首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the objective of finding floral markers for the determination of the botanical origin of acacia (robinia) honey, the phytochemicals present in nectar collected from Robinia pseudacacia flowers were analyzed by high-performance liquid chromatography-tandem mass spectrometry. Eight flavonoid glycosides were detected and characterized as kaempferol combinations with rhamnose and hexose. Acacia honey produced in the same location where the nectar was collected contained nectar-derived kaempferol rhamnosides. This is the first time that flavonoid glycosides have been found as honey constituents. Differences in the stability of nectar flavonoids during honey elaboration and ripening in the hive were shown to be due to hydrolytic enzymatic activity and to oxidation probably related to hydrogen peroxide (glucose-oxidase) activity. Acacia honeys contained propolis-derived flavonoid aglycones (468-4348 microg/100 g) and hydroxycinnamic acid derivatives (281-3249 microg/100 g). In addition, nectar-derived kaempferol glycosides were detected in all of the acacia honey samples analyzed (100-800 microg/100 g). These flavonoids were not detected in any of the different honey samples analyzed previously from different floral origins other than acacia. Finding flavonoid glycosides in honey related to floral origin is particularly relevant as it considerably enlarges the number of possible suitable markers to be used for the determination of the floral origin of honeys.  相似文献   

2.
To select and establish floral biomarkers of the botanical origin of Diplotaxis tenuifolia honeys, the flavonoids and glucosinolates present in bee-deposited nectar collected from hive combs (unripe honey) and mature honey from the same hives fron which the unripe honey samples were collected were analyzed by LC-UV-PAD-ESI-MS(n). Glycosidic conjugates of the flavonols quercetin, kaempferol, and isorhamnetin were detected and characterized in unripe honey. D. tenuifolia mature honeys contained the aglycones kaempferol, quercetin, and isorhamnetin. The differences between the phenolic profiles of mature honey and freshly deposited honey could be due to hydrolytic enzymatic activities. Aliphatic and indole glucososinolates were analyzed in unripe and mature honeys, this being the first report of the detection and characterization of glucosinolates as honey constituents. Moreover, these honey samples contained different amounts of propolis-derived flavonoid aglycones (1765-3171 μg/100 g) and hydroxycinnamic acid derivatives (29-1514 μg/100 g). Propolis flavonoids were already present in the freshly deposited nectar, showing that the incorporation of these compounds to honey occurs at the early steps of honey production. The flavonoids quercetin, kaempferol, and isorhamnetin and the glucosinolates detected in the samples could be used as complementary biomarkers for the determination of the floral origin of Argentinean Diplotaxis honeys.  相似文献   

3.
With the aim of finding methods that could constitute a solid alternative to melissopalynological and physicochemical analyses to determine the botanical origin (floral or honeydew) of honeys, the free amino acid content of 46 honey samples has been determined. The honeys were collected in a small geographic area of approximately 2000 km(2) in central Spain. Twenty-seven honey samples were classified as floral and 19 as honeydew according to their palynological and physicochemical analyses. The resulting data have been subjected to different multivariant analysis techniques. One hundred percent of honey samples have been correctly classified into either the floral or the honeydew groups, according to their content in glutamic acid and tryptophan. It is concluded that free amino acids are good indicators of the botanical origin of honeys, saving time compared with more tedious analyses.  相似文献   

4.
Honey adulterations can be carried out by addition of inexpensive sugar syrups, such as high fructose corn syrup (HFCS) and inverted syrup (IS). Carbohydrate composition of 20 honey samples (16 nectar and 4 honeydew honeys) and 6 syrups has been studied by GC and GC-MS in order to detect differences between both sample groups. The presence of difructose anhydrides (DFAs) in these syrups is described for the first time in this paper; their proportions were dependent on the syrup type considered. As these compounds were not detected in any of the 20 honey samples analyzed, their presence in honey is proposed as a marker of adulteration. Detection of honey adulteration with HFCS and IS requires a previous enrichment step to remove major sugars (monosaccharides) and to preconcentrate DFAs. A new methodology based on yeast (Saccharomyces cerevisiae) treatment has been developed to allow the detection of DFAs in adulterated honeys in concentrations as low as 5% (w/w).  相似文献   

