首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In situ denitrification walls and biofilters made of wood chips are being implemented as innovative technologies for the removal of nitrates in tile drainage water from farms to reduce pollution of surface waters and the hypoxia problem in the Gulf of Mexico. Although fairly effective in removing nitrates, not much is known about the effectiveness of the biofilters in removal of herbicides, pesticides, and antibiotics in the drainage water. Using weathered wood chips obtained from an in situ denitrification wall, four common pollutants tested sorbed strongly to wood chips in the following order: enrofloxacin > monensin A > atrazine > sulfamethazine. Of the four chemicals tested, enrofloxacin was found to desorb the least by water extraction. The apparent hysteresis index for atrazine was found to be lower than that for enrofloxacin and sulfamethazine indicating greater sorption?Cdesorption hysteresis for atrazine than enrofloxacin and sulfamethazine. Consecutive steps of water desorption and organic solvent extraction indicated that more than 65% of the sorbed atrazine, 70% of sulfamethazine, 90% of enrofloxacin, and 80% of monensin A were retained in wood chips. Results of this study showed that wood chip denitrification walls or biofilters have an added benefit in retaining herbicides and antibiotics and therefore can act as a barrier to reduce pollution of surface water and groundwater.  相似文献   

2.
竹炭固定化微生物对土壤中阿特拉津的降解研究   总被引:1,自引:0,他引:1  
范玉超  刘文文  司友斌  崔红标 《土壤》2011,43(6):954-960
采用环境友好材料竹炭为主要载体,壳聚糖和海藻酸钠为辅助载体,固定从污泥中分离出的阿特拉津降解菌株,研究不同固定材料对降解菌生长的影响,以及固定化微生物对土壤中阿特拉津的降解效果.结果表明,竹炭对阿特拉津降解菌具有较强的吸附固定能力,且竹炭粒径越小,固定化效果越好.利用壳聚糖和海藻酸钠交联并加固阿特拉津降解菌,增大了固定化空间,显著增加了降解菌的生物量,并提高了阿特拉津的降解效率.1%壳聚糖+5%海藻酸钠+竹炭+降解菌颗粒对阿特拉津降解菌的固定化效果最佳,施用该微生物固定化颗粒28天后,砂姜黑土及红壤中阿特拉津残留率分别为48.07%和47.23%.  相似文献   

3.
A continuation of an earlier interlaboratory comparison was conducted (1) to assess solid-phase extraction (SPE) using Empore disks to extract atrazine, bromacil, metolachlor, and chlorpyrifos from various water sources accompanied by different sample shipping and quantitative techniques and (2) to compare quantitative results of individual laboratories with results of one common laboratory. Three replicates of a composite surface water (SW) sample were fortified with the analytes along with three replicates of deionized water (DW). A nonfortified DW sample and a nonfortified SW sample were also extracted. All samples were extracted using Empore C(18) disks. After extraction, part of the samples were eluted and analyzed in-house. Duplicate samples were evaporated in a 2-mL vial, shipped dry to a central laboratory (SDC), redissolved, and analyzed. Overall, samples analyzed in-house had higher recoveries than SDC samples. Laboratory x analysis type and laboratory x water source interactions were significant for all four compounds. Seven laboratories participated in this interlaboratory comparison program. No differences in atrazine recoveries were observed from in-house samples analyzed by laboratories A, B, D, and G compared with the recovery of SDC samples. In-house atrazine recoveries from laboratories C and F were higher when compared with recovery from SDC samples. However, laboratory E had lower recoveries from in-house samples compared with SDC samples. For each laboratory, lower recoveries were observed for chlorpyrifos from the SDC samples compared with samples analyzed in-house. Bromacil recovery was <65% at two of the seven laboratories in the study. Bromacil recoveries for the remaining laboratories were >75%. Three laboratories showed no differences in metolachlor recovery; two laboratories had higher recoveries for samples analyzed in-house, and two other laboratories showed higher metolachlor recovery for SDC samples. Laboratory G had a higher recovery in SW for all four compounds compared with DW. Other laboratories that had significant differences in pesticide recovery between the two water sources showed higher recovery in DW than in the SW regardless of the compound. In comparison to earlier work, recovery of these compounds using SPE disks as a temporary storage matrix may be more effective than shipping dried samples in a vial. Problems with analytes such as chlorpyrifos are unavoidable, and it should not be assumed that an extraction procedure using SPE disks will be adequate for all compounds and transferrable across all chromatographic conditions.  相似文献   

