首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficacy of certain fungicides and non-conventional chemicals against Aspergillus spp. contamination and subsequent aflatoxin production in rice was investigated. Among the 10 fungicides tested, carbendazim, contaf plus, folicur, propiconazole and saaf completely inhibited the growth of all Aspergillus spp. and aflatoxin B1 (AFB1) production at 1 g or ml/kg concentration. Of the five non-conventional chemicals tested, benzoic acid effectively inhibited the mycelial growth of Aspergillus flavus (72%) at 4 g/kg, completely inhibited the Aspergillus parasiticus and Aspergillus niger even at 1 g/kg and Aspergillus ochraceus at 4 g/kg concentration. Vanillin completely reduced the AFB1 production at 4 g/kg of seed followed by sodium chloride with out inhibiting the mycelial growth. This study reveals that fungicides and non-conventional chemicals had effectively inhibited the mycelial growth of Aspergillus spp. and AFB1 production in rice.  相似文献   

2.
The aims of this study were to select bacterial isolates from the non-rhizophere of maize soil and to examine their antagonistic activity against Aspergillus section Flavi strains. The first selection was made through ecophysiological responses of bacterial isolates to water activity (aw) and temperature stress. Subsequently, an Index of Dominance test (ID), ecological similarity and inhibition of the lag phase prior to growth, growth rate and aflatoxin B1 accumulation were used as criteria. From the first assay nine bacterial strains were selected. They grew well at 25 and 30 °C, with growth optima between 0.982 and 0.955 aW using 48 h of incubation. There was ecological similarity between the bacterial strains Bacillus subtilis (RCB 3, RCB 6), Pseudomonas solanacearum RCB 5, Amphibacillus xylanus RCB 27 and aflatoxigenic Aspergillus section Flavi strains at 0.982 at 25 °C. The predominant interaction between all selected bacteria and fungi in dual culture was mutual intermingling at 0.982. Mutual inhibition on contact and mutual inhibition at a distance was observed at 0.955 aw, between only four bacteria and some Aspergillus strains. Bacillus subtilis RCB 55 showed antifungal activity against Aspergillus section Flavi strains. Amphibacillus xylanus RCB 27, B.␣subtilis RCB 90 and Sporolactobacillus inulinus RCB 196 increased the lag phase prior to growth and decreased the growth rate of Aspergillus section Flavi strains. Bacillus subtilis strains (RCB 6, RCB 55, RCB 90) and P. solanacearum RCB 110 inhibited aflatoxin accumulation. Bacillus subtilis RCB 90 completely inhibited aflatoxin B1 accumulation at 0.982 aW. These results show that the bacterial strains selected have potential for controlling Aspergillus section Flavi over a wide range of relevant environmental conditions in the stored maize ecosystem.  相似文献   

3.
Fungal incidence and mycotoxin contamination of farm-stored maize were assessed and compared in grain samples from three villages each in two agroecological zones over time. Maize samples were collected at 2 and 4 months after stocking from 72 farmers’ stores in 1996 and 1997 in the Humid Forest (HF) and Western Highlands (WHL) of Cameroon. Mycological assays of these samples revealed several fungal species.Nigrospora spp. were the most prevalent fungi in HF (32%) and WHL (30%) in 1996,Fusarium verticillioides (22%) andF. graminearum (27%) were also isolated from these samples. In the WHL in 1996, no significant difference in fungal incidence was found among villages for samples collected 2 months after harvest, but at 4 months incidence was significantly higherP<0.05). In 1997 the levels of fungal contamination were lower than in 1996. The incidence ofAspergillus spp. was low in general, ranging from 0.0 to 5.9% infected kernels. Analysis with thin layer chromatography detected low levels of aflatoxins in a few samples.F. verticillioides mycotoxin fumonisin Bi (300-26,000 ng/g) andF. graminearum metabolites deoxynivalenol (<100–l,300 ng/g) and zearalenone (<50–110 ng/g) were determined by means of polyclonal antibody competitive direct enzyme-linked immunosorbent assay. A significant correlation (r=0.72; P=0.0001) was found between the incidence ofF. graminearum and the contamination with deoxynivalenol. Storage time (2vs 4 months after stocking) had a significant positive effect (r=0.39; P=0.013) on the level of fumonisin B1. This is the first report of the natural occurrence of these mycotoxins in maize in Cameroon.  相似文献   

