首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究土壤干湿变化对绿洲农田土壤氧化亚氮(N_2O)排放的影响,可优化绿洲农田灌溉施肥措施、减少绿洲农田土壤N_2O排放。基于室内培养试验,将100 g风干土置于730 m L马氏瓶中,放入25℃培养箱内培养,采用称重法严格控制施氮量和土壤含水量,通过注射器连接三通阀抽取瓶内气体,测定不同施氮量和干湿变化下绿洲农田土壤N_2O排放量,结果表明:(1)土壤干湿变化显著影响农田土壤N_2O排放,未施氮情况下,干燥处理下土壤N_2O累积排放量是湿润处理下土壤N_2O累积排放量的1.28倍;(2)与未施氮处理相比,施氮显著促进了土壤N_2O排放,施肥土壤N_2O排放速率在施氮后0~4 d内出现排放高峰,随后显著降低;(3)施氮后湿润土壤N_2O排放速率显著高于干燥条件下的土壤N_2O排放速率(P0.05),湿润土壤N_2O累积排放量为2.07 mg·kg~(-1),是干燥条件下土壤N_2O累积排放量的1.16倍。因此,在绿洲农田滴灌施肥期间,适当增加滴灌施肥的时间间隔调控土壤干湿状况,可有效减少绿洲农田土壤N_2O的排放。  相似文献   

2.
硝、铵态氮肥对旱地土壤氧化亚氮排放的影响   总被引:5,自引:0,他引:5  
用静态箱法在田间研究了黄土性土壤不同水分条件下施用硝态氮肥和铵态氮肥后土壤N2O的排放特点,并对包括温度、pH、水分等因子的影响进行了探讨.结果表明:在水分含量为田间持水量的90%和70%的条件下,铵态氮肥处理土壤的平均N2O排放量分别为233.6±165.4 μg/(m2·h)和166.4±153.3 μg/(m2·h);而施用硝态氮肥时则仅为75±40.2 μg/(m2·h)和49.27±17.0 μg/(m2·h).施肥后短期内,铵态氮肥排放的N2O量显著高于硝态氮肥处理,由此可说明黄土性土壤表层土壤N2O的主要来源是土壤氮的硝化过程.在自然矿化条件下黄土性土壤N2O的排放量约为17.0 μg/(m2·h).如果把两个水分处理相比较,土壤水分对铵态氮肥处理土壤N2O的排放影响不明显,而对施用硝态氮肥的土壤有明显影响,高水分处理更利于土壤反硝化作用的进行从而增加了土壤N2O的排放量.施用不同肥料种类在施肥后短期内影响土壤的pH值和有效NO-3-N、NH 4-N含量,而反过来土壤水分含量、土壤pH以及土壤温度均不同程度地影响着土壤N2O的产生和排放.  相似文献   

3.
通过研究苹果园生态条件下减施化学氮肥与有机无机配施N_2O排放规律,为准确估算渭北旱塬区域N_2O排放提供数据支撑。采用静态箱-气相色谱法对渭北旱塬苹果园不同施肥制度下(2017年10月—2018年10月)N_2O排放通量进行田间监测。结果表明:苹果膨大期是渭北旱塬苹果园N_2O排放的主要时期;各施肥处理N_2O年累积排放总量在1.14~4.46 kg·hm~(-2)之间,与常规施肥处理相比,优化减氮和有机无机配施处理N_2O排放总量分别降低了43.3%、42.6%;常规高氮、优化减氮与有机无机配施处理年排放系数分别为0.27%、0.22%、0.22%;温度是限制苹果成熟期和膨大期土壤N_2O排放的决定因子;施肥后,随着时间的推移,底物浓度不足将逐渐成为限制N_2O排放的重要因子。因此,有机无机配施作为苹果园推荐施肥模式的同时能够显著降低N_2O排放,并且降雨前施肥可以降低N_2O排放峰值。  相似文献   