4.
The co-application of glufosinate with nitrogen fertilizers may alter atrazine cometabolism, thereby extending the herbicide’s residual weed control in adapted soils. The objective of this study was to assess the effects of glufosinate, ammonium sulfate, and the combination of glufosinate and ammonium sulfate on atrazine mineralization in a Dundee silt loam exhibiting enhanced atrazine degradation. Application of glufosinate at rates of 10 to 40 mg kg−1 soil extended the lag phase 1 to 2 days and reduced the maximum degradation rate by 15% to 30%. However, cumulative atrazine mineralization averaged 85% 21 days after treatment and was independent of treatment. Maximum daily rates of atrazine mineralization were reduced from 41% to 55% by application of 1 to 8 g kg−1 of ammonium sulfate. Similarly, cumulative atrazine mineralization was inversely correlated with ammonium sulfate rates ranging from 1.0 to 8 g kg−1 soil. Under the conditions of this laboratory study, atrazine degradation was relatively insensitive to exogenous mineral nitrogen, in that 8 g (NH4)2SO4 per kilogram soil repressed but did not completely inhibit atrazine mineralization. Moreover, an additive effect on reducing atrazine mineralization was observed when glufosinate was co-applied with ammonium sulfate. In addition, ammonium fertilization alters the partitioning of 14C-atrazine metabolite accumulation and nonextractable residues, indicating that ammonium represses cleavage of the triazine ring. Consequently, results indicate that the co-application of glufosinate with N may increase atrazine persistence under field conditions thereby extending atrazine residual weed control in adapted soils.  相似文献   

5.
Abstract

The sorption behavior of three triazine herbicides: atrazine, metribuzin, and terbutryn was studied in two different soils. Three experimental procedures to determine the Kf values were assayed: the conventional batch equilibration method in which the sorbed concentration is calculated by difference from the change in solution concentration; an alternative mass balance equilibrium batch technique in which the solution and the sorbed phase concentration are measured directly; and the flow equilibration method in which a solution of known concentration was passed through a column of soil until the effluent reached the same concentration as the input solution. Four concentrations of each herbicide were selected and results were fitted to the linearized form of the Freundlich isotherm. Recovery of the herbicides was studied in soil and water samples using the same four concentrations employed in the sorption assays. Average recoveries ranged from 86 to 104% with standard deviations lower than 10%. The Koc (mg1–1/n kg‐1 Ll/n) values obtained ranged from 43 to 87 for atrazine, 27 to 114 for metribuzin, and 355 to 505 for terbutryn. The exponents 1/n of the Freundlich adsorption isotherms were lower than unity, with only one exception, and varied from 0.72 to 0.86 for atrazine, 0.73 to 1.12 for metribuzin, and 0.76 to 0.99 for terbutryn. The solution method gave values of Koc that were 1.25, 1.55, and 2.65 (average of both soils) times those of the mass balance method for terbutryn, atrazine and metribuzin, respectively. When adsorption was low, the mass balance calculation method is recommended if the batch equilibration method is used, since the solution method can produce a considerable overestimation of adsorption. The flow equilibration method produced similar values of adsorption than the mass balance batch equilibration method and it made the experimental procedure easier since pesticide solution concentration need not to be measured once the equilibration time has been determined to ensure that the equilibrium was reached.  相似文献   

6.

Background, aim, and scope  

A large area of water eutrophication in the Tai Lake region of China was associated with nitrogen (N) and phosphorus (P) pollution, mainly due to the discharge of untreated rural wastewater (RW) into the surface water (SW) near villages of this region. A field experiment was conducted, using irrigation of RW plus urea fertilization under equal nitrogen (N) rate, namely, black water (BW), domestic wastewater (DW), gray water (GW), SW, and SW without any N application as a control (CK), to elucidate N removal by the paddy wetland system during the rice growing season of 2007.  相似文献   

7.
Abstract

Several equilibrating salt solutions have been used in the studies of P sorption by soils and sediments. This study was conducted to evaluate the effects of 10 salt solutions on estimation of P sorption by soils. Results obtained showed that, when the equilibrating solution was made to contain 0.01M with respect to CaCl2, Ca(NO3)2, CaSO4, MgCl2, KCl, LiCl, Nacl, or KHCO3, the amount of P sorbed by soil always exceeded the amount sorbed from the soil‐water system. In comparison with the amount of P sorbed from water, 0.01M NaHCO3 reduced P sorption by soils. Use of THAM buffer (0.05M pH 7.0) to control the pH increased P sorption by some soils and decreased P sorption by others, relative to that sorbed from the soil‐water system. The results indicated that inclusion of salts in the equilibrating solution for P‐sorption studies should be avoided, especially in studies related to water quality.  相似文献   