4.
The aim of this study was to identify agronomic, ecological and sociocultural factors that could be modified to reduce the risk of aflatoxin contamination of peanuts from western Kenya. Presence of fungi within section Flavi of the genus Aspergillus and levels of total aflatoxin were determined for 436 peanut samples from the Busia and Homa bay districts. A total of 1458 cultures of Aspergillus flavus or A. parasiticus isolated from the samples were assayed for production of aflatoxin B1, B2, G1 and G2. Associations among the incidences of fungal species, incidences of samples with ≥10 μg kg?1 aflatoxin, production of specific aflatoxin types and various agronomic, ecological and sociocultural factors were modelled with chi‐squared and logistic regression methods. The predominant species were A. flavus L‐strain (78% incidence), A. flavus S‐strain (68%) and A. niger (65%). Occurrence of A. caelatus, A. alliaceus and A. tamarii in Kenya was also documented. Samples from the Busia district were three times (odds ratio = 3·01) as likely to contain ≥10 μg kg?1 of total aflatoxin as were samples from the Homa bay district, while samples containing A. flavus S‐strain were 96% more likely to exceed this threshold compared with samples from which this fungus was not isolated. Grading, planting improved cultivars and membership of a producer marketing group were negatively associated with the incidence of A. flavus, while crop rotation was negatively correlated with the incidence of B aflatoxins. These sociocultural factors can be modified to reduce the risk of peanut contamination with aflatoxin.  相似文献   

5.
Aspergillus flavus and A. parasiticus are aflatoxin-producing fungi that can infect peanut seeds in field crops. An association between A. parasiticus proteolytic enzyme activities and peanut fungal infection was examined. For this study, a model of inductive and non-inductive culture media to produce A. parasiticus extracellular protease before infection was used. These A. parasiticus cultures were used to infect peanut seeds of cultivars resistant and susceptible to aflatoxin contamination. Peanut seeds of both cultivars exposed to fungi grown on casein medium (inductive medium) showed higher internal and external infection and a higher fungal protease content than those observed on potato dextrose agar (PDA) and sucrose medium (non-inductive media). A further study showed higher fungal colonisation and aflatoxin contamination in seeds of the resistant cultivar pre-incubated with Aspergillus extracellular proteases than in those incubated without proteases. Moreover, protease activities affected the viability of non-infected resistant cultivar seeds, inhibiting germination and radicle elongation and enhancing seed tissue injury. The results strongly suggest that protease production by A. parasiticus is involved in peanut seed infection and aflatoxin contamination resulting in seed tissue damage, affecting seed viability and facilitating the access of fungi through the testa. The analysis of fungal extracellular proteases formed on peanut seed during infection showed that A. flavus and A. parasiticus produced metallo and serine proteases; however, there were differences in the molecular masses of the enzymes between both species. The greatest activity in both species was by serine protease, that could be classified as subtilase.  相似文献   

6.
Field trials were conducted in Kenya with ‘Nakyetengu’, an East African highland banana cultivar (AAA-EA), highly susceptible to banana pests. Regardless of soil fertility levels, incorporation around the plant base of powdered neem(Azadirachta indica A. Juss.) seed or cake at 60-100 g/mat at 4-month intervals, gave better control of the banana weevil,Cosmopolites sordidus (Germar), and of parasitic nematodes, than that achieved with soil application of Furadan 5G (carbofuran) at 60 g/mat at 6-month intervals. Compared with untreated control, fruit yield in most of the neem treatments was significantly higher, particularly during the second cycle of crop production. Neem application conferred a net economic gain, whereas Furadan application proved uneconomical. Application of powdered neem seed or cake at higher rates (200–400 g/mat) at 6-month intervals caused phytotoxicity, resulting in drying up of banana plants before fruiting, or in ‘chokethroat’,i.e., inflorescence emergence failure.  相似文献   