4.
为探讨不同施肥方式下农田碳平衡规律,研究农田排放到大气CO2的“源”、“汇”特征,依托39 a肥料定位试验测定了秸秆和氮磷肥配施(SNP)、农家肥和氮磷肥配施(MNP)、单施农家肥(M)、氮磷肥配施(NP)、单施氮肥(N)和不施肥(CK)等6种不同施肥方式下西北黄土旱塬春玉米拔节期到成熟期的土壤呼吸。结果表明:长期不同施肥方式能够影响春玉米农田土壤CO2排放,不同生育时期排放特征不同,呈先升高后下降趋势,即开花期达到排放高峰,SNP、MNP和M的CO2排放通量分别达到3 650.54、2 980.50 mg·m-2·h-1和2 167.61 mg·m-2·h-1,与CK相比,分别增加了340.32%、259.51%和161.45%。不同施肥处理间表现为SNP>MNP>M>NP>N>CK。整个测定时期内土壤CO2平均排放速率表现为SNP>MNP>M>NP>N>CK,土壤呼吸中根系呼吸的贡献率波动在31%~77%之间。6种不同施肥处理农田土壤均表现为大气CO2排放的“汇”,不同施肥处理农田碳汇强弱不同,表现为SNP>M>MNP>NP>N>CK。  相似文献   

5.
以新疆绿洲棉田土壤为研究对象,通过室内控制试验,针对棉花秸秆结合氮肥等不同处理进行了为期63 d的CO_2和N_2O排放观测,探讨秸秆和氮肥施用对土壤有机碳和全氮含量及碳氮排放系数的影响。结果表明:秸秆显著增加CO_2和N_2O排放量,而氮肥对CO_2排放量无显著影响,但却显著增加了N_2O排放量。在施加秸秆和氮肥处理下,CO_2排放速率在前16 d较快,而N_2O排放速率在前3~5 d较快。施加秸秆均能增加土壤有机碳和全氮含量;而施加氮肥降低了土壤有机碳含量,提高了土壤全氮含量。在不同量秸秆和氮肥的配比下,计算得出:秸秆还田产生的有机碳约有47.67%(均值)以CO_2形式排出,其中在全量秸秆和低氮量水平下最高,约为48.71%和50.72%;秸秆碳的排放系数平均值为35.2%,但不是一个常数;秸秆氮的排放系数随施氮量增加而增大,与秸秆量没有直接关系;尿素氮的排放系数均随秸秆量和氮量的增加而增大。  相似文献   

6.
为探讨不同秸秆还田模式下,氮肥管理对夏玉米产量和氮素利用的影响,试验设置施氮措施和秸秆还田模式2个因素。施氮措施设稳定性氮肥施氮量F1(180 kg·hm-2)、尿素减量施氮量F2(180 kg·hm-2)和尿素农户传统施氮量F3(270 kg·hm-2)3个水平;秸秆还田模式设秸秆不还田(N)和秸秆还田(S)2个水平,共6个处理。结果表明:在不同秸秆还田模式下,各施氮措施的玉米产量在8 708.16~9 626.71 kg·hm-2之间,处理间无显著性差异(P>0.05)。在不同施氮措施下,秸秆还田(S)的产量均高于秸秆不还田(N),增幅为4.96%~8.94%(P>0.05)。施氮措施对土壤N2O排放量有显著影响(P<0.05),在不同秸秆还田模式下,稳定性氮肥措施F1和尿素减量措施F2的土壤N2O排放量显著低于F3尿素农户施氮措施,降幅为29.26%~68.52%,且F1和F2之间存在显著差异(P<0.05)。在不同施氮措施下,除了SF2和NF2处理之间的N2O排放量有显著性差异(1.53 kg·hm-2和1.91 kg·hm-2),其他秸秆还田模式处理之间均无显著性差异(P>0.05)。不同秸秆还田模式下,各施氮措施的氨挥发累积量在1.61~15.40 kg·hm-2之间,表现为:F3氨挥发累积量最高(14.37 kg·hm-2和15.40 kg·hm-2),F2氨挥发累积量次之(11.80 kg·hm-2和12.49 kg·hm-2),F1氨挥发累积量最低(1.61 kg·hm-2和1.79 kg·hm-2),各施氮措施间达到显著水平(P<0.05)。在不同施氮措施下,秸秆还田(S)的氨挥发累积量较秸秆不还田(N)提高5.85%~11.18%,但除了SF3和NF3的氨排放量有显著性差异,其他处理间均无显著性差异。不同秸秆还田模式下,各施氮措施0~100 cm土层硝态氮含量均表现出F3>F2>F1;秸秆还田处理(SF1、SF2和SF3)的土壤硝态氮含量显著低于无秸秆还田(NF1、NF2和NF3),分别显著降低了65.65%、144.79%和128.48%。因此,综合考虑作物产量和农田氮素损失,秸秆还田+稳定性氮肥处理(SF1)是本研究地区夏玉米稳产减排的最优试验处理组合。  相似文献   