5.
Flavonoids of nine Australian monofloral Eucalyptus honeys have been analyzed and related to their botanical origins. The mean content of total flavonoids varied from 1.90 mg/100 g of honey for stringybark (E. globoidia) honey to 8.15 mg/100 g of honey for narrow-leaved ironbark (E. crebra) honey, suggesting that species-specific differences occur quantitatively among these Eucalyptus honeys. All of the honey samples analyzed in this study have a common flavonoid profile comprising tricetin (5,7,3',4',5'-pentahydroxyflavone), quercetin (3,5,7,3',4'-pentahydroxyflavone), and luteolin (5,7,3',4'-tetrahydroxyflavone), which, together with myricetin (3,5,7,3',4',5'-hexahydroxyflavone) and kaempferol (3,5,7,4'-tetrahydroxyflavone), were previously suggested as floral markers for European Eucalyptus honeys. Thus, flavonoid analysis could be used as an objective method for the authentication of the botanical origin of Eucalyptus honeys. Moreover, species-specific differences can also be found in the composition of honey flavonoid profiles. Among these honeys, bloodwood (E. intermedia) honey contains myricetin and tricetin as the main flavonoid compounds, whereas there is no myricetin detected in yapunyah (E. ochrophloia), narrow-leaved ironbark (E. crebra), and black box (E. largiflorens) honeys. Instead, these types of Eucalyptus honeys may contain tricetin, quercetin, and/or luteolin as their main flavonoid compounds. Compared to honeys from other geographical origins, the absence or minor presence of propolis-derived flavonoids such as pinobanksin, pinocembrin, and chrysin in Australian honeys is significant. In conclusion, these results demonstrate that a common flavonoid profile exists for all of the Eucalyptus honeys, regardless of their geographical origins; the individual species-specific floral types of Eucalyptus honey so common in Australia could be possibly differentiated by their flavonoid profile differences, either qualitatively or quantitatively or both.  相似文献   

6.
Analysis of organic acids in strawberry-tree (Arbutus unedo) honey showed the presence of an unknown acid as the main constituent. This compound was isolated and identified as homogentisic acid (2, 5-dihydroxyphenylacetic acid) by MS and NMR techniques. Its average content in honey was 378 +/- 92 mg/kg. Analysis of nectar confirmed the floral origin of the compound found in honey. Since this acid was not detected in any of the different monofloral honeys, it could be used as a marker of strawberry-tree (A. unedo) honey.  相似文献   

7.
This study was carried out to establish the changes in the free amino acid contents of floral honeys, honeydew honeys, and blend honeys during storage at room temperature and to test the capacity of the amino acids to distinguish the origin of the honeys after storage. For this purpose, 54 artisanal honeys (39 floral, 5 honeydew, and 10 blend) were studied. Samples were taken from recently collected honeys and at 3, 6, 9, 12, 16, 20, and 24 months after harvesting. The contents of most of the free amino acids were found to decrease with storage time, with the greatest reduction observed in the first 9 months. The contents of the amino acids aspartic acid, beta-alanine, and proline increased in the first few months after storage, reaching maximum values at 6 months, suggesting the possible existence of enzymatic activities. The application of stepwise discriminant analysis to the free amino acid content data demonstrated that the contents of the amino acids valine, beta-alanine, gamma-aminobutyric acid, serine, isoleucine, alpha-alanine, ornithine, and glutamine correctly assigned 87% of honeys to their group of origin: floral, honeydew, or blend.  相似文献   

8.
Headspace solid-phase microextraction (SPME), followed by gas chromatography (GC)-mass spectrometry (MS) determination, has been used for the analysis of honey volatiles. Two SPME fibers were employed to study the composition of volatiles from various types of Spanish honeys. The best results were obtained with the Carboxen/PDMS fiber, using a homogenization time of 1 h at 70 degrees C and a sampling period of 30 min. A total of 35 compounds were detected, most of them identified by GC-MS and quantified using external standards. Differences in the composition of honey volatiles were obtained, and these results allowed the differentiation of honeys. However, further studies are necessary to confirm the utility of this technique as an alternative tool for the characterization of the floral origin of honeys.  相似文献   