8.
Copper is present in a range of fungicides as well as in some animal manures and biosolids that are applied to agricultural soils as fertilisers. Elevated and increasing levels of copper in agricultural soils are of worldwide concern. Copper is toxic to soil microorganisms and has been reported to reduce the ability of soil microorganisms to degrade pesticides. A glasshouse study was undertaken to determine if copper inhibited the degradation of atrazine and indoxacarb in soil. A fine sandy loam agricultural soil was fortified with copper at five concentrations over a concentration range of 0–1000 mg/kg copper, then field-aged for 6 months prior to treatment with either indoxacarb or atrazine at a rate of 2 mg/kg. The soils were sampled twice at intervals based on published half-lives. The samples were analysed for a range of parameters including total and bioavailable copper, urease and phosphatase activity, ergosterol and either indoxacarb or atrazine and its degradation products. The soil microbial biomass and enzyme activities decreased with increasing copper concentration (p < 0.05). There were no significant differences in soil atrazine and indoxacarb concentrations between the copper levels. At sampling time two, the concentrations of hydroxyatrazine in treatments containing the three highest copper concentrations were significantly greater (p < 0.05) than for the control soil. Our results indicate that copper does not inhibit the first step of indoxacarb and atrazine degradation, but may affect degradation of secondary metabolites like hydroxyatrazine in soil.  相似文献   

9.
Atrazine is one of the most used herbicides worldwide; however, consequences of its long-term agricultural use are still unknown. A laboratory study was performed to examine changes in microbial properties following ethylamino-15N-atrazine addition, at recommended agronomic dose, to five acidic soils from Galicia (NW Spain) showing different physico-chemical characteristics, as well as atrazine application history. Net N mineralization was observed in all soils, with nitrate being the predominant substance formed. The highest values were detected in soils with low atrazine application history. From 2% to 23% of the atrazine-15N was found in the soil inorganic-N pool, the highest values being detected after 9 weeks in soils with longer atrazine application history and lower indigenous soil N mineralization. The application of atrazine slightly reduced the amount of soil N mineralized and microbial biomass at short term. Soluble carbohydrates and β-glucosidase and urease activity decreased with incubation time, but were not significantly affected by the single application of atrazine. Microbial community structure changed as consequence of both soil type and incubation time, but no changes in the phospholipid fatty acid (PLFA) pattern were detected due to recent atrazine addition at normal doses. The saturated 17- to 20-carbon fatty acids had higher relative abundance in soils with a longer atrazine history and fungal biomass, as indicated by the PLFA 18:2ω6,9, decreased with the incubation time. The results suggested that the PLFA pattern and soil N dynamics can detect the long-term impact of repeated atrazine application to agricultural soils.  相似文献   

10.
Removal of atrazine from water using covalent sequestration   总被引:2,自引:0,他引:2  
Monochlorotriazines including atrazine and its major metabolites, deethylatrazine and deisopropylatrazine, are susceptible to nucleophilic aromatic substitution. Competitive reactions to rank the relative reactivity of nucleophiles with atrazine reveal that constrained secondary amines are the most reactive. When the nucleophile is attached to a solid support, atrazine can be sequestered from solution. As proof of concept, polystyrene resins displaying constrained secondary amines are shown to sequester atrazine, deethylatrazine, and deisopropylatrazine from water. Sequestration can be followed spectrophotometrically or using a liquid chromatography mass spectrometry protocol. The kinetics of sequestration are similar to that of granulated charcoal. Evidence for covalent bond formation comes from control experiments with unreactive herbicides and degradation analysis of the solid support. Using both (1)H NMR spectroscopy and mass spectrometry, covalent adducts are identified in ratios close to what is calculated theoretically. This method for sequestration is effective at removing atrazine from pond water.  相似文献   