7.
以半湿润区中等肥力土垫旱耕人为土为供试土壤,在冬小麦不同生育期采集0~100 cm土层土壤样品、作物及杂草的样品,研究不同施肥及杂草处理对半湿润农田生态系统氮肥损失及氮素平衡的影响。试验结果表明,土壤中残留NO3--N累积量均随施氮量增加而增加;NH4 -N累积量随施氮量变化不显著,总矿质氮随施氮量的变化趋势与硝态氮基本一致;农田系统中杂草的存在,能在一定程度上增加土体残留矿质氮(Nmin)累积量,且在高施氮处理下影响较大;在全生育期不清除杂草(A)、越冬前清除杂草(B)、返青期清除杂草(C)和拔节期清除杂草(D)等杂草处理下,杂草吸氮量平均值分别为2.38、1.60、4.72和4.54 kg N/hm2,占农田植物地上部分(作物 杂草)总吸氮量的1.97%、1.38%、3.98%和3.76%,返青期杂草吸氮量最高,其值是越冬期杂草吸氮量的2.94倍;氮肥损失随施氮量增加而呈线性相关,考虑杂草时,相关系数R2=0.9802。不同杂草处理间氮素表观损失量为59.9~96.1 kg/hm2,不同施氮处理间表观损失量为32.9~128.0 kg/hm2;不同时期清除杂草对氮损失和氮肥利用率影响显著,而越冬期清除杂草的影响效果最大;本试验条件下,杂草的存在对氮素平衡影响不显著。  相似文献   

8.
不同施氮量和施氮方式下田间氨挥发损失及其影响因素   总被引:18,自引:1,他引:17  
为明确干旱、半干旱区农田氨挥发损失规律及其影响因素,采用通气法研究黄淮海平原地区河南封丘国家农业生态实验站冬小麦季不同施氮量与不同施氮方式下基、追肥施用后的土壤氨挥发损失情况,同时测定了表层土壤(0~5 cm)的NH+4-N浓度、pH值和温度等氨挥发影响因素的动态变化。结果表明:肥料氮素的氨挥发损失主要发生在施肥后的1周内。不同施氮方式下土壤氨挥发速率、氨挥发累积量及其占施氮量的比率均随施氮量的增大而增大。氮肥在土壤中的深度对氨挥发有显著影响,基肥时期除150 kg/hm2施N量外,氨挥发累积量沟施法明显大于传统施氮法;追肥期不同施氮量均为传统施氮法大于沟施法。传统施氮法在整个冬小麦季节氨挥发损失累积量占施N量的4.78%~6.72%,沟施法为4.31%~11.24%。相关分析显示,施肥后表层土壤NH+4-N浓度与氨挥发速率呈正相关关系,而pH值则与其呈负相关关系。另外,气温、降雨气候条件对氨挥发速率也有一定程度的影响。  相似文献   

9.
利用静态暗箱-气相色谱法对陕西关中灌区不同氮素用量及秸秆还田处理(190 kg N·hm-2,N190;150 kgN·hm-2,N150; 75 kg N·hm-2,N75; 150 kg N·hm-2+ 5000 kg· hm-2秸秆,N150+S)下冬小麦农田CO2排放及其影响因素进行研究.结果表明:农田CO2排放通量呈明显的季节变化规律,且与温度的动态变化趋势相一致;各处理CO2排放通量与大气温度和土壤温度均具有极显著的指数相关关系,且与大气温度相关性最好;全生长季各处理累积CO2排放量顺序为:N1S0+ S> N150≈N190> N75,在中低氮水平范围内CO2排放量随施氮量增加而增加,秸秆还田增加了农田CO2排放,排放量较不还田增加18%.  相似文献   