9.
Strong-cation-exchange, solid-phase extraction of pyrrolizidine alkaloids and their N-oxides from honey samples was followed by reduction of the N-oxides and subsequent analysis of total pyrrolizidine alkaloids using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. A limited survey of 63 preprocessing samples of honey, purposefully biased toward honeys attributed to floral sources known to produce pyrrolizidine alkaloids, demonstrated levels of pyrrolizidine alkaloids up to approximately 2000 parts per billion (ppb) in a sample attributed to Echium plantagineum. Up to 800 ppb pyrrolizidine alkaloids was detected in some honeys not attributed by the collector to any pyrrolizidine alkaloid-producing floral source. No pyrrolizidine alkaloids were detected in approximately 30% of the samples in this limited study, while some honeys showed the copresence of pyrrolizidine alkaloids from multiple floral sources such as E. plantagineum and Heliotropium europaeum. In addition, retail samples of blended honeys (with no labeling to suggest that pyrrolizidine alkaloid-producing floral sources were used in the blends) have been shown to contain up to approximately 250 ppb pyrrolizidine alkaloids.  相似文献   

10.
The potential of Fourier transform mid-infrared spectroscopy (FT-MIR) using an attenuated total reflectance (ATR) cell was evaluated for the authentication of 11 unifloral (acacia, alpine rose, chestnut, dandelion, heather, lime, rape, fir honeydew, metcalfa honeydew, oak honeydew) and polyfloral honey types (n = 411 samples) previously classified with traditional methods such as chemical, pollen, and sensory analysis. Chemometric evaluation of the spectra was carried out by applying principal component analysis and linear discriminant analysis, the error rates of the discriminant models being calculated by using Bayes' theorem. The error rates ranged from <0.1% (polyfloral and heather honeys as well as honeydew honeys from metcalfa, oak, and fir) to 8.3% (alpine rose honey) in both jackknife classification and validation, depending on the honey type considered. This study indicates that ATR-MIR spectroscopy is a valuable tool for the authentication of the botanical origin and quality control and may also be useful for the determination of the geographical origin of honey.  相似文献   

11.
Fourier transform near-infrared spectroscopy (FT-NIR) was evaluated for the authentication of eight unifloral and polyfloral honey types (n = 364 samples) previously classified using traditional methods such as chemical, pollen, and sensory analysis. Chemometric evaluation of the spectra was carried out by applying principal component analysis and linear discriminant analysis. The corresponding error rates were calculated according to Bayes' theorem. NIR spectroscopy enabled a reliable discrimination of acacia, chestnut, and fir honeydew honey from the other unifloral and polyfloral honey types studied. The error rates ranged from <0.1 to 6.3% depending on the honey type. NIR proved also to be useful for the classification of blossom and honeydew honeys. The results demonstrate that near-infrared spectrometry is a valuable, rapid, and nondestructive tool for the authentication of the above-mentioned honeys, but not for all varieties studied.  相似文献   

12.
Fast protein liquid chromatography on a Superdex 75 HR column has been applied to analyze the proteins of 29 honeys, 12 of floral origin and 17 from honeydew. The molecular masses were comprised between 13100 and 94000 Da. Seven peaks have been separated; four of them were present in all of the honeys, and three were only present in some honeys. Direct observation of the chromatograms of the floral and honeydew honeys did not reveal any information about their botanical origins. However, both types of honeys can be distinguished with the percentages of the areas of four of the seven chromatographic peaks obtained.  相似文献   

13.
HPLC-DAD-MS/MS chromatograms of thistle (Galactites tomentosa Moench) unifloral honeys, previously selected by sensory evaluation and melissopalynological analysis, showed high levels of two compounds. One was characterized as phenyllactic acid, a common acid found in honeys, but the other compound was very unusual for honeys. This compound was extracted from honey with ethyl acetate and purified by SPE using C(18), SiOH, and NH(2) phases. Its structure was elucidated on the basis of extensive 1D and 2D NMR experiments as well as HPLC-MS/MS and Q-TOF analysis, and it was identified as lumichrome (7,8-dimethylalloxazine). Lumichrome is known to be the main product of degradation obtained in acid medium from riboflavin (vitamin B(2)), and this is the first report of the presence of lumichrome in honeys. Analysis of the G. tomentosa raw honey and flowers extracts confirmed the floral origin of this compound. The average amount of lumichrome in thistle honey was 29.4 ± 14.9 mg/kg, while phenyllactic acid was 418.6 ± 168.9 mg/kg. Lumichrome, along with the unusual high level of phenyllactic acid, could be used as a marker for the botanical classification of unifloral thistle (G. tomentosa) honey.  相似文献   