11.
A three-month microcosm study was carried out in order to evaluate: (i) the capacity of sorghum plants to phytoextract Cd (50 mg kg−1) and Zn (1000 mg kg−1) from artificially polluted soil and (ii) the possibility of biomonitoring the efficiency of phytoremediation using parameters related to the size, activity and functional diversity of the soil microbial community. Apart from plant and soil (total and bioavailable) metal concentrations, the following parameters were determined: soil physicochemical properties (pH, OM content, electrical conductivity, total N, and extractable P and K), dehydrogenase activity, basal- and substrate-induced respiration (with glucose and a model rhizodeposit solution, both adjusted to 800 mg C kg−1 DW soil and 45.2 mg N kg−1 DW soil), microbial respiration quotient, functional diversity through community level physiological profiles and, finally, seed germination toxicity tests with Lepidium sativum. Sorghum plants were highly tolerant to metal pollution and capable of reaching high biomass values in the presence of metals. In the first two harvests, values of shoot Cd concentrations were higher than 100 mg Cd kg−1 DW, the threshold value for hyperaccumulators. Nonetheless, in the third harvest, the bioconcentration factor was 1.34 and 0.35 for Cd and Zn, respectively, well below the threshold value of 10 considered for a phytoextraction process to be feasible. In general, microbial parameters showed lower values in metal polluted than in control non-polluted soils, and higher values in planted than in control unplanted pots. As a result of the phytoextraction process, which includes both plant growth and metal phytoextraction, the functioning of the phytoremediated soil, as reflected by the values of the different microbial parameters here determined, was restored. Most importantly, although the phytoextracted soil recovered its function, it was still more phytotoxic than the control non-polluted soil.  相似文献   

12.
[目的]分析拔节期水分亏缺对玉米光合特性及物质分配规律的影响,为作物调亏灌溉技术在沙地农田的应用提供理论依据。[方法]在黑河流域中游边缘绿洲新垦沙地农田进行田间试验。[结果](1)玉米拔节期水分亏缺使新垦沙地农田0—40cm土层土壤含水量显著降低,农田CO2浓度升高0.5%,相对湿度降低6%,玉米叶片温度升高了8%;(2)水分亏缺处理玉米叶片净光合速率日均值比正常供水处理降低了74%;水蒸腾速率日均值比正常供水处理降低了79%;(3)水分亏缺处理玉米茎、叶及根系生物量分别比正常供水处理低63%,47%和51%,总干物质积累量比正常供水处理减少了53%。[结论]在沙地农田,作物对土壤水分的反映较为敏感,小幅的土壤含水量降低即造成玉米光合能力的大幅下降,并最终对光合产物的积累和分配产生不利影响。  相似文献   

13.
《Applied soil ecology》2007,35(2-3):93-102
A semi-arid soil treated with different concentrations of formulated atrazine in a laboratory experiment was studied over 45 days, by different biological and molecular parameters (bacterial enumeration (cfu), community level physiological profiles (CLPPs) measured by Biolog® and denaturing gradient gel electrophoresis (DGGE)), to study the bacterial community diversity.Formulated atrazine was almost totally degraded at different concentrations after this incubation time. The number of colony forming units (cfu) for soils with 100 and 1000 mg kg−1 atrazine was significantly (p  0.05) higher than for the control, 1 and 10 mg kg−1 treatments. DGGE banding patterns showed that regardless of time elapsed, concentrations of 10, 100 and 1000 mg kg−1 atrazine in soil, affected the bacterial community compared to control and 1 mg kg−1.The Shannon diversity index (H′) based on CLPP data showed a significant (p  0.05) decrease at atrazine concentrations of 100 and 1000 mg kg−1. The Shannon diversity indices for different guilds of source carbon and the parameters K and r (based on the kinetics of colour formation rather than on the degree of colour development) were related to guilds of carbon substrates and atrazine concentration at a sampling time. The parameter K was very sensitive to atrazine effects on microbial communities.These biological and molecular parameters can be used to monitor changes in soils treated with atrazine at different concentrations, even when the pesticide is degraded.  相似文献   

14.
吸附反应时间对潮土中除草剂阿特拉津吸附行为的影响   总被引:2,自引:0,他引:2  
A batch experiment was performed to investigate nonequilibrium adsorption behavior of atrazine (2-chloro-4-ethylamino-6-isopropylamlno-1,3,5-triazlne) on a fluvo-aquic soil. The amount of atrazine sorbed increased with increasing adsorption contact periods. For a range of initial atrazlne concentrations, the percentage of atrazine sorbed within 24 h ranged from 24% to 77% of the observed total amount sorbed for the longest contact period; when adsorption contact periods were more than 72 h, the deviations in curves fitted using a nonlinear Freundllch equation gradually became less. The opposite trend was observed for the atrazine concentrations in solution. The effect of adsorption contact periods on atrazine adsorption behavior was evaluated by interpreting the temporal variations in linear and nonlinear Freundlich equation parameters obtained from the phase-distribution relationships. As the adsorption contact period increased, the nonlinear Freundlich capacity coefficient kf showed a significant linear increase (r^2 = 0.9063, P 〈 0.001). However, a significant negative linear correlation was observed for the nonlinear coefficient n, a dimensionless parameter (r^2 = 0.5666, P 〈 0.05). Furthermore, the linear distribution coefficient kd ranged from 0.38 to 1.44 and exhibited a significant linear correlation to the adsorption contact period (r^2 = 0.72, P 〈 0.01). The parameters kf and n obtained from a time-dependent isotherm rather than the distribution coefficient kd estimated using the linear Freundlich equation were more appropriate to predict the herbicide residue in the field and thus more meaningful for environmental assessment.  相似文献   