10.
为探究生物炭与木醋液对盐土尿素氮的硝化过程、N2O排放和NH3挥发的影响,以甘肃中度盐土为研究对象,设置不施尿素对照(CK)、单施尿素(N)、尿素+生物炭(N+B)、尿素+木醋液(N+WV)和尿素+生物炭+木醋液(N+B+WV)5个处理,开展室内好气培养试验。结果表明:(1)各处理在培养0~14 d的表观硝化率均呈上升趋势,其中N+B+WV处理较其他处理铵态氮含量最高、表观硝化率最低,培养后期表观硝化率明显提高;培养结束N+B+WV处理氨氧化细菌(AOB)amoA基因丰度较N处理显著提高,增幅为76.5%,氨氧化古菌(AOA)amoA基因丰度较CK显著降低,降幅为51.5%。(2)与CK相比,N处理N2O和NH3累积排放量显著增加;与N处理相比,N+WV、N+B和N+B+WV处理N2O累积排放量分别增加10.0%、减少9.5%和减少18.2%,氧化亚氮还原酶nosZ基因丰度分别降低9.3%、26.1%和37.7%,NH3累积挥发量分别减少30.5%、28.9%和49.0%。(3)综合计算各处理N2O和NH3排放的温室效应潜能发现,与N处理相比,N+B+WV处理降低温室效应潜能20.0%,减排效果最显著。综上,在中度盐土区采用生物炭与木醋液配施可以有效减少盐土中N2O和NH3排放,有利于减少土壤氮素损失并降低温室效应潜能。  相似文献   

11.
为探明不同施肥方式对旱作麦田土壤N2O排放的影响,以不施肥(CK)为对照,设置单施有机肥(M)、单施无机肥(N)、有机-无机肥配施(MN)3种施肥方式,采用静态箱-气相色谱法对春小麦地土壤N2O排放通量进行测定,并对其影响因子(NO-3-N、NH+4-N、土壤温度、土壤含水量)和春小麦产量进行同期测定。结果表明:春小麦地在整个生育期内表现为N2O排放源,各处理均在施肥后出现N2O排放峰。不同处理土壤N2O累积排放量表现为N>MN>M>CK,N2O净损失量(以氮计算)为1.175 8~1.428 kg·hm-2,占当季施氮量的1.12%~1.36%,有机-无机肥配施降低了氮肥中氮素以气态形式的损失量。MN、N、M处理春小麦产量分别较CK处理增加了45.1%、31.0%、18.8%,各处理土壤NO-3<...  相似文献   

12.
为探究水分和氮肥增效剂对夏玉米生长及水肥利用的综合影响,通过设置40 mm(W1)和60 mm(W2)两个灌水水平下不施氮肥(N0)、施用氮肥(U)、氮肥+硝化抑制剂(U+DCD)、氮肥+脲酶抑制剂(U+NBPT)、氮肥+双效抑制剂(U+N+D)5种氮肥施用措施,开展夏玉米田间试验。结果表明:相较于施用氮肥处理,氮肥配施增效剂可以显著提高夏玉米产量、成熟期地上生物量、净收益、水分利用效率和氮肥偏生产力,增幅分别为5.92%~13.82%、5.85%~18.07%、11.12%~24.30%、12.35%~41.83%和5.93%~13.80%,其中氮肥配施双效抑制剂效果较优;氮肥配施脲酶抑制剂和双效抑制剂可以降低夏玉米农田土壤氨挥发累积量和成熟期土壤硝态氮残留量,前者效果最优。相比于W1,W2水平下氮肥配施双效抑制剂处理玉米产量、成熟期地上生物量、净收益、水分利用效率和氮肥偏生产力分别提高10.54%、15.51%、19.40%、20.31%和27.36%;氮肥配施脲酶抑制剂处理农田土壤氨挥发累积量和硝态氮残留量分别降低11.33%和48.46%。综合考虑夏玉米施肥灌水方案的经济效益、环境效益、水肥利用效率和玉米植株生长,构建模糊综合评价体系,得到最优处理为灌水量60 mm下氮肥配施双效抑制剂。  相似文献   