14.
Little is known about the individual components of honey that are responsible for its antioxidant activity. The present study was carried out to characterize the phenolics and other antioxidants present in honeys from seven floral sources. Chromatograms of the phenolic nonpolar fraction of the honeys indicated that most honeys have similar but quantitatively different phenolic profiles. Many of the flavonoids and phenolic acids identified have been previously described as potent antioxidants. A linear correlation between phenolic content and ORAC activity was demonstrated (R(2) = 0.963, p < 0.0001). Honeys were separated by solid-phase extraction into four fractions for sugar removal and separation based on solubility to identify the relative contribution of each fraction to the antioxidant activity of honey. Antioxidant analysis of the different honey fractions suggested that the water-soluble fraction contained most of the antioxidant components. Specific water-soluble antioxidant components were quantified, including protein; gluconic acid; ascorbic acid; hydroxymethylfuraldehyde; and the combined activities of the enzymes glucose oxidase, catalase and peroxidase. Of these components, a significant correlation could be established only between protein content and ORAC activity (R(2) = 0.674, p = 0.024). In general, the antioxidant capacity of honey appeared to be a result of the combined activity of a wide range of compounds including phenolics, peptides, organic acids, enzymes, Maillard reaction products, and possibly other minor components. The phenolic compounds contributed significantly to the antioxidant capacity of honey but were not solely responsible for it.  相似文献   

15.
The importance of honey has been recently increased because of its nutrient and therapeutic effects, but the adulteration of honey in terms of botanical origin has increased, too. The floral origin of honeys is usually determined using melisso-palynological analysis and organoleptic characteristics, but the application of these techniques requires some expertise. A number of papers have confirmed the possibility of characterizing honey samples by selected chemical parameters. In this study high-resolution nuclear magnetic resonance (HR-NMR) and multivariate statistical analysis methods were used to identify and classify honeys of five different floral sources. The 71 honey samples (robinia, chestnut, citrus, eucalyptus, polyfloral) were analyzed by HR-NMR using both 1H NMR and heteronuclear multiple bond correlation spectroscopy (HMBC). Spectral data were analyzed by application of unsupervised and supervised pattern recognition and multivariate statistical techniques such as principal component analysis (PCA) and general discriminant analysis (GDA). The use of 1H-(13)C HMBC coupled with appropriate statistical analysis seems to be an efficient technique for the classification of honeys.  相似文献   

16.
European Eucalyptus honeys showed a common and characteristic HPLC profile in which the flavonoids myricetin (3,5,7,3',4', 5'-hexahydroxyflavone), tricetin (5,7,3',4',5'-pentahydroxyflavone), quercetin (3,5,7,3',4'-pentahydroxyflavone), luteolin (5,7,3', 4'-tetrahydroxyflavone), and kaempferol (3,5,7, 4'-tetrahydroxyflavone) were identified. Their contents, and relative amounts, in the analyzed honey samples were quite constant and supported their floral origin. In addition, ellagic acid and the propolis-derived flavonoids pinobanksin, pinocembrin, and chrysin were detected in most samples. The contents of these nonfloral phenolics were much more variable as could be expected for their propolis origin. Myricetin, tricetin, and luteolin had not been identified as floral markers in any other honey sample previously analyzed in our laboratory (chestnut, citrus, rosemary, lavender, acacia, rapeseed, sunflower, heather, lime tree, etc.) or reported in the literature, suggesting that these could be useful markers. Only in some individual heather samples produced in Portugal has tricetin previously been detected in minor amounts. These samples, however, were contaminated with Eucalyptus as revealed by their pollen analysis and the lack of tricetin or their glycosides in heather floral nectar. It remains to be established if myricetin, tricetin, and luteolin originate from Eucalyptus floral nectar where the corresponding glycosides should be present.  相似文献   

