for 4 weeks displayed high levels of resistance. There is preliminary evidence to suggest that this resistance could be related to stimulation of the non‐specific immune system.  相似文献   

14.
Amoebic gill disease (AGD) caused by the amoeba Paramoeba perurans is an increasing problem in Atlantic salmon aquaculture. In the present PCR survey, the focus was to identify reservoir species or environmental samples where P. perurans could be present throughout the year, regardless of the infection status in farmed Atlantic salmon. A total of 1200 samples were collected at or in the proximity to farming sites with AGD, or with history of AGD, and analysed for the presence of P. perurans. No results supported biofouling organisms, salmon lice, biofilm or sediment to maintain P. perurans. However, during clinical AGD in Atlantic salmon, the amoeba were detected in several samples, including water, biofilm, plankton, several filter feeders and wild fish. It is likely that some of these samples were positive as a result of the continuous exposure through water. Positive wild fish may contribute to the spread of P. perurans. Cleaner fish tested positive for P. perurans when salmon tested negative, indicating that they may withhold the amoeba longer than salmon. The results demonstrate the high infection pressure produced from an AGD‐afflicted Atlantic salmon population and thus the importance of early intervention to reduce infection pressure and horizontal spread of P. perurans within farms.  相似文献   

15.
Atlantic salmon with amoebic gill disease (AGD) were treated with chloramine‐T to compare its effectiveness with that of freshwater bathing. In 250‐L tank trials, treatment of seawater with chloramine‐T reduced amoeba density on the gills to levels significantly lower than when treated with seawater alone. There was no further change in amoeba levels in fish bathed for 3 or 6 h compared with 1 h of treatment. Plasma lactate levels in fish bathed in chloramine‐T for 6 h showed no differences across treatments. In 1000‐L tank trials using freshwater alone or seawater with chloramine‐T, significant reductions in amoeba density occurred compared with pre‐bath levels. Histological analysis of gill tissue revealed AGD lesion levels to increase, then to return to pre‐bath levels within 1 week for freshwater‐treated fish, while chloramine‐T‐ and seawater‐treated fish had higher levels of AGD lesions from 2 weeks post bathing. Immunodot‐blot data indicated an initial significant increase in prevalence of lesions in seawater and chloramine‐T‐treated fish, which declined to levels significantly lower than pre‐bath levels by 3 weeks post bathing, compared with the freshwater‐treated fish, which had significantly lower levels than controls by 2 weeks post bathing. At reducing amoeba density, it is apparent that bathing AGD‐affected Atlantic salmon in seawater with chloramine‐T proved at least as effective as freshwater.  相似文献   

16.
Amoebic gill disease (AGD) has been attributed to infection by Neoparamoeba sp. The causal mechanisms for AGD lesion development and the primary pathogenic role of Neoparamoeba sp. require elucidation. Three groups of Atlantic salmon were exposed to viable gill isolated amoebae, to sonicated amoebae, or to sea water containing viable amoebae without direct contact with gill epithelia. Fish were removed 8 days post-exposure and the gills assessed histologically for AGD. AGD occurred only when fish were exposed to viable trophozoites. Consequently, in an accompanying experiment, infection was evaluated histologically at 12, 24 and 48 h post-exposure in three groups of salmon, one group being mechanically injured 12 h prior to exposure. A progressive host response and significant increase (P < 0.001) in the numbers of attached amoebae was apparent over the 48-h duration in undamaged hemibranchs in both treatment groups. There were no significant differences to mucous cell populations. Attachment of Neoparamoeba sp. to damaged gill filaments was significantly reduced (P < 0.05) by 48 h post-exposure. These data further confirm and describe the primary pathogenic role of Neoparamoeba sp. and the early host response in AGD. Preliminary evidence suggests that lesions resulting from physical gill damage are not preferentially colonized by Neoparamoeba sp.  相似文献   