13.
滴灌随水施肥对土壤有效氮动态的影响   总被引:4,自引:1,他引:3  
通过盆栽试验,探讨2种肥料在滴灌随水施肥条件下,对土壤有效氮动态的影响。结果表明:在蕾期,不施肥处理的对照和施喷滴灌专用肥的处理在0~10cm土层的土壤有效氮均小于10~21cm土层;施美国二铵的处理各土层有效氮均无明显差异;10~21cm土层的有效氮施喷滴灌专用肥的处理高于施美国二铵的处理。在收获后期,各处理土壤有效氮从上部土层至下部土层呈下降趋势,0~5cm土层的有效氮明显高于其它土层。与蕾期相比,收获后期所有处理各土层有效氮均普遍增高。以上两时期施肥处理的有效氮均高于不施肥处理的对照,施喷滴灌专用肥处理的有效氮又高于施美国二铵处理的有效氮。充分说明,在相同氮、磷、钾条件下,施用的肥料不同,土壤中有效氮的积累不同。与美国二铵相比,喷滴灌专用肥更适用于滴灌随水施肥的肥料品种。  相似文献   

14.
为充分了解绿洲农田农业生态系统养分循环规律,利用长期定位实验的方法,初步探讨了不同施肥处理下,绿洲农田的土壤养分及作物产量变化。结果表明:不同施肥处理对土壤养分含量有明显影响。其中,化肥与有机肥配合施用处理的土壤养分含量最高,无肥CK处理养分含量最低,尤其是化肥与有机肥配合施用处理的有机质、全N和碱解氮分别比对照区平均高1.5 g/kg0、.19 g/kg和10.5 mg/kg,其他各处理养分含量处于二者之间。结果还表明,作物产量与土壤养分含量相关,尤其是与土壤有机质、全N、碱解N的含量关系密切,制约产量的首要养分因素是N素,其次是P素。CK处理由于连年作物吸收及收获带走养分,使土壤的有效养分库消耗很快,致使作物产量逐渐降低。P、K处理作物产量变化趋势和CK处理基本一致,进一步表明了N素是影响绿洲农田作物产量的首要因素。对各处理的土壤养分和作物产量变化研究表明,化肥与有机肥配合施用处理作物产量最高,平均为4 010.8 kg/hm2,因此化肥与有机肥配合施用可能是提高绿洲农田土壤肥力,增加作物产量的最佳施肥方式。  相似文献   

15.
为研究旱地矮化苹果树当季肥料氮在土壤中的累积与淋溶效应,采用土钻采样法与15N同位素示踪技术,测定了6 a生晚熟矮化‘延长红’苹果园土壤剖面(0~300 cm)的氮素累积分布特征与当季氮肥残留。结果表明:土壤含水率与硝态氮含量变化表现出较强的一致性,不施肥CK、减氮施肥N400与常规施肥N800处理硝态氮在80~140 cm土层存在明显富集现象,其含量峰值分别为174.9、194.8 mg·kg-1与211.1 mg·kg-1。CK、N400与N800处理0~300 cm土壤剖面中,全氮累积量分别为10 927.3、13 734.8 kg·hm-2与15 645.4 kg·hm-2,硝态氮累积量分别为1 873.5、2 353.9 kg·hm-2与2 892.7 kg·hm-2,铵态氮累积量分别为12.2、42.6 kg·hm-2与44.4 kg·hm-2。N400和N800处理下果园土壤中各土层(0~300 cm)氮素来自当季氮肥的比例分别为0.10%~1.50%和0.18%~2.03%。当季氮肥在0~300 cm深度各土层均有残留且主要集中在0~140 cm土层;80~100 cm土层的全氮来自当季氮肥的比例(减氮施肥N400和常规施肥N800分别为1.50%与2.03%)显著高于其他土层。N400处理下TN-15N、NO-3-15N、NH+4-15N的残留率分别为21.6%、19.2%、0.2%,N800处理分别为48.8%、39.3%、0.3%,土壤中氮的残留率随着施氮量的增加显著增加,且以硝态氮为主。100~300 cm土层中减氮施肥N400与常规施肥N800处理NO-3-15N残留率分别为8.5%与25.0%,当季氮肥淋溶出根区(0~80 cm)现象明显。最佳施肥量及施肥量对产量的影响在N400的基础上仍有待进一步研究确定。  相似文献   