15.
The efficiency of the fumigation extraction method on the determination of soil microbial biomass carbon and ninhydrin-N was tested in three different soils (UK grassland, UK arable, Chinese arable) amended with black carbon (biochar or activated charcoal). Addition of activated charcoal to soil resulted in a significant decrease in K2SO4 extractable carbon and ninhydrin-N in all three soils, whereas the addition of biochar generally did not. A lower concentration of the extraction reagent (0.05 M vs. 0.5 M K2SO4) resulted in a significantly lower extraction efficiency in the grassland soil. The extraction efficiency of organic carbon was more affected by black carbon than that of ninhydrin-N, which resulted in a decreased biomass C/ninhydrin-N ratio. The impact of black carbon on the extraction efficiency of soil microbial biomass depended on the type of black carbon, on the concentration of the extraction medium and on soil type.  相似文献   

16.
Effects of charcoal production on soil physical properties in Ghana   总被引:15,自引:0,他引:15  
Charcoal production, widespread in Ghana like in other W African countries, is a major driver of land‐cover change. Effects of charcoal production on soil physical, including hydrological, properties, were studied in the forest–savannah transition zone of Ghana. Core and composite samples from 12 randomly selected sites across the width of Kotokosu watershed were taken from 0–10 cm layer at charcoal‐site soils and adjacent field soils (control). These were used to determine saturated hydraulic conductivity (Ksat), bulk density, total porosity, soil texture, and color. Infiltration rates, surface albedo, and soil‐surface temperature were also measured on both sites. The results showed that the saturated hydraulic conductivity of soils under charcoal kilns increased significantly (p < 0.01) from 6.1 ± 2.0 cm h–1 to 11.4 ± 5.0 cm h–1, resulting to a relative increase of 88%. Soil color became darkened under charcoal kilns with hue, value, and chroma decreasing by 8%, 20%, and 20%, respectively. Bulk density on charcoal‐site soils reduced by 9% compared to adjacent field soils. Total porosity increased from 45.7% on adjacent field soils to 50.6% on earth kilns. Surface albedo reduced by 37% on charcoal‐site soils while soil‐surface temperature increased up to 4°C on average. Higher infiltration rates were measured on charcoal‐site soils, which suggest a possible decrease in overland flow and less erosion on those kiln sites.  相似文献   

17.
《Soil biology & biochemistry》2001,33(12-13):1599-1611
Aggregate dynamics and their relationship to the microbial community have been suggested as key factors controlling SOM dynamics. Dry–wet (DW) cycles are thought to enhance aggregate turnover and decomposition of soil organic matter (SOM), particularly in tilled soils. The objective of this study was to evaluate the effects of DW cycles on aggregate stability, SOM dynamics, and fungal and bacterial populations in a Weld silt loam soil (Aridic Paleustoll). Samples, taken from 250 μm sieved air-dried soil (i.e. free of macroaggregates > 250 μm), were incubated with 13C-labeled wheat residue. In one set of soil samples, fungal growth was suppressed using a fungicide (Captan) in order to discern the effect of dry–wet cycles on fungal and bacterial populations. Aggregate formation was followed during the first 14 d of incubation. After this period, one set of soil samples was subjected to four DW cycles, whereas another set, as a control, was kept at field capacity (FC). Over 74 d, total and wheat-derived respiration, size distribution of water stable aggregates and fungal and bacterial biomass were measured. We determined native and labeled C dynamics of three particulate organic matter (POM) fractions related to soil structure: the free light fraction (LF), and the coarse (250–2000 μm) and fine (53–250 μm) intra-aggregate POM fraction (iPOM). In the fungicide treated soil samples, fungal growth was significantly reduced and no large macroaggregates (> 2 mm) were formed, whereas without addition of fungicide, fungi represented the largest part of the microbial biomass (66%) and 30% of the soil dry weight was composed of large macroaggregates. During macroaggregate formation, labeled free LF-C significantly decreased whereas labeled coarse iPOM-C increased, indicating that macroggregates are formed around fresh wheat residue (free LF), which is consequently incorporated and becomes coarse iPOM. The first drying and wetting event reduced the amount of large macroaggregates from 30 to 21% of the total soil weight. However, macroaggregates became slake-resistant after two dry-wet cycles. Fine iPOM-C was significantly lower in soil after two dry–wet cycles compared to soil kept at FC. We conclude that more coarse iPOM is decomposed into fine iPOM in macroaggregates not exposed to DW cycles due to a slower macroaggregate turnover. In addition, when macroaggregates, subjected to dry–wet cycles, became slake-resistant (d 44) and consequently macroaggregate turnover decreased, fine iPOM accumulated. In conclusion, differences in fine iPOM accumulation in DW vs. control macroaggregates are attributed to differences in macroaggregate turnover.  相似文献   