7.
Aflatoxins can cause great economic losses and serious risks to humans and animals health. The largest aflatoxin producers belong to Aspergillus section Flavi and can occur naturally in food commodities. Studies showed that molecular tools as well as the type of sclerotia produced by the strains could be helpful for identification of Aspergillus species and could be correlated with levels of toxin production. The purpose of this work was to characterize the genetic diversity using AFLP technique, the type of sclerotia and the ability of aflatoxin production by isolated strains from corn of different origins in Brazil, and to verify whether qPCR based on aflR and aflP genes is appropriate for estimating the level of aflatoxin production. All the 75 strains were classified as A. flavus and the AFLP technique showed a wide intraspecific variability within them. Regarding sclerotia production, 34% were classified as S and 66% as L type. Among the aflatoxin-producers, 52.8% produced aflatoxin B1, while 47.2% aflatoxins B1 and B2. Statistical analysis showed no correlation between sclerotia production and aflatoxigenicty, and no correlation between the phylogenetic clusters and aflatoxin production. Concerning the relative expression of aflR and aflP, Pearson’s correlation test demonstrated low positive correlation between the expression of the aflR and aflP genes and the production of AFB1 and AFB2, but showed high positive correlation between aflR and aflP expression. In contrast to the other reference strains, A. oryzae ATCC 7282 showed no amplification of aflR and aflP. The results highlight the need for detection of reliable and reproducible markers with a high positive correlation with aflatoxin production.  相似文献   

8.
The spider mites Tetranychus urticae Koch and Panonychus ulmi (Koch) (Tetranychidae) cause severe economic losses to vegetable farms and deciduous fruit orchards in Turkey. One of their predators, the ladybird beetle Stethorus gilvifrons (Muls.) (Col., Coccinellidae), aggregates on mite-infested patches of plants. The present study assessed whether there is a role for herbivore-induced plant volatiles (HIPVs) and/or odors emitted directly from these two mite species in the aggregative response of ladybird beetles. The olfactory responses of the predator females to volatiles from T. urticae- and/or P. ulmi-infested sweet pepper (four cultivars, viz. ‘Demre’, ‘Yalova Carliston’, ‘Kandil Dolma’ and ‘Yag Biberi’), kidney bean (cv. ‘Barbunya’) and apple (M9 rootstock) were investigated using a two-choice olfactometer. Our results showed that HIPVs emitted from both T. urticae- and P. ulmi-infested plants significantly attracted S. gilvifrons adults for all plants except the sweet pepper cv. Yag Biberi. In addition, it was found that volatiles from apple plants infested by T. urticae and, especially, P. ulmi are more attractive for S. gilvifrons females than those emitted by other infested plants. The results also suggest that the odors of T. urticae adults and their products might influence the attraction of S. gilvifrons females.  相似文献   

9.
Sanitation from harvest to storage is a key factor in eliminating sources of infection and reducing levels of mycotoxigenic fungal invasion, and thereby mycotoxin contamination. This study was conducted at Haramaya University, Eastern Ethiopia to investigate the effects of threshing methods on fungal invasion and mycotoxin contamination of sorghum grain. The methods included threshing on bare ground, cow-dung-painted ground, concrete asphalt and canvas. The threshed grain was kept separately in bags in three replications in a completely randomized design and stored for five months. The results revealed that all the sorghum grain samples taken from different threshing methods were contaminated with both Aspergillus and Fusarium species. There were variations in fungal invasion between samples taken immediately after threshing and stored samples. The level of Aspergillus spp. invasion was much higher in the latter in sorghum grain threshed on bare ground. The concentration of aflatoxin B1 was gradually increased, whereas the total fumonisin concentration was decreased with the storage duration both in 2013 and 2014. On stored sorghum grain, the highest (1.97 µg kg?1) and the lowest (0.70 µg kg?1) mean aflatoxin B1 concentrations were recorded from sorghum grains threshed on bare ground and on canvas, respectively. Sorghum grain obtained from canvas threshing method had significantly lower mean total fumonisin content (142.5, 54.9 µg kg?1) than grain from the other methods at threshing. The current work clearly demonstrated the effect that threshing might have on fungal invasion and mycotoxin contamination of sorghum grains. .  相似文献   

10.
Yigal Elad 《Phytoparasitica》1991,19(3):201-209
Difluoromethylornithine (DFMO) — an inhibitor of polyamine biosynthesis, and the polyamine spermidine (Spd) reduced gray mold of tomato, pepper, eggplant, bean andSenecio sp. leaves, and of rose petals by 37–88% when applied at 0.1–1.0 mM each. Higher doses did not result in better control. The disease was also reduced significantly on tomato fruits by 1.0 inM DFMO and by 0.1–1.0 mM Spd, and on cucumber fruits by 0.1–1.0 mM of both compounds, but not on grape berries. The combination of 0.2 mM DFMO with 1.0 mM Spd controlled gray mold ofSenecio sp. and tomato leaves additively better than either treatment alone, whereas this effect was not observed in leaves of lettuce and pepper. Ethylene production was reduced significantly by Spd applied to leaves of tomato and pepper, but not by DFMO. Linear growth and germination of the fungus were affected by lower concentrations of DFMO (ED50 0.12–0.97 and 1.4, respectively) as compared with Spd. Spermidine and DFMO controlled white mold(Sclerotinia sclerotiorum) as effectively as did the fungicide benomyl. Contribution from the Agricultural Research Organization. No. 3195-E, 1991 series.  相似文献   