16.
施氮量对库尔勒香梨园氨挥发和氧化亚氮排放的影响   总被引:3,自引:0,他引:3  
为了解库尔勒香梨园土壤氮素气态损失,采用密闭式集气法和静态箱气相色谱法对不同氮肥用量下的土壤氨挥发和氧化亚氮排放进行研究,并设置了5个处理:不施肥(N0P0K0)、不施氮肥(N0PK)、施氮150 kg·hm-2(N1PK)、施氮300 kg·hm-2(N2PK)、施氮450 kg·hm-2(N3PK)。结果表明:氨挥发速率和氧化亚氮排放通量均在施基肥和施追肥后第4天出现峰值和次峰值,且氨挥发速率和氧化亚氮排放通量均随着施氮量的增加而增大;各处理氨挥发累积量达到27.886~44.416 kg·hm-2·a-1,施氮处理氨挥发净损失量达到6.726~16.197 kg·hm-2·a-1,各处理氧化亚氮累积量达到341.616~531.960 g·hm-2·a-1,施氮处理氧化亚氮净损失量达到90.452~185.412 g·hm-2·a-1,氨挥发累积量和净损失量与氧化亚氮累积量和净损失量均随着施氮量的增加而增加;施氮处理氨挥发净损失率为2.720%~4.480%,氧化亚氮净损失率为0.038%~0.060%,氨挥发和氧化亚氮净损失率随着施氮量的增加均表现为先减小再增大;施用氮肥能显著增加0~20 cm和20~40 cm土层中铵态氮和硝态氮含量;相关分析表明,氨挥发速率和氧化亚氮排放通量与施氮量和土壤温度呈极显著正相关关系;N2PK处理的库尔勒香梨产量最高,达到6 213.5 kg·hm-2,且氨挥发净损失率和氧化亚氮净损失率均最小,为2.720%和0.038%。从库尔勒香梨园土壤氮素气态损失和生产角度看,纯氮用量为300 kg·hm-2时最佳。  相似文献   

17.
长期施肥对绿洲农田土壤有机碳和无机碳的影响   总被引:3,自引:0,他引:3  
以中国科学院阜康荒漠生态站的绿洲农田养分循环长期定位试验(始于1990年)为研究平台,研究了无施肥处理(CK)、单施化肥处理(NPK)、有机/无机配施处理(NPKM)和秸秆还田处理(NPKS)下,土壤无机碳(SIC)和有机碳(SOC)在剖面和各施肥年限的含量变化特征及其影响。结果表明:施肥、剖面层次和施肥年限对SOC与SIC含量变化影响显著(P<0.01)。在各施肥处理中,与CK相比,NPK、NPKM和NPKS的SOC与SIC含量明显增加(P<0.05),并且有机/无机肥配施模式下的SIC含量显著高于单施化肥模式;在剖面层次间,SIC含量从0~20 cm 的9.12 g/kg 增加到40~60 cm 的9.94 g/kg,而SOC变化趋势与之相反。表明合理施肥能够增加土壤表层有机碳含量,有机/无机配施会使耕层以下土壤无机碳增加。  相似文献   