17.
Amoebic gill disease (AGD) is a proliferative gill tissue response caused by Neoparamoeba perurans and is the main disease affecting Australian marine farmed Atlantic salmon. We have previously proposed that macroscopic gill health ('gill score') trajectories and challenge survival provide evidence of a change in the nature of resistance to AGD. In order to examine whether the apparent development of resistance was because of an adaptive response, serum was sequentially sampled from the same individuals over the first three rounds of natural AGD infection and from survivors of a subsequent non-intervention AGD survival challenge. The systemic immune reaction to 'wildtype' Neoparamoeba sp. was characterized by Western blot analysis and differentiated to putative carbohydrate or peptide epitopes by periodate oxidation reactions. The proportion of seropositive fish increased from 46% to 77% with each AGD round. Antibody response to carbohydrate epitope(s) was immunodominant, occurring in 43–64% of samples. Antibodies that bound peptide epitope were identified in 16% of the challenge survivors. A 1:50 (single-dilution) enzyme-linked immunosorbent assay confirmed a measurable immune titre in 13% of the survivors. There was no evidence that antibodies recognizing wildtype Neoparamoeba provided significant protection against AGD.  相似文献   

18.
Many studies have documented that hatchery‐reared salmonids generally have inferior survival after being stocked compared with wild conspecifics, hatchery and wild salmonids have been observed to differ in their antipredator responses. The response of brown trout (Salmo trutta) juveniles (0+) of differing backgrounds to a live predator was compared in two experiments. First, the antipredator behaviour of predator‐naïve hatchery‐reared brown trout and wild‐exposed brown trout were assessed in behavioural trials which lasted for eight days. Second, predator‐naïve and predator‐conditioned hatchery‐reared brown trout were assessed in identical behavioural trials. Brown trout were ‘predator‐conditioned’ by being held in a stream‐water aquarium with adult Atlantic salmon (Salmo salar) and adult brown trout for two days prior to behavioural trials. Predator‐conditioned hatchery‐reared brown trout spent more time in shelters in the trial aquaria than predator‐naïve hatchery‐reared fish, but did not differ in time spent in the predator‐free area. Predator conditioning may account for the increased time spent in the shelter, but does not appear to have affected time spent in the predator‐free area. However, even if significant alteration in behaviour can be noted in the laboratory, the response might not be appropriate in the wild.  相似文献   

19.
Amoebic gill disease (AGD) in farmed Atlantic salmon is caused by the amoeba Paramoeba perurans. The recent establishment of in vitro culture techniques for P. perurans has provided a valuable tool for studying the parasite in detail. In this study, flow cytometry was used to generate clonal cultures from single‐sorted amoeba, and these were used to successfully establish AGD in experimental Atlantic salmon. The clonal cultures displayed differences in virulence, based on gill scores. The P. perurans load on gills, determined by qPCR analysis, showed a positive relationship with gill score, and with clonal virulence, indicating that the ability of amoebae to proliferate and/or remain attached on gills may play a role in virulence. Gill scores based on gross signs and histopathological analysis were in agreement. No association between level of gill score and specific gill arch was observed. It was found that for fish with lower gill scores based on histopathological examination, gross examination and qPCR analysis of gills from the same fish were less successful in detecting lesions and amoebae, respectively.  相似文献   

20.
A relationship between increasing water temperature and amoebic gill disease (AGD) prevalence in Atlantic salmon (Salmo salar) has been noted at fish farms in numerous countries. In Scotland (UK), temperatures above 12°C are considered to be an important risk factor for AGD outbreaks. Thus, the purpose of this study was to test for the presence of an association between temperature and variation in the severity of AGD in Atlantic salmon at 10 and 15°C. The results showed an association between temperature and variation in AGD severity in salmon from analysis of histopathology and Paramoeba perurans load, reflecting an earlier and stronger infection post‐amoebae exposure at the higher temperature. While no significant difference between the two temperature treatment groups was found in plasma cortisol levels, both glucose and lactate levels increased when gill pathology was evident at both temperatures. Expression analysis of immune‐ and stress‐related genes showed more modulation in gills than in head kidney, revealing an organ‐specific response and an interplay between temperature and infection. In conclusion, temperature may not only affect the host response, but perhaps also favour higher attachment/growth capacity of the amoebae as seen with the earlier and stronger P. perurans infection at 15°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号