17.
A method making use of turbulent flow chromatography automated online extraction with tandem mass spectrometry (MS/MS) was developed for the analysis of 4 quinolones and 12 fluoroquinolones in honey. The manual sample preparation was limited to a simple dilution of the honey test portion in water followed by a filtration. The extract was online purified on a large particle size extraction column where the sample matrix was washed away while the analytes were retained. Subsequently, the analytes were eluted from the extraction column onto an analytical column by means of an organic solvent prior to chromatographic separation and MS detection. Validation was performed at three fortification levels (i.e., 5, 20, and 50 microg/kg) in three different honeys (acacia, multiflower, and forest) using the single-point calibration procedure by means of either a 10 or 25 microg/kg calibrant. Good recovery (85-127%, median 101%) as well as within-day (2-18%, median 6%) and between-day (2-42%, median 9%) precision values was obtained whatever the level of fortification and the analyte surveyed. Due to the complexity of the honey matrix and the large variation of the MS/MS transition reaction signals, which were honey-dependent, the limit of quantification for all compounds was arbitrarily set at the lowest fortification level considered during the validation, e.g., 5 microg/kg. This method has been successfully applied in a minisurvey of 34 honeys, showing ciprofloxacin and norfloxacin as the main (fluoro)quinolone antibiotics administered to treat bacterial diseases of bees. Turbulent flow chromatography coupled to LC-MS/MS showed a strong potential as an alternative method compared to those making use of offline sample preparation, in terms of both increasing the analysis throughput and obtaining higher reproducibility linked to automation to ensure the absence of contaminants in honey samples.  相似文献   

18.
The amino acid composition of 53 honey samples from Spain, consisting of 39 floral, 5 honeydew, and 9 blend honeys, has been determined. Physicochemical characteristics, polyphenolic content, amino acid composition, and estimation of the radical scavenging capacity against the stable free radical DPPH of the honey samples were analyzed. The resulting data have been statistically evaluated. The results showed that pH, acidity, net absorbance, electrical conductivity, and total polyphenolic contents of the honeys showed a strong correlation with the radical scavenging capacity. The correlation between the radical scavenging capacity of honey and amino acid contents was high with 18 of the 20 amino acids detected, with correlation values higher than those obtained for polyphenolic content. These results suggest that the amino acid composition of honey is an indicator of the sample's scavenging capacity.  相似文献   

19.
Front-face fluorescence spectroscopy, directly applied on honey samples, was used for the authentication of 11 unifloral and polyfloral honey types (n = 371 samples) previously classified using traditional methods such as chemical, pollen, and sensory analysis. Excitation spectra (220-400 nm) were recorded with the emission measured at 420 nm. In addition, emission spectra were recorded between 290 and 500 nm (excitation at 270 nm) as well as between 330 and 550 nm (excitation at 310 nm). A total of four different spectral data sets were considered for data analysis. Chemometric evaluation of the spectra included principal component analysis and linear discriminant analysis; the error rates of the discriminant models were calculated by using Bayes' theorem. They ranged from <0.1% (polyfloral and chestnut honeys) to 9.9% (fir honeydew honey) by using single spectral data sets and from <0.1% (metcalfa honeydew, polyfloral, and chestnut honeys) to 7.5% (lime honey) by combining two data sets. This study indicates that front-face fluorescence spectroscopy is a promising technique for the authentication of the botanical origin of honey and may also be useful for the determination of the geographical origin within the same unifloral honey type.  相似文献   

20.
A method for analyzing honey samples was developed that enabled the simultaneous detection and identification of pyrrolizidine alkaloids and their N-oxides. Honey samples were treated with methanol or dilute sulfuric acid and then centrifuged to remove insoluble material. Subsequent strong cation exchange, solid-phase extraction of the supernatant provided a fraction that was analyzed for the presence of pyrrolizidine alkaloids and their N-oxides using high-pressure liquid chromatography coupled to electrospray ionization mass spectrometry. The procedure was validated using extracts of Echium plantagineum and authenticated standards of pyrrolizidine alkaloids and their N-oxides from other plant sources. Of several variations of the solid-phase extraction method assessed in this study, the best combination for generic use involved the dilution of honey with 0.05 M sulfuric acid and the subsequent application of the centrifuged solution to solid-phase extraction columns at the rate of a maximum of 10 g of honey per solid-phase extraction column. The method was applied to the analysis of nine floral honeys, five of which were attributed by the apiarist to Echium vulgare. Seven of the honey samples were positive for pyrrolizidine alkaloids and N-oxides characteristic of E. vulgare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号