18.
滴灌条件下施氮时段对土壤氮素分布的影响研究   总被引:1,自引:0,他引:1  
采用单点源滴灌试验模拟土壤入渗,并分不同时段施氮肥,灌水施氮肥结束后,在不同时间段和湿润体不同位置采集土样,并测定土壤中速效氮的含量,分析比对湿润体中不同位置硝态氮与铵态氮的时空分布,结果表明:滴灌全程施肥,土壤湿润体中高氮区始终分布在滴头附近;滴灌前1/2时段施肥,硝态氮含量的最大值(107.50 mg·kg~(-1))出现在距滴头水平距离15~20 cm,垂直距离15~30 cm范围内;后1/2时段施肥,高氮区始终也分布在滴头附近,但含量值表现极高(184.36 mg·kg~(-1));中间1/2时段施肥,硝态氮主要分布在距滴头水平距离为15 cm左右,垂直深度也为15 cm左右的土层范围内。随着时间的推移,土壤湿润体中NO3--N的含量均表现为到第5天前后达到最高值,此后又开始降低;NH4+-N在时间上转化速率相对较快,在灌水施肥结束后的第3天硝化作用最强,从第3天到第5天NH4+-N浓度急剧降低。  相似文献   

19.
氮肥和土壤质地对滴灌棉花氮素利用率及产量的影响   总被引:2,自引:0,他引:2  
为了探究氮肥和土壤质地对滴灌棉花氮素利用率及产量的影响,采用大田二因素随机区组试验方法,研究了滴灌条件下不同质地土壤棉花全氮含量以及氮素在各器官中的分布积累特征。结果表明:(1)不同施氮处理对各质地土壤棉花平均全氮含量表现为N2(施氮量340 kg·hm~(-2))N1(施氮量240 kg·hm~(-2))N3(施氮量480 kg·hm~(-2))CK(不施氮处理);(2)同种质地下棉花各器官全氮含量在铃期之前表现为叶花蕾茎;铃期之后表现为叶铃茎,不同质地条件下叶、花蕾、花铃、茎中全氮含量均表现为砂土壤土黏土;(3)相同灌水条件时,N2处理下棉花单株铃数壤土与黏土差异不显著;N1处理下棉花单铃重砂土与壤土、N3处理下壤土与黏土差异不显著,其余处理间均达到极显著水平,并且砂土、壤土、黏土分别以256.00 kg·hm~(-2)、287.34 kg·hm~(-2)、369.25 kg·hm~(-2)的施氮量能够达到最高目标产量。建议在新疆干旱区滴灌砂、壤棉田采用以上研究结果,黏土氮肥投入可酌情降低并无机-有机肥料配施,以达到节肥和高产的统一。  相似文献   

20.
北疆滴灌玉米施氮量估算及减氮增铵效应   总被引:1,自引:0,他引:1  
根据产量与施氮量函数模型计算滴灌玉米施氮量,并通过减氮增铵改善滴灌玉米氮素营养,探索滴灌水氮一体化下优化施氮策略。2013—2014年两年田间试验表明:玉米产量、干物质量及氮素吸收量均随施氮量的增加显著升高,当施氮量大于435 kg·hm-2时,则呈下降趋势,表现为N435N540N330N225N0;减氮增铵处理的上述指标表现为N375+CPN37575%N375+CPN0,当施氮量在330~435 kg·hm-2时,不同处理的玉米氮素吸收量与氮素收获指数差异均不显著,说明在此范围内减氮增铵对玉米干物质积累、玉米氮素营养及产量无负面影响;根据产量与施氮量间函数关系可得天山北坡滴灌玉米经济最佳产量17 049 kg·hm-2下的施氮量为402.5kg·hm-2;施氮和增铵处理可显著增加玉米穗粒数、单穗重;氮肥偏生产力和氮肥利用率均随施氮量增加而下降,氮肥利用率表现为N225(46.6%)N330(45.8%)N435(43.6%)N540(34.6%);滴灌玉米氮肥偏生产力和氮肥利用率均以75%N375+CP处理最高,分别比施氮量在330~435 kg·hm-2之间其他处理的平均值增加了31.4%、27.9%和5.8%、6.4%,说明减氮增铵可显著提高滴灌玉米氮素养分利用效率;天山北坡滴灌玉米优化施氮量为402.5kg·hm-2,通过施用硝化抑制剂与尿素水氮一体化分次施入可实现减氮93.8 kg·hm-2,并显著提高氮肥利用率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号