11.
The effect of microclimate variables on development ofClonostachys rosea and biocontrol ofBotrytis cinerea was investigated on rose leaves and crop residues. C.rosea established and sporulated abundantly on inoculated leaflets incubated for 7–35 days at 10°, 20° and 30°C and then placed on paraquat—chloramphenical agar (PCA) for 15 days at 20°C. On leaflets kept at 10°C, the sporulation after incubation on PCA increased from 60% to 93% on samples taken 7 to 21 days after inoculation, but decreased to 45% on material sampled after 35 days. A similar pattern was observed on leaves incubated at either 20° or 30°C. The sporulation ofC. rosea on leaf disks on PCA was not affected when the onset of high humidity occurred 0, 4, 8, 12 or 16 h after inoculation. However, sporulation was reduced to 54–58% on leaflets kept for 20–24 h under dry conditions after inoculation and before being placed on PCA. The fungus sporulated on 68–74% of the surface of leaf disks kept for up to 24 h at high humidity after inoculation, but decreased to 40–51% if the high humidity period before transferral to PCA was prolonged to 36–48 h. The growth ofC. rosea on leaflets was reduced at low inoculum concentrations (103 and 104 conidia/ml) because of competition with indigenous microorganisms, but at higher concentrations (105 and 106 conidia/ml) the indigenous fungi were inhibited. Regardless of the time of application ofC. rosea in relation toB. cinerea, the pathogen’s sporulation was reduced by more than 99%. The antagonist was able to parasitize hyphae and conidiophores ofB. cinerea in the leaf residues. AsC. rosea exhibited flexibility in association with rose leaves under a wide range of microclimatic conditions, and in reducingB. cinerea sporulation on rose leaves and residues, it can be expected to suppress the pathogen effectively in rose production systems.  相似文献   

12.
Aspergillus section Flavi isolates, predominately A. flavus, from different crops and soils differed significantly in production of aflatoxin and sclerotia. About 50% of the isolates from corn, soil and peanut produced large sclerotia, while only 20% of the rice isolates produced large sclerotia. There was a higher frequency of small sclerotia-producing isolates from rice compared to the other sources and isolates that did not produce sclerotia were significantly less likely to be toxigenic than strains that produced large sclerotia.  相似文献   

13.
Among 153 isolates ofRhizoctonia spp. obtained from 95 soil samples collected from different fields in the USA, 42 (27.5%) isolates were hypovirulent or non-pathogenic on cabbage (tested on tap water agar plus 250 μg/ml chloramphenicol plates). Of these, 14 (33.3% of the np-R) isolates protected >60% of the cabbage seedlings againstR. solani, and the best eight isolates protected 73–95% of the cucumber seedlings. The np-R isolates RU56-8 (AG-P) and RU89-1 [AG-B(o)] induced the highest resistance against hypocotyl challenge inoculation with virulentR. solani (38.3–85.7%), whereas most of the challenged control seedlings (85–100%) collapsed. Similarly, isolates RU56-8 and RU89-1 induced the highest resistance (22.2–87.5%) against hypocotyl challenge inoculation withPythium aphanidermatum, whereas most of the challenged control seedlings collapsed (90–100%). Isolates RU56-8 and RU89-1 significantly reduced the lesion numbers and area/leaf (to 8.9–42.0% of the control) caused by challenge inoculation of the first true leaves withPseudomonas syringae pv.lachrymans. No np-R isolate could be recovered from the upper hypocotyls or from the leaves, indicating that there was no contact between the inducer and the pathogen. Root colonization with some np-R increased seedling tolerance to low soil moisture levels.  相似文献   

14.
The antimicrobial effects of extracts of neem seed (Azadirachta indica A. Juss.) were investigated using microbial growth inhibition assays. A laboratory-prepared neem seed extract along with a commercially available formulated product, were characterized using HPLC, and shown to be effective against a range of bacteria in an agar diffusion assay. The active ingredient,i.e., the unformulated seed extract of the commercial product, also showed activity and this was further investigated in a biochromatogram, using the sensitive bacteriumBacillus mycoides. Results showed antibacterial activity as three discrete inhibition zones that did not correspond to the Rf of the major neem metabolites, azadirachtin, nimbin and salannin. This suggests that these compounds were not antibacterial. The colony radial growth rates of the fungal pathogens that cause ‘take-all’ and ‘snow mould’ disease were both significantly affected when the commercial, unformulated, neem seed extract was incorporated into the growth medium. Experiments in liquid culture suggested that the effect was fungistatic. Conidial germination of the commercially important obligate pathogenSphaerotheca fuliginea (powdery mildew) was reduced to 11%. The results show that neem seed extracts possess antimicrobial activity with notable effects on some fungal phytopathogens. This Work demonstrates that neem seed extracts have potential for controlling both microbial and insect pests. http://www.phytoparasitica.org posting Sept. 16,2001.  相似文献   

15.
Plug seedlings, widely used in cabbage cultivation in Japan, are often infected by seed-borne pathogens, especially the serious pathogen Alternaria brassicicola. Because information on seed infestation is scant in Japan, we investigated fungal infestation in commercial batches of cabbage seeds produced between 1984 and 2001. A total of 123 lots were divided into six groups by production period (1984–1989, 1994–1998, and 2001) and by use or nonuse of fungicide. One hundred seeds from each lot were incubated separately on agar at 25°C to isolate the predominant fungus. Alternaria brassicicola was isolated most frequently, 0%–94% of the seeds depending on seed lot or 6%–21% of the seeds grouped by production period and fungicide treatment. Thus, the pathogen was isolated even from seeds refrigerated for 17 years. Alternaria brassicicola accounted for 57%–95% of all isolated fungi by the group and was higher on older or fungicide-treated seeds. Seeds that were not treated with fungicide in lots grouped by production districts in western Japan were infested with A. brassicicola at a rate of over 12%, higher than that in the eastern region (<4%). Infestation was higher in the warmer areas of Japan. Eighty-five isolates, other than A. brassicicola, produced spots on cabbage cotyledons, although they were not isolated as frequently: less than 5% of seeds by group separated by production period and fungicide treatment. Most of these isolates were Alternaria alternata. This is the first report on the frequency of fungal infestation of commercial cabbage seeds in Japan.  相似文献   

16.
Antibiosis is assumed to be an essential mechanism exerted by potential biocontrol agents (BCAs) of Trichoderma spp. Therefore, in the present study, we report for the first time on the elucidation and production of viridiofungin A (VFA) from T. harzianum isolate T23 cultures and investigate the antifungal potential of VFA and some other secondary metabolites purified from T. harzianum cultures against Fusarium moniliforme. The bioautography assay revealed that T. harzianum isolates T16 and T23 excreted several secondary metabolites with antifungal activity. Following isolation and purification of the antifungal zones, three fractions (F223, F323 and F423) from extracts of isolate T23 and two fractions (F416 and F516) from extracts of isolate T16 exhibited pronounced fungitoxic activity in the bioautography and antibiotic disk assays against Cladosporium spp. and F. moniliforme, respectively. The structure of the antifungal metabolite in fraction F323 was identified as viridiofungin A (VFA), the first report of production of VFA by isolate T23 of T. harzianum. Following cultivation of isolate T23 in PDB medium for 9 days, 94.6 mg l−1 of VFA were determined. VFA and fraction F516 retarded the mycelial growth of F. moniliforme in the non-volatile phase assay by >90% for each 250 μg ml−1 7 days post-inoculation (dpi). While VFA and fraction F416 showed both volatile and non-volatile effects, fraction F516 seemed to exhibit mainly non-volatile activity. Microscopic examination revealed that hyphae of F. moniliforme grown on VFA-amended medium were less branched and appeared thicker than untreated hyphae. Furthermore, in the presence of VFA, formation of chlamydospores by F. moniliforme was increased. Finally, the antifungal spectrum of VFA towards various important plant pathogens was evaluated. Germination of propagules of a variety of fungal pathogens in vitro was differentially inhibited by VFA. While in the presence of 100 μg ml−1 VFA conidial germination of V. dahliae was completely inhibited, a slightly higher concentration (150 μg ml−1) of the inhibitor was required to suppress germination of Phytophthora infestans sporangia or sclerotia of Sclerotinia sclerotiorum. Contrary to several reports in the literature, VFA proved to be fungistatic rather than fungicidal. However, neither VFA nor the other Trichoderma metabolites, such as 6PAP, F416 and F516, exhibited any antibacterial activity against Gram-positive and Gram-negative bacteria.  相似文献   

17.
Dry fungal biomass ofPenicillium chrysogenum (dry mycelium), a waste product of the pharmaceutical industry, was extracted with water and applied to the roots of melon plants before or after inoculation withFusarium oxysporum f.sp.melonis (Font). Seedlings (4–6 days after emergence) treated with either acidic dry mycelium extract (DME) or neutralized dry mycelium extract (NDME) were protected against challenge infection withFom. A single drench with 2–5% DME applied 12–72 h before inoculation provided significant control of the disease compared with water-drenched, challenged seedlings. No protection was seen in plants treated 0–6 h before inoculation or 0–48 h after inoculation. Neither DME nor NDME (0.5–5%) had any effect on fungal growthin vitro, which implied that disease controlin vivo was mediated by induced resistance. The resistance induced by DME protected melon plants not only against race 1,2, but also against the three other races of the pathogen, indicating a race-non-specific resistance againstFom. Both DME and NDME significantly increased peroxidase activity and free L-proline content in seedlings 12 h and 48 h after soil drench, respectively. Resistance to Fusarium wilt was significantly associated with elevated levels of peroxidase activity but not with free L-proline content. Thus, peroxidase might be involved in the defense mechanisms activated by DME or NDME. http://www.phytoparasitica.org posting Aug. 31, 2001.  相似文献   

18.
In the course of pre- and postharvest epidemiological studies on bulbs contamination byAspergillus niger, two Sudanese onion cultivars were tested: ‘Saggai Red’ and ‘El-Hilo White’.A. niger spores, whether seedborne, soilborne or airborne, were avirulent to the healthy growing onion plants. The fungus heavily contaminated the dead onion tissues, mainly the dead leaves followed by the dry scales, the dead roots and, to a lesser extent, the bulb necks, preferring the red-skinned cultivar to the white one. The initial spores carried from naturally contaminated field soil on the dead tissues could germinate and produce massive numbers of new spores on bulbs stored at average climatic conditions of Sudan (23–39°C, 29–93% relative humidity). Under laboratory-controlled conditions, optimal growth occurred at 75–85% r.h. on bulbs with dry scales and maximum losses occurred at 100% r.h. and ambient temperature. Underin vitro conditions, the optimal growth and sporulation temperature forA. niger was in the range of 30–35°C. Early harvesting and removal of the dead onion tissues improved bulb storability in aseptic stores under low temperature and relative humidity conditions. http://www.phytoparasitica.org posting Oct. 20, 2003.  相似文献   

19.
Following incubation of fenugreek(Trigonella foenum- graecum L.) seeds on potato dextrose agar and moist filter papers at 28±2°C, 59 species and 11 varieties belonging to 21 genera of fungi were determined as seedborne in fenugreek crops. Among these isolates, 45 species and 9 varieties are new records for this crop; and two species are new to the mycoflora of Sudan:Aspergillus stellifer andEmericella variecolor. The genusAspergillus (15 species and 8 varieties) is the most prevalent, followed byDrechslera (3 species),Rhizopus (3 species),Alternaria andFusarium (6 species each),Emericella (4 species and 2 varieties)Cladosporium andPenicillium (4 species each),Chaetomium (3 species) andCurvularia (3 species and one variety). The remaining 11 genera displayed low level of infection. Of the common pathogens of fenugreek plants,Fusarium oxysporum (2.13%) was recovered from the seeds of this crop. Thin layer Chromatographic analysis of chloroform extracts of 13 seed samples showed that two samples were naturally contaminated with aflatoxins B1, B2, G1 and G2 (7.5–35.2 μg/kg). http://www.phytoparasitica.org posting Nov. 4, 2001.  相似文献   

20.
Musabyimana  T.  Saxena  R. 《Phytoparasitica》1999,27(1):43-49
Soil applications of powdered neem seed or neem cake at 100 g/plant at planting and, subsequently, at 3-month intervals, reduced the populations ofPratylenchus goodeyi Sher & Allen andMeloidogyne spp. on par with Furadan 5G (carbofuran) applied at 40 g/plant at planting and then at 6-month intervals to banana plants grown in 100-/ containers with controlled levels of banana nematode infestations. Eight months after planting, banana plants treated with powdered neem cake, seed or kernel or with neem oil had 4 to 95 times fewer parasitic nematodes than the untreated control. However, only neem cake powder or neem seed powder applied to unpared banana plants kept the nematode population below the economic threshold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号