18.

Background, aim, and scope  

Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) is one of the most widely used herbicides for broadleaf weed and certain annual grass controls and is popular because of its effectiveness and low cost. Losses of atrazine from agricultural lands into adjacent surface water and underlying groundwater have raised public concerns. Several computer models have been developed for atrazine runoff in watersheds. One limitation for most of these models, however, is that vast amounts of input parameters are required for simulations. These input parameters are sometimes difficult to obtain through the experimental measurements for model calibrations, validations, and applications. Therefore, a need exists to develop a simple and yet a realistic modeling tool that can be used for effectively investigating atrazine dynamics in agricultural soils. This study was designed to meet this need.  相似文献   

19.
Commercial atrazine formulations commonly contain nonionic surfactants that serve as solubilizing and wetting agents for enhancing the stability and efficacy of the herbicide. The fate of atrazine in soils has been extensively investigated; yet, few studies have considered the effects of formulation components on the fate of atrazine in soils. In this study, we investigated the influence of the nonionic surfactant, Brij 35 (Brij), on the sorption of atrazine on Ca- and K-saturated samples of a reference smectite, Panther Creek (PC). In general, Brij concentrations of 50 and 200 mg L(-1) had little effect on atrazine sorption, but sorption was substantially inhibited by Brij concentrations of 2100 mg L(-1). For Brij concentrations of 6300 mg L(-1), atrazine sorption was intermediate between that observed for the 200 and 2100 mg L(-1) Brij systems. Brij molecules themselves were very strongly sorbed by PC, with sorption maxima exceeding 200 g kg(-1). X-ray diffraction analysis of Brij-treated PC indicated that the sorbed Brij was intercalated into interlayers of the smectite. At Brij concentrations of 2100 mg L(-1), Brij competed with atrazine for interlayer sorption sites. In contrast, at the initial Brij concentration of 6300 mg L(-1), the clay interlayers were largely filled with Brij, and excess Brij probably accumulated on external surfaces of the clay as surface micelles. We hypothesize that atrazine partitioning into surfactant micelles on external surfaces of the clay led to enhanced retention by the solid phase.  相似文献   

20.
Amendments are frequently added to agricultural soils to increase organic matter content. In this study, we examined the influence of alperujo, an olive oil mill waste, on the availability of two triazine herbicides, terbuthylazine and atrazine, in two different sandy soils, one from Sevilla, Spain, and the other from Minnesota. The effect of aging on herbicide sorption and bioavailability was also studied. Soils were amended with alperujo at a rate of 3-5% (w:w) in laboratory studies. Apparent sorption coefficients for the triazine herbicides were calculated as the ratio of the concentrations of each herbicide sequentially extracted with water, followed by aqueous methanol, at each sampling time. These data showed greater sorption of terbuthylazine and atrazine in amended soils as compared to nonamended soils, and an increase in the amount of herbicide sorbed with increasing aging time in nonamended soils. The triazine-mineralizing bacterium Pseudomonas sp. strain ADP was used to characterize triazine bioavailability. Less mineralization of the herbicides by Pseudomonas sp. strain ADP was observed in soils amended with alperujo, as compared to the unamended soils, and, despite the increase in sorption with aging in unamended soils, herbicide mineralization also increased in this case. This has been attributed to Pseudomonas sp. strain ADP first using alperujo as a more readily available source of N as compared to the parent triazines. In summary, addition of alperujo to the soils studied was shown to increase triazine herbicides sorption and hence to reduce its availability and potential to